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Abstract: Bulky organic carcinogens are activated in vivo and subsequently react with nucleobases
of cellular DNA to produce adducts. Some of these DNA adducts exist in multiple conformations
that are slowly interconverted to one another. Different conformations have been implicated in
different mutagenic and repair outcomes. However, studies on the conformation-specific inhibition
of replication, which is more relevant to cell survival, are scarce, presumably due to the structural
dynamics of DNA lesions at the replication fork. It is difficult to capture the exact nature of replication
inhibition by existing end-point assays, which usually detect either the ensemble of consequences
of all the conformers or the culmination of all cellular behaviors, such as mutagenicity or survival
rate. We previously reported very unusual sequence-dependent conformational heterogeneities
involving FABP-modified DNA under different sequence contexts (TG1*G2T [67%B:33%S] and
TG1G2*T [100%B], G*, N-(2′-deoxyguanosin-8-yl)-4′-fluoro-4-aminobiphenyl) (Cai et al. Nucleic Acids
Research, 46, 6356–6370 (2018)). In the present study, we attempted to correlate the in vitro inhibition
of polymerase activity to different conformations from a single FABP-modified DNA lesion. We
utilized a combination of surface plasmon resonance (SPR) and HPLC-based steady-state kinetics to
reveal the differences in terms of binding affinity and inhibition with polymerase between these two
conformers (67%B:33%S and 100%B).

Keywords: 4-aminobiphenyl; bulky DNA lesion; conformational heterogeneity; surface plasmon
resonance (SPR) binding kinetics; steady state enzyme kinetics; Klenow fragment

1. Introduction

The human genome is under constant assault from the environment. DNA-damage-induced
mutations are known to trigger chemical carcinogenesis [1–5]. Therefore, understanding the biological
responses of cells to DNA mutations is important. Arylamines belong to a notorious group of
environmental mutagens/carcinogens that produce bulky DNA adducts in vivo [6–10]. They are
known to adopt different unique conformational motifs: the major groove B-type (B), stacked (S)
(Figure 1a) [11], or the minor groove wedge (W) [12]. Consequently, these bulky-lesion induced
conformational heterogeneities complicate mutational and repair outcomes [9–11,13–15].

4-Aminobiphenyl (ABP) is a major etiological agent of human bladder carcinoma and a potent
urinary-bladder carcinogen in experimental animals. As such, commercial production of ABP is
banned, however, exposure to ABP can still take place from cigarette smoke. ABP is activated by
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cellular N-acetyltransferase to produce a dG-C8-substituted adduct as a major DNA lesion (dG-C8-ABP,
Figure 1b) [12,16–20]. The majority of human bladder cancer has a mutation in the p53 gene. Compared
with other cancers, the ABP-induced mutations are more evenly distributed along the p53 gene and
the mutation hotspots occur at both CpG, such as codons 175, 248, and 273, and non-CpG sites,
such as codons 280 and 285, the latter two being unique mutational hotspots for bladder and other
urinary tract cancers [21]. The major induced mutation is a G to T transversion mutation. Translesion
synthesis (TLS) over dG-C8-ABP in two different sequences (CCG*GAGGC and CCGGAG*GCC,
G* = dG-C8-ABP), which represent the codon 248 and 249 sequences of the human p53 tumor suppressor
gene, respectively, has confirmed that codon 248 is both a hot spot of ABP adduct formation and G to T
mutation [22]. These results suggest that the efficiency of TLS over dG-C8-ABP is influenced by the
surrounding DNA sequences. The structurally similar liver carcinogens, 2-aminofluorene (AF) and
N-2-acetylaminofluorene (AAF), produce similar C8-dG adducts. AF could be error-free by correctly
base pairing with an incoming dC, whereas AAF blocks the replication process and requires recruitment
of lesion bypass polymerases for TLS. In Escherichia coli, the TLS of AF produces point and frameshift
mutations, whereas bypass of the AAF lesion is frequently accompanied by a frameshift mutation.
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Figure 1. (a) Two major conformational views of dG-C8-FABP
[N-(2′-deoxyguanosin-8-yl)-4′-fluoro-4-aminobiphenyl]: B-, and S-conformers. Fluorine-labeled ABP
(FABP)-red, modified dG-blue, complementary C-orange. (b) The chemical structure of dG-C8-FABP.

Our previous structural studies showed that fully paired duplexes containing the fluorine
containing model dG-C8-FABP (fluorine-labeled ABP, FABP, N-(2′-deoxyguanosin-8-yl)-4′-fluoro-4-
aminobiphenyl) adopted a 67%:33% mixture of the B- and S-conformers in the TG1*G2T (G* = FABP)
sequence context at 25 ◦C [23]. Meanwhile, the same lesion in the TG1G2*T context exhibited exclusively
the B-type conformation under identical experimental conditions. When a replication polymerase
encounters a bulky DNA lesion, the polymerase is likely to stall, thus stopping DNA synthesis. The
lesion also influences whether the DNA replication will be error-free or error-prone. The aforementioned
striking sequence effect in buffer systems warrants systematic studies in the presence of a polymerase.
Vaidyanathan et al. [24] probed the sequence effect of dG-C8-AF (AF, aminofluorene), a structural
analog of ABP, on nucleotide insertion efficiencies catalyzed by the Klenow fragment (Kf-exo−) on
TG*A and CG*A sequences [25,26]. They found that the S conformer of CG*A thermodynamically
favors the insertion of mutagenic A over non-mutagenic C at the lesion site. Xu et al. reported that
Kf-exo− is a strong binder to template/primer junctions, but with minimal nucleotide selectivity against
modified DNA [27]. The sequence-dependent conformational heterogeneity may play an important
role in DNA replication and mutation. We hypothesize that different conformations lead to different
extents of polymerase binding affinities, kinetic behaviors, and replication blocks, ultimately resulting
in complex toxic and mutational outcomes. Here we conducted surface plasmon resonance (SPR)
binding experiments and steady-state enzyme kinetics in vitro to probe the effect of ABP-induced
conformational heterogeneity on DNA replication.

2. Results

2.1. DNA Sequence Systems

For SPR binding experiments, we constructed two biotinylated hairpin-based template–primer
strands (Figure 2a), 85-mer G1* adduct and 84-mer G2* adduct (G* = dG-C8-FABP). Specifically, two
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FABP-modified–biotin–31-mer DNA sequences (TG1*G2T and TG1G2*T) were purified by HPLC and
characterized individually by enzyme digestion/MALDI-MS [27–30] (Figure S1). A 54-mer hairpin
DNA was annealed and ligated to the biotin–31-mer TG1*G2T oligonucleotide, whereas a 53-mer
hairpin DNA was ligated to the biotin–31-mer TG1G2*T oligonucleotide. The hairpin structures were
used to improve the thermal stability of the oligonucleotide duplex during SPR experiments and
the lesion G1* and G2* adduct were placed at the 21st and 22nd bases, respectively, to avoid a clash
between the polymerase protein and the gold chip surface [27,31,32].
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For HPLC-based steady-state kinetics experiments, two 16-mer G1* or G2* template strands were
each annealed to various lengths of complementary strands (8-mer to 11-mer) to create n − 3, n − 2, n − 1,
and n for the G1* adduct and n − 2, n − 1, n, and n + 1 for G2* (n is the lesion site) (Figure 3a,b) [23,33–35].
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G2* (TGG*T) templates. n: lesion site. Lineweaver–Burk model of DNA synthesis catalyzed by Kf-exo−

at (c) 10-mer, G1-FABP and (d) 9-mer G2-FABP lesion sites with dCTP at steady-state. The G1-FABP
against with Kf–exo– adopts a competitive inhibitor model, whereas the behavior of TG1G2*T shows as
non-competitive (see text).

2.2. Oligonucleotide Characterization by MALDI-TOF MS (Matrix-Assisted Laser Desorption/Ionization-Time
of Flight Mass Spectrometry)

The FABP-modified biotin–31-mer oligonucleotides were characterized by exonuclease enzyme
digestion followed by MALDI-TOF MS analysis in accordance with the published procedures [27,36].
In the present case, 5′-3′ exonuclease digestion on DNA was difficult to carry out due to the binding
hindrance of the 5′-biotin motif to the enzyme. Figure S1b shows the MALDI-TOF MS spectra of the
3′-5′ snake venom phosphodiesterase (SVP) exonuclease digestions of the biotin–31-mer G1* adduct at
different time points (0, 1, 4, 6, 7, 8, and 10 min). The m/z of 9804 (theoretical 9803) at 0 min represents
the control mass-to-charge ratio. Within 6 min of 3′–5′ exonuclease digestion, the lower masses
appeared corresponding to the 27-mer to 21-mer fragments. The m/z = 6788 (theoretical 6787) fragment,
which persisted from 6 min to 10 min was assigned to the G1*-FABP-modified 21-mer. These results
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confirm the first eluting peak (peak 1) from the HPLC profile (Figure S1a) is biotin–31-mer TG1*G2T.
Figure S1c presents the MALDI-TOF MS spectra of the peak 2 on HPLC with 3′–5′ exonuclease
digestions. The digestions were fast in the first 4 min showing the m/z range from 9803 to 7116.
However, the digestion stalled from 4–10 min at m/z 7116, which corresponds to the 22-mer fragment
containing the FABP-modified guanine (theoretical m/z = 7116). These results confirm that peak 2 is
G2*-FABP-modified biotin–31-mer.

The 84- and 85-mer biotinylated oligonucleotides were purified and identified by 15% denaturing
polyacrylamide gel (Bio-rad, Hercules, CA, USA) [27]. Figure S2 reveals the denaturing gel profiles
of unmodified/modified 84- and 85-mer ligated oligonucleotides, biotin–31-mer, and 53-mer/54-mer
non-ligated oligonucleotides. For the 85-mer control, all the biotin–31-mer and 54-mer hairpins were
ligated. As for the 84-mer control, 85-mer G1*, and 84-mer G2*, excessive biotin–31-mer, 54-mer, and
53-mer were observed correspondingly. The ligated and purified 85-mer control/ G1* and 84-mer
control/ G2* were used for SPR experiments.

2.3. HPLC-Based Steady-State Kinetics

We conducted steady-state experiments to investigate the impact of conformational heterogeneity
on nucleotide insertion kinetics [37]. The E. coli exonuclease-deficient Kf-exo− was used for
single-nucleotide incorporation. Although the modified base could pair with dCTP to complete
the primer extension reaction induced by Kf-exo−, the reaction efficiency was much poorer than the
regular DNA template. The change of efficiency is represented by the enzyme kinetic parameters, Km

and kcat, and the results are summarized in Table 1. The bulky C8 adduct on guanine does not directly
block the Watson–Crick base pairing, but it could either physically interfere with the dNTP binding
pocket in Kf-exo− when the FABP-G holds an “S” conformation; or distort the Kf-exo− structure in
the ternary complexes and influence the geometry at the active site of forming phosphodiester bonds
when FABP-G holds the “B” conformation (Figure 1a). In both scenarios, the bulky adduct acts as an
inhibitor, but in two different ways (Figure 3). In order to apply the inhibition kinetic model, the whole
primer extension assay was performed by maintaining the concentration of inhibitor (FABP-containing
DNA duplex), and varying the concentration of substrate, dNTP (dCTP or dATP). dATP was added to
16/8-mer and 16/11-mer systems, whereas dCTP was added to the 16/9-mer and 16/10-mer sequences
(Figure 3).

Table 1. Steady-state kinetic parameters for insertion of dCTP opposite unmodified FABP−dG adduct
with Kf-exo−.

Sequence Km (µM) kcat (min−1) kcat/Km (µM−1·min−1) * fins

FABP-G1 23.4 ± 0.01 29.7 ± 0.63 1.27 0.33
Control-G1 7.4 ± 0.10 28.8 ± 0.96 3.87 1.00
FABP-G2 5.7 ± 0.01 5.5 ± 0.11 0.97 0.24

Control-G2 5.8 ± 0.11 23.2 ± 0.70 4.00 1.00

* f ins= (kcat/Km)modified/(kcat/Km)unmodified control.

2.4. dCTP Incorporation

Specifically, adding dCTP to the n− 1 (16/10-mer) G1* adduct elongated a single 11-mer (Figure 3a),
whereas the n − 1 (16-/9-mer) G2* adduct produced 10- and 11-mer (Figure 3b). The formation of
10- and 11-mer mixture from the G2* adduct sequence was difficult to quantify; thus, the reduction
of the starting material 9-mer was employed to determine the kinetic parameters for both G1* and
G2* reactions.

The n − 1 (16/9-mer) G2* adduct showed a Km value (5.7 µM) similar to that of the control (5.8 µM);
such similarity indicates an almost equal affinity (Table 1). However, the insertion efficiency f ins of dCTP
opposite −G2* was 4-fold lower than that of the unmodified control (0.24:1) (Table 1). By contrast, the
Km of the G1* adduct showed a lower affinity (23.4 µM) than that of the control (7.4 µM). The insertion
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efficiency f ins in G1* was three times lower than the control (0.33 to 1). These two forms of enzyme
inhibition can be clearly shown by the Lineweaver–Burk plot. As shown by the Lineweaver–Burke
enzyme inhibition model (Figure 3c), the (16/10-mer) G1* adduct and its control intersect on the Y-axis
and a competitive inhibition behavior is suggested. By contrast, the n − 1 16/9-mer G2* adduct and its
control merge at the x-axis. This behavior can be explained as non-competitive inhibition (Figure 3d).
When the n − 1 (16/9-mer) G2* adduct elongated to 10-mer (n) and 11-mer (n + 1), few 10-mer primers,
but most of the 11-mer primers, were observed from the HPLC profile. This result was achieved
because the bulky FABP on the G2 at the lesion site (n) does not block the replication from n − 1 to n + 1.

2.5. dATP Incorporation

The long-range lesion effect was examined by initiating the primer elongation with a 16/8-mer
template/primer that produces n − 2 for G2* (Figure 3b) and n − 3 for G1* (Figure 3a). Figure S3a
presents the results at 10 min. In the control, ~70% of the 8-mer was extended to 9-mer. With the
adduct on G1, ~40% of the 8-mer was converted to 9-mer, indicating a moderate pre-lesion effect at
G1*. However, G2* blocked ~80% of the 8-mer converting to 9-mer, which indicates a much stronger
pre-lesion effect than that of G1*. These results are not surprising because the 8-mer primer is closer to
the G2* adduct than the G1* adduct. In the 11-mer (Figure S3b), the unmodified control exhibited 90%
of dATP insertion. However, only ~20% of the 11-mer was elongated to 12-mer opposite the G1* lesion.
This finding indicates a strong post-lesion effect. Moreover, only ~55% of the 11-mer was converted
to 12-mer in the n + 1 for G2*. These results suggest significant retardation of insertion close to the
lesion site.

2.6. Kf-exo− SPR Binding Kinetics

Binary System—Figure 2b shows the sensorgrams for the binary binding between Kf-exo− and
unmodified controls (85-mer/84-mer TGGT) or modified sequences (85-mer TG1*G2T/84-mer TG1G2*T).
These sequences represent replication forks for the G1* and G2*, respectively. Kf-exo− showed a much
stronger binding affinity (KD) to the modified 85-mer TG1*G2T (8.3-fold) and 84-mer (5.6-fold) TG1G2*T
sequences relative to their unmodified controls, 85-mer and 84-mer TGGT, respectively (Table 2). The
differences were more striking in the dissociation rates (85-mer TGGT kd: 0.84 s−1 vs. 85-mer TG1*G2T
kd: 0.17 s−1; 84-mer TGGT kd: 0.03 s−1 vs. 84-mer TG1G2*T kd: 0.009 s−1). There was a substantial
difference in the Kd ratio (Kd-modified/Kd-control) between G1 and G2 (Figure 2c). By contrast, the
Ka ratios of G1 and G2 were close to each other, indicating similar association rates. The stabilization
energies here specifically measure the energies of forming hydrogen bonds between Kf-exo− and
DNA sequences [38]. For the binary system the net stabilization energies were positive (Table S1),
which indicates the hydrogen bonds that form between Kf-exo− and modified sequences (85-mer
TG1*G2T/84-mer TG1G2*T) are stronger than their unmodified controls (85-mer/84-mer TGGT). It is
interesting to note that although only one base length (dC) differed between the 84-mer and 85-mer,
the binding affinity of the unmodified 84-mer was 18.2-fold tighter than that of the 85-mer. Similarly,
the KD of the 84-mer TG1G2*T was 12.2-fold greater than that of the 85-mer TG1*G2T.

Ternary System— dNTP was added to form Klenow ternary complexes. Kf-exo− bound tightly to
the unmodified controls when the correct dCTP was introduced in the ternary system (Figure 4). In
the unmodified 85-mer, the binding affinities of dATP, dGTP, and dTTP to the 84-mer controls were
reduced by 315-, 284-, and 89-fold, respectively, relative to that of dCTP (Table 2). However, nucleotide
selectivity was significantly decreased for the ternary complexes with FABP-dG adduct. The KD value
for the 85-mer TG1*G2T was only reduced by ~5-fold in dATP, dGTP, and dTTP compared to that of
dCTP. Similar results were obtained for the 84-mer G2* adduct, where binding tightness was reduced
by ~2-fold in dATP, dGTP, and dTTP compared with that of dCTP. Moreover, as in the binary system,
slower dissociation rates were observed for the unmodified and G2* modified 84-mers. The KD values
of dCTP, dATP, dGTP, and dTTP in the unmodified and G2* modified 84-mers were smaller than
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those of the unmodified 85-mer (5- and 13-fold smaller in dCTP and dTTP) and G1* modified 85-mer
TG1*G2T (4-, 13-, 10-, and 12-fold smaller in dCTP, dATP, dGTP, and dTTP, respectively).

Table 2. SPR binding affinities, KD (nM) of unmodified (TG1G2T) and FABP−dG adducts
(TG1[FABP]G2T and TG1G2[FABP]T) with Kf-exo− (steady-state affinity analysis) in the binary and
ternary systems. Association and dissociation rate constants, ka and kd, in binary system are listed.

Sequence Binary KD of Ternary (nM)

ka (1/Ms) × 107 kd (1/s) KD (nM) dCTP dATP dGTP dTTP

85-mer TG1*G2T 15.90 (0.17) # 0.170
(0.002)

1.050
(0.050)

0.200
(0.060) 1.17 (0.04) 1.08 (0.07) 1.08 (0.08)

85-mer control 9.59 (0.05) 0.840
(0.004)

8.740
(0.030)

0.022
(0.001) 14.90 (5.00) 11.40 (4.20) 5.14 (0.74)

84-mer TG1G2*T 11.10 (0.07) 0.009
(0.000)

0.086
(0.001)

0.045
(0.006) 0.09 (0.00) 0.11 (0.00) 0.09 (0.01)

84-mer control 6.33 (0.04) 0.030
(0.002)

0.480
(0.030)

0.004
(0.000) 1.39 (0.02) 1.25 (0.01) 0.39 (0.04)

# standard deviation.
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3. Discussion

We previously conducted [23] systematic spectroscopic, thermodynamic, and chip binding
(19F-NMR, CD, DSC, and SPR) studies for the extension of 16-mer TG1*G2T and TG1G2*T (G* = FABP)
sequences. These protein free model systems mimic a translesion synthesis of the bulky FABP lesion
in two very distinctive sequence-dependent conformational heterogeneities at G1 (67%B:33%S) and
G2 (100%B). The results indicate that the sequence-dependent conformational complexities appear
to persist at various elongation positions, including the ss/ds junction. The B-conformer is a major
thermodynamic stabilizer in duplex settings, whereas the S-conformer is a destabilizer. However, the
opposite is the case for the adduct at the ss/ds junction. In particular, the S-conformation promotes
lesion stacking with nascent base pairs at the replication fork. SPR results reveal that the S-conformation
increases the binding affinity with the complementary strands in the order of G1* > G2*. In the present
work, we examined the effects of these unusual sequence effects on Klenow polymerase binding (binary
and ternary) and nucleotide insertion kinetics.

3.1. Improvement on Model Hairpin Oligonucleotide Construction

We previously reported a construction of a biotinylated hairpin-based template–primer strand for
DNA–polymerase SPR binding studies [27,39,40]. The general strategy was to ligate a biotinylated
arylamine-modified 31-mer sequence with 52-mer hairpin DNA to form an 83-mer hairpin. This
was then followed by addition of a ddNTP to the 3′-end to prevent potential primer elongation.
However, the ddNTP addition step was low yielding and the purification of ligated products was
difficult. In the present study, we succeeded in direct ligation of a biotinylated modified 31-mer with
ddNTP-containing 53- and 54-mer hairpin DNA. This process improved the yield significantly (from
~10% to ~ 30%), and the products were readily separated by HPLC. Also, previously, individual dNTPs
(100 µM) were mixed with varying concentrations of Kf-exo– in sample buffers and injected over
the surface without any dNTP in the running buffer. This would create a complication resulting in
two variables, concentrations of dNTPs and Kf–exo– [39]. In the present work, we circumvented the
complication by adding individual dNTP in running buffer and introducing Kf–exo– directly onto the
chip surface. This system has only one variable, thus increasing the system stability and accuracy for
the translesion synthesis.

3.2. Lesion and Sequence Effects on SPR Binding Affinities and Kinetics

Tight binding of Kf–exo– with the unmodified dG control was observed when the correct
nucleotide dCTP was presented in both the 85-mer and 84-mer. This result is in a good agreement
with expectation and shows high nucleotide selectivity (KD dCTP � KD dTTP < KD dATP ~ KD dGTP).
Meanwhile, a remarkably tighter binding of Kf–exo– was found for the FABP-modified sample relative
to the control: i.e., the KD of the 85-mer G1* and 84-mer G2* interactions were 8.3 and 5.6 fold higher
than the corresponding unmodified controls, respectively. Adduct-induced tighter binding affinity
with Kf–exo– has been reported [27,41] and may be due to the interactions between the bulky FABP
and the nearby hydrophobic amino-acid residues in the active site of the Kf-exo–. In the ternary system,
nucleotide selectivity is low. In particular, the KD of the dCTP at the opposite G1* and G2* are only ~5-
and ~2-fold tighter than the incorrect dATP, dGTP, and dTTP, respectively. This is a strong lesion effect.
We observed that the usual 1:1 model SPR simulation did not provide a clean fit of dCTP for G1* in the
ternary system. It is possible that the present DNA adduct-Kf complex exists in multiple stages due to
the FABP-induced S/B conformational heterogeneity at the G1* replication fork. However, in most
cases, conformational changes in proteins are much faster than the SPR time scale and thus additional
studies would be necessary to confirm these possibilities.

Our HPLC-based steady-state kinetics data indicate competitive inhibition for the S/B-conformer
replication fork at G1*. In other words, the S/B conformational heterogeneity at G1* is inhibitory
to replication probably due to some unfavorable clash of the bulky FABP lesion with the incoming
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dCTP in a competitive manner. The unfavorable interactions may be caused by the competition of the
S-conformer with dCTP opposite of dG. However, the exclusively B-conformeric G2* accommodates
well for the incoming dCTP, resulting in non-competitive inhibition. The equal affinity (Km) between
G2* and its unmodified dG reveals that the B-conformation in the major grove may not interfere with the
insertion of the correct dCTP. This finding might also explain the greater KD of dCTP at G1* over G2* of
the SPR results and indicates a weaker binding affinity for G1* over G2*. Alternatively, the B-conformer
may not interfere with the Watson–Crick base pair, but it may alter the native conformations or hinder
the formation of a phosphodiester bond. The S-conformer portion of G1* cannot provide a proper
Watson–Crick base pair for replication and it may need to convert back to the B-conformation to be
replicated properly. Thus, the S-conformer may function as a competitive inhibitor for replication.
We observed a competitive-inhibition model for G1* but a non-competitive-inhibition model for G2*.
These types of intermediate interactions may be a necessary step in the DNA polymerase proofreading
process as well.

4. Materials and Methods

4.1. Model Oligonucleotide DNA Sequences

FABP-modified 16-mer templates were prepared in accordance with the published
procedures [42]: Two mono-adducts (d(5′-CTTCTG1*G2TCCTCATTC-3′)) (G* = FABP) (G1* adduct)
and (d(5′-CTTCTG1G2*TCCTCATTC-3′)) (G2* adduct). 5′-Biotin-labeled 31-mer oligonucleotides,
5′-phosphorylated and 3′-dideoxy-A 53-mer, 5′-phosphorylated and 3′-dideoxy-C 54-mer were
purchased from IDT (Integrated DNA Technologies Inc., Coralville, IA, USA) in desalted form and
purified by reverse-phase high-performance liquid chromatography (RP-HPLC). Kf-exo− (D355A,
E357A) was purchased from NEB Inc. (Ipswich, MA, USA). All HPLC solvents were purchased from
Fisher Inc. (Pittsburgh, PA, USA). The modified oligonucleotides were purified by HPLC (Thermo
Scientific, Madison, WI, USA) on a Phenomenex Luna C18 analytical column (100 × 46 mm, 3.0 µm)
(Phenomenex, Torrance, CA, USA). For the FABP-modified biotinylated 31-mer sequence, a 0.2 mL/min
flow rate was used in a 48 min linear gradient profile (2% to 26%, v/v) acetonitrile with 100 mM TEAA
buffer (pH 7.0) in mobile phase (Figure S1a).

4.2. HPLC-based Steady-State Kinetic Analysis

The extension efficiency of Kf-exo− polymerase opposite G1* and G2* adducts was determined by
steady-state kinetic experiments as described by published procedures [27,43–45]. All reactions were
performed using Kf-exo− (100 nM) and primers (5 µM) in NEB buffer 2 (New England Biolabs, Ipswich,
MA, USA). at 22 ◦C. The primers (8-mer to 12-mer) were pre-annealed with 6.75 µM FABP-modified or
unmodified 16-mer templates by heating up to 70 ◦C and slowly cooling down to room temperature.
Five different concentrations of dCTP or dATP (0, 12.5, 25, 50, and 100 µM) were used to initiate
nucleotide insertion. All reactions were quenched by adding 10mM EDTA followed by immediately
denaturing at 80 ◦C. The initial velocity of each reaction within the steady-state range was then
obtained by performing every reaction within a short time period from 5 s to 30 s. The extended
and unextended primers were separated by anion-exchange HPLC with a 1.5 M ammonium acetate
gradient of 40–60% in water for 6.5 min and quantified by the absorbance of UV at 260 nm. All
reactions were performed at 22 ◦C in triplicate, and the results were analyzed with a GraphPad
Prism 5 software by using the Lineweaver–Burk model. The inhibition curves were fitted to the
equation 1/V = 1/Vmax + (KM/Vmax)/[SdCTP]. The relative insertion efficiency f ins was obtained as
(kcat/KM)modified/(kcat/KM)unmodified.

4.3. SPR Measurements

FABP-modified Hairpin Template/Primer Constructs. 5′-Biotinylated 31-mer containing
dG-C8-FABP in the “-TG1G2T-” sequence context was used in SPR analysis following the reported
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procedures [27,39,40]. The two FABP-modified biotinylated 31-mer G1* and G2* adducts were
separated by RP-HPLC and characterized by MALDI-TOF MS [36]. The 84-mer and 85-mer
hairpin–template–primer were prepared by following the reported protocols [27,39]. Briefly, two
different lengths of hairpin DNA sequences (53- and 54-mer) were phosphorylated at their 5′-ends, but
their 3′-ends were modified with ddA and ddC, respectively, to prevent further primer elongation
(Figure 2a). The biotinylated 31-mer modified G1* adduct and 54-mer hairpin were desalted by G-25
spin columns and annealed together by heating to 95 ◦C for 5 min and cooling to room temperature.
The mixture solution was ligated in a buffer containing 4,000 units of T4 ligase enzyme for 16 h at room
temperature. The resulting 85-mer oligonucleotide was purified in 15% denaturing polyacrylamide gel
and extracted using the electroelution method followed by desalting by again using G-25 spin columns.
The corresponding biotinylated 85-mer was finally purified by RP-HPLC. G2* adduct biotinylated
84-mer and unmodified biotinylated 84- and 85-mers were also prepared similarly. All the 84- and
85-mer oligonucleotides were identified by the 15% denaturing polyacrylamide gel (Figure S2).

Immobilization of Streptavidin (SA) on CM5 S Chip and DNA Coating. SPR experiments were
carried out using Biacore T200 (GE Healthcare, Piscataway, NJ, USA). The SA via the amine coupling
kit was immobilized on flow cells on the carboxymethylated dextran-coated CM5 S chip by following
the reported procedures [27,39]. After SA immobilization at around 2000 RU on the flow cells, the chip
surface was washed with 50 mM NaOH for 60 s five times to reach below 20 RU. Then, the running
buffer was injected three times, and the system was equilibrated with running buffer for 2 h. The 84-
and 85-mer unmodified and modified G1* and G2* biotinylated DNA sequences (2 nM) were injected
over the flow cells (2 to 4) for 90–120 s to achieve 5-6 RU. The surface was stabilized with running
buffer for 3 h before conducting SPR binding affinity experiments.

4.4. Real-Time Kinetic Analysis by SPR

The SPR system was first primed at least three times with running buffer and zero-concentration
injections to condition the plasmon surface. The DNA was coated on the SA surface of flow cell 2
to 4 (cell 1 as blank reference). Surface testing, regeneration buffer scouting, and the mass transport
limitation test were conducted prior to kinetic experiments following previous reports [27,39]. DNA
coating around 4–5 RU did not show any impact of mass transport. The steady-state affinity analysis of
Kf-exo− binding to unmodified and modified DNA was analyzed in the absence (binary) and presence
of dNTPs (ternary) by varying Kf-exo− concentrations.

For the binary system, Kf-exo− was injected without dNTPs over the DNA surface in varying
concentrations (0–25 nM) and repeated twice as described previously [27]. Briefly, the 1× HBS-P
running buffer (containing 100 µg/mL bovine serum albumin [BSA] and 5 mM MgCl2) with six different
concentrations Kf-exo− (0–25 nM) was injected for 30 s at a flow rate of 100 µL/min over the cells.
Afterward, 0.05% SDS was applied as regeneration solution at a flow rate of 100 µL/min over the
surface for 30 s. The surface was stabilized with running buffer for 15 min after a regeneration step
between different concentration circles.

For the ternary system, dNTPs were injected with the HBS-P running buffer for comparison.
1× HBS-P running buffer (100 µg/mL BSA, 5 mM MgCl2, and 100 µM individual dNTPs) with
varying concentrations of Kf-exo− was injected over the surface. For both binary and ternary systems,
sensorgrams were fitted by using a 1:1 Langmuir model, and the binding affinity constants (KD) were
determined using steady-state affinity analysis in the BIA evaluation software v 1.0 provided by the
manufacturer (GE Healthcare, Marlborough, MA, USA).

5. Conclusions

In this paper, we conducted SPR and HPLC-based steady-state kinetics studies to probe
adduct-induced conformation-dependent replication block during translesion synthesis (TLS). The
FABP-modified DNA adduct adopts a mixture of B and S conformations in the TG1*G2T (67%B:33%S),
but shows exclusively B conformation in the TG1G2*T sequence context [23]. According to the
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present Lineweaver–Burk enzyme inhibition model, the S/B-conformeric mix G1* adduct exhibits a
competitive-inhibition, whereas the B-conformeric G2* adduct behaves as a non-competitive inhibitor
in the nucleotide insertion step. These results indicate that the S-conformer may not be able
to accommodate the incoming dCTP and exhibits a competitive behavior with incoming dNTPs,
thus blocking replication. By contrast, the exclusive B-conformer G2* does not interfere with the
Watson–Crick base pairing, resulting in a proper dCTP insertion. As such, the B-conformer shows
a non-competitive-inhibition behavior. The SPR binding results implicate an adduct-induced tight
binding with Kf-exo− in a binary system. In the ternary system, nucleotide selectivity decreases when
G1 and G2 are modified by FABP. From these experiments, we observed the effect of conformational
heterogeneity induced by the bulky lesion on replication block.

It has been reported that compared with other cancers, the ABP-induced mutations are more
evenly distributed along the p53 gene and the mutation hotspots occur through the genome with the
major mutation being G to T transversion [21,22]. TLS over dG-C8-ABP in two different sequences
(CCG*GAGGC and CCGGAG*GCC, G* = dG-C8-ABP), which represent codon 248 and 249 sequences
of the human p53 tumor suppressor gene, respectively, has confirmed that codon 248 is a hot spot for
adduct formation and G to T mutation. These results suggest that the efficiency of TLS over dG-C8-ABP
is affected by the surrounding DNA sequences of the ABP lesion, consequently the B/S conformational
heterogeneity as described here. Elucidation of conformation-specific bypass, mutational and repair
processes over the ABP adducts in the cell should clarify the molecular mechanisms underlying
ABP-induced mutagenesis and carcinogenesis.

In the present paper, we demonstrated the combination of SPR binding and HPLC steady-state
kinetics as a power tool in investigating FABP-induced conformational heterogeneity in TLS. This
approach can be applied to studying other bulky DNA adducts.

Supplementary Materials: The following are available online. Figure S1: HPLC profile of FABP-modified
bio-31mer TGGT template and MALDI-TOF characterization of peak 1 and peak 2; Figure S2: Denaturing
gel (15%) profiles of 84-mer and 85-mer ligated oligonucleotides, 31-mer, 53-mer and 54-mer non-ligated
oligonucleotides; Figure S3: dATP insertion efficiency results of (a) 8-mer to 9-mer and (b) 11-mer to 12-mer in
control, TG1*G2T-FABP and TG1G2*T-FABP, respectively, at 10 min; Table S1: Binding net stabilization energy of
unmodified and FABP-adducts with Kf-exo− in binary system (1:1 binding).
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