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Abstract
Abnormal accumulation of the microtubule-interacting protein tau is associated with neuro-

degenerative diseases including Alzheimer’s disease (AD). β-amyloid (Aβ) lies upstream of

abnormal tau behavior, including detachment frommicrotubules, phosphorylation at several

disease-specific sites, and self-aggregation into toxic tau species in AD brains. To prevent

the cascade of events leading to neurodegeneration in AD, it is essential to elucidate the

mechanisms underlying the initial events of tau mismetabolism. Currently, however, these

mechanisms remain unclear. In this study, using transgenic Drosophila co-expressing
human tau and Aβ, we found that tau phosphorylation at AD-related Ser262/356 stabilized

microtubule-unbound tau in the early phase of tau mismetabolism, leading to neurodegen-

eration. Aβ increased the level of tau detached frommicrotubules, independent of the phos-

phorylation status at GSK3-targeted SP/TP sites. Such mislocalized tau proteins, especially

the less phosphorylated species, were stabilized by phosphorylation at Ser262/356 via PAR-

1/MARK. Levels of Ser262 phosphorylation were increased by Aβ42, and blocking this stabi-

lization of tau suppressed Aβ42-mediated augmentation of tau toxicity and an increase in the

levels of tau phosphorylation at the SP/TP site Thr231, suggesting that this process may be

involved in AD pathogenesis. In contrast to PAR-1/MARK, blocking tau phosphorylation at

SP/TP sites by knockdown of Sgg/GSK3 did not reduce tau levels, suppress tau mislocaliza-

tion to the cytosol, or diminish Aβ-mediated augmentation of tau toxicity. These results sug-

gest that stabilization of microtubule-unbound tau by phosphorylation at Ser262/356 via the

PAR-1/MARKmay act in the initial steps of tau mismetabolism in AD pathogenesis, and that

such tau species may represent a potential therapeutic target for AD.
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Author Summary

Alzheimer’s disease (AD) is the most common cause of dementia resulting from progres-
sive neuron loss. Two proteins, β-amyloid (Aβ) and tau, accumulate in AD brains and are
involved in AD pathogenesis. In healthy neurons, tau binds to microtubules to regulate its
stability; in AD brains, however, tau is detached from microtubules and phosphorylated at
multiple sites. Such abnormal tau behavior, which is likely to be triggered by Aβ, results in
generation of pathological tau species that mediate neuron loss. However, the detailed
mechanisms underlying this event remain incompletely understood. Using transgenic flies
expressing human tau and Aβ as a model system, we found that tau phosphorylation at
specific AD-related sites stabilized microtubule-unbound tau in the early phase of tau mis-
metabolism to generate toxic tau species. Moreover, this process is critical for Aβ to pro-
mote subsequent tau phosphorylation and neurodegeneration. Our results reveal a critical
step in the initiation of tau mismetabolism, and this process may represent a potential
therapeutic target for AD.

Introduction
Alzheimer’s disease (AD) is a progressive neurodegenerative disease characterized by two path-
ological lesions: deposition of β-amyloid peptides (Aβ) as amyloid plaques and the microtu-
bule-associated protein tau in the form of paired helical filaments in neurofibrillary tangles
(NFTs) [1]. Genetic, pathological, and biochemical evidence suggests that elevation of Aβ levels
is a causal event in AD pathogenesis [2–8] that lies upstream of tau-induced neurodegenera-
tion [3, 5, 9, 10]. In AD and other neurodegenerative diseases, collectively referred to as tauopa-
thies, tau protein self-aggregates into multiple intermediate forms, including soluble oligomers
and prefibrils, that may ultimately form insoluble NFTs [11]. These tau aggregates all exert
neurotoxicity, with some qualitative and quantitative differences; the soluble, prefibrillar aggre-
gates are thought to cause the most damage to neurons [12–14]. To prevent the cascade of
events leading to neurodegeneration in AD, it is crucial to elucidate the mechanisms underly-
ing the initial steps of abnormal metabolism of tau.

Tau proteins are normally enriched in neuronal axons, where they regulate microtubule sta-
bility. However, in diseased brains, tau is detached from microtubules and aggregated in the
cytosol. The microtubule-binding domain of tau mediates interaction to proteins, including
tau itself, which can cause self-aggregation into oligomers, protofibrils, and fibrils [15–20]. In
addition, tau is abnormally phosphorylated in diseased brains [21–24], and tau proteins
detached from microtubules are prone to be phosphorylated at disease-associated sites [19, 25–
28]. Moreover, tau detached from microtubules can mislocalize to dendrites and extracellular
regions, where it can disrupt neuronal functions or spread into other neurons [29–34]. These
observations suggest that the loss of tau binding to microtubules may be a triggering event for
abnormal metabolism of tau. However, the detailed molecular mechanisms underlying this
event and how it relates to Aβ-mediated tau toxicity remain elusive.

Tau is phosphorylated at more than 40 sites in pathological lesions associated with AD [21–
24], and Aβ promotes tau phosphorylation at disease-associated sites in in vitro and in vivo
models of AD [2, 35–41]. A number of kinases and phosphatases regulate the phosphorylation
status of tau [42], and the activities of two major tau kinases, GSK3 and PAR-1/microtubule
affinity-regulating kinases (MARKs), are often associated with tau detachment from microtu-
bules and Aβ-induced augmentation of tau toxicity [37, 39, 43–45]. GSK3 is a proline-directed
kinase that contributes to phosphorylation of tau at serine or threonine followed by proline
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(i.e., SP/TP sites) [46–49], whereas PAR-1/MARKs are non-SP/TP kinases that phosphorylate
tau at Ser262 and Ser356 in the repeat domains located in the microtubule-binding region [50].
Tau phosphorylation at these sites decreases the protein’s affinity toward microtubules in vitro,
in cultured cells, transgenic Drosophila, and transgenic mice [18, 19, 25–27, 50–52].

Tau phosphorylation at GSK3-target sites, as well as Ser262/356, has prominent effects on
tau toxicity [26, 53–56]. In cellular and animal models, co-expression of Aβ augments tau
phosphorylation at these sites and increases the levels of active GSK3 and PAR-1/MARK [2,
35–41, 43, 44]. Notably, studies in cultured neurons and transgenic Drosophila showed that
Aβ-induced augmentation of tau toxicity caused by Aβ depends on tau phosphorylation at
these sites [39, 45, 56–58]. These observations demonstrate the importance of tau phosphoryla-
tion by GSK3 and MARK in the abnormal metabolism and toxicity of tau. However, the roles
of, and interdependency between, tau phosphorylation by GSK3 and MARK/PAR-1 in an early
step of tau mismetabolism, such as tau mislocalization and stabilization of mislocalized tau, are
not fully understood.

Drosophilamodels expressing human tau recapitulate key features of human tauopathies,
including progressive neurodegeneration and phosphorylation at AD-related sites via con-
served kinases [41, 44, 53, 59–63]. Formation of fibrils or detergent-insoluble aggregates are
not detected in the presence or absence of Aβ [58, 59], suggesting that the neurodegeneration
observed in these models reflects toxicity of soluble, non-aggregated forms of tau, and may
recapitulate early stages of the abnormal metabolism and toxicity of tau [11–14].

In this study, we investigated the roles of tau phosphorylation at Ser262/356 by PAR-1/
MARK and SP/TP sites by GSK3 in an initial step of tau mismetabolism, using transgenic
Drosophila co-expressing human tau and Aβ42 in neurons [59, 64]. We found that augmenta-
tion of tau toxicity by Aβ42 was concomitant with increased levels of microtubule-unbound
free tau in the cytosol, regardless of its phosphorylation status. Tau phosphorylation at
Ser262/356 by PAR-1/MARK preferentially stabilized less phosphorylated forms of microtu-
bule-detached tau in the cytosol, and blocking this stabilization of tau suppressed Aβ42-in-
duced augmentation of tau toxicity and the increase in the levels of tau phosphorylated at the
AD-associated residue Thr231. By contrast, blocking tau phosphorylation at GSK3-target SP/
TP sites did not affect tau stability or suppress the mislocalization and toxicity of tau induced
by Aβ42. These results suggest that detachment of tau from microtubules, followed by stabili-
zation by phosphorylation at Ser262/356 via PAR-1/MARK, is a critical early step in the for-
mation of tau species associated with neurodegeneration, and that tau mismetabolism via this
pathway is facilitated by Aβ42.

Results

Aβ42 increases the level of tau in the cytosol and decreases the level of
microtubule-bound tau
To understand the mechanisms by which abnormal metabolism and toxicity of tau is triggered
by Aβ42, we analyzed changes in human tau induced by co-expression of human Aβ42 in
transgenic flies [58]. Because accumulation of tau is a hallmark of AD brains, and an increase
in tau levels positively correlates with tau toxicity in cellular and animal models [65], we first
investigated whether tau accumulation occurred in association with Aβ42-induced augmenta-
tion of tau toxicity. As reported previously, co-expression of Aβ42 in fly eyes using the pan-ret-
inal driver gmr-Gal4 enhanced tau-mediated retinal degeneration ([58] and S1 Fig). In this
model, the levels of tau did not differ significantly between flies expressing tau alone and those
expressing tau and Aβ42 (Fig 1A), suggesting that Aβ42-mediated augmentation of tau toxicity
is not simply due to an overall increase in the level of tau [58].
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Fig 1. Aβ42 increases the level of tau in the cytosol and decreases the level of microtubule-bound tau.
(A) Aβ42 does not change total tau levels. Western blot of heads of flies expressing tau alone (tau) or that co-
expressing tau and Aβ42 (tau+Aβ42) driven by gmr-GAL4 with anti-tau antibody. Actin was used as a loading
control. Mean ± SD, n = 5; no significant difference was found by Student's t-test (p>0.05). Representative
blots are shown. (B) Co-expression of Aβ42 increases the levels of tau free frommicrotubules and reduces
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Most tau proteins are normally bound to microtubules in axons, and alterations in the dis-
tribution of tau are associated with tau toxicity [66]. To determine whether mislocalization of
tau occurred in our fly models, we analyzed the effect of Aβ42 expression on tau binding to
microtubules using an in vivomicrotubule-binding assay [25]. In this assay, endogenous
microtubules and microtubule-bound proteins were present in the pellet following centrifuga-
tion (microtubule fraction), whereas cytosolic proteins free from microtubules were recovered
in the supernatant (cytosol fraction). The levels of tau in each fraction were determined by
western blotting with anti-tau antibody. We found that the levels of tau in the cytosol fraction
were significantly elevated, whereas the levels in the microtubule fraction were reduced, in the
fly retina co-expressing Aβ42 and tau (Fig 1B). These experiments were carried out using two
independent transgenic fly lines expressing Aβ42 at different expression levels. Both lines
yielded similar results, and the fly line with higher Aβ42 expression exhibited a larger effect
(Fig 1B, compare Aβ42#1 and Aβ42#2). We also investigated whether co-expression of non-
toxic proteins in the secretory pathway (CD8-GFP) altered tau distribution non-specifically.
Expression of CD8-GFP did not change the levels of tau in either the cytosol fraction or the
microtubule fraction (S2 Fig), suggesting that alterations in tau distribution are associated with
Aβ42-mediated toxicity.

Tau proteins expressed in the fly retina are detected as two major bands by western blotting
with pan-tau antibody (Fig 1B). Following phosphatase treatment, these two bands merged
and were detected as a single faster-migrating band (S3 Fig). This observation indicates that
the differences between these two tau bands are related to their phosphorylation levels: tau in
the slower-migrating band (tauupper) is more highly phosphorylated than tau in the faster-
migrating band (taulower).

To further characterize phosphorylation profiles of tauupper and taulower, we used a panel of
antibodies capable of distinguishing the phosphorylation status of tau at AD-related sites.
Western blotting with TAU-1 antibody, which specifically recognizes tau protein without
phosphorylation at several AD-related sites (Ser194, Ser195, Ser198, and Ser202), detected tau-

lower (Fig 1C, TAU-1), whereas antibodies specific to phospho-Ser202, phospho-Thr231, or
phospho-Ser396/404 (PHF1) preferentially recognized tauupper (Fig 1C, pSer202, pThr231, and
PHF1, respectively). By contrast, phospho-Ser262-specific antibody recognized both tauupper

and taulower species (Fig 1C, pSer262).
In the Aβ42 fly, levels of both tauupper and taulower were elevated in the cytosol fraction (Fig

1B, cytosol), but reduced in the microtubule fraction (Fig 1B, microtubule). These results sug-
gest that, regardless of its phosphorylation status, microtubule-unbound free tau in the cytosol
is more abundant in the presence of Aβ42.

the levels of tau bound to microtubules. The levels of tau and tubulin in the lysate of fly heads expressing tau
alone (tau) or co-expressing tau and Aβ42 (tau+Aβ42#1 and tau+Aβ42#2) before sedimentation (input), in
the supernatant (cytosol) and in the pellet containing microtubules (microtubule) were analyzed by western
blotting by using anti-tau antibody. The same amount of proteins from each genotype was loaded.
Expression of Aβ42 was confirmed by western blot with anti-Aβ antibody (Aβ42). Two independent
transgenic fly lines expressing Aβ42 at different expression levels (Aβ42#1 and Aβ42#2) yielded similar
results, and the fly line with higher Aβ42 (Aβ42#2) expression exhibited a larger effect. Transgene expression
was driven by gmr-GAL4. Mean ± SD, n = 4; **, p<0.01, ***, p<0.005 compared to tau by one-way ANOVA
with Tukey's post hoc test. Representative blots are shown. (C) Twomajor bands detected by western
blotting of fly heads expressing tau with a pan-tau antibody (tauC) differ in their phosphorylation patterns.
Western blots with TAU-1 antibody, which specifically recognizes tau protein without phosphorylation at
several AD-related sites (Ser194, Ser195, Ser198, and Ser202) (TAU-1), anti-phospho-Ser202, anti-
phospho-Thr231, anti-phospho-Ser396/404 (PHF1), or anti-phospho-Ser262 antibody (pSer262) are shown.
Transgene expression was driven by gmr-GAL4.

doi:10.1371/journal.pgen.1005917.g001
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Cytoskeletal pathologies, including microtubule disintegrity, have been reported in AD
brains and cultured cells incubated with Aβ [39, 67–69]. Under this particular experimental
condition, however, co-expression of Aβ42 did not significantly change the levels of tubulin in
the form of microtubules (Fig 1B, tubulin) or the levels of acetylated or tyrosinated tubulin (S4
Fig), suggesting that the stability of microtubules was not grossly affected by Aβ42.

Tau phosphorylation at SP/TP sites via GSK3β/Sgg negatively regulates
tau binding to microtubules
Phosphorylation of tau negatively influences its ability to bind microtubules [25–27, 51, 52]. In
Drosophila, tau phosphorylation at proline-directed Ser and Thr (SP/TP) sites decreases tau
binding to microtubules, whereas replacing these phosphorylation sites with unphosphorylata-
ble Ala significantly increases binding [25, 26]. In fly neurons, many of these SP/TP sites are
phosphorylated by a fly homolog of GSK3 called Sgg [26, 53, 61]. In line with these reports, we
found that RNAi-mediated knockdown of GSK3/Sgg significantly reduced tau phosphorylation
at these SP/TP sites (S5 Fig); as a result, tau is detected as a single band with faster migration
speed than taulower (Fig 2A, input, asterisk). In vivomicrotubule-binding assays revealed that
most tau was recovered in the microtubule fraction in the Sgg knockdown background (Fig
2A). These results indicate that, in this fly model, tau phosphorylation at SP/TP sites by
GSK3β/Sgg plays an important role in tau binding to microtubules.

Knockdown of GSK3β/Sgg is not sufficient to suppress either
mislocalization of tau to the cytosol or Aβ42-induced augmentation of tau
toxicity
As we reported previously, Aβ42 increased the levels of tau phosphorylated at Ser202
(pSer202) and Thr231 (pThr231) ([58] and Fig 2B). We found that, in the retina with RNAi-
mediated GSK3β/Sgg knockdown, expression of Aβ42 did not increase the levels of tau phos-
phorylated at either of these residues (Fig 2C). These results suggest that increases in the levels
of phosphorylated tau mediated by GSK3β/Sgg might contribute to Aβ42-induced detachment
of tau from microtubules.

We tested whether blocking tau phosphorylation at SP/TP sites by GSK3/Sgg was sufficient
to suppress Aβ42-mediated mislocalization of tau from the microtubule fraction to the cytosol
fraction. In vivomicrotubule-binding assays revealed that, in the GSK3/Sgg knockdown back-
ground, co-expression of Aβ42 was still capable of increasing the level of tau in the cytosolic
fraction and decreasing the level in the microtubule fraction (Fig 2D). These results suggest
that in the presence of Aβ42, even hypophosphorylated tau species that are normally bound to
microtubules (Fig 2A) were mislocalized to the cytosolic fraction.

We next investigated whether RNAi-mediated knockdown of GSK3/Sgg suppressed
Aβ42-induced augmentation of tau toxicity. Even in the GSK3/Sgg knockdown background,
Aβ42 still promoted tau-mediated neurodegeneration, as indicated by smaller eye size in flies
co-expressing tau and Aβ42 relative to those expressing tau alone (Fig 2E, compare SggRNAi
+tau and SggRNAi+tau+Aβ42). In addition, GSK3/Sgg knockdown did not suppress neurode-
generation caused by tau and Aβ42 (Fig 2E, compare tau+Aβ42 and SggRNAi+tau+Aβ42).
Under this experimental condition, expression of neither Aβ42 alone nor Aβ42 with GSK3β/
Sgg RNAi caused a reduction in eye size (S6 Fig), suggesting that the observed augmentation of
tau toxicity was not simply due to additive effects (Fig 2E).

Taken together, these results suggest that blocking tau phosphorylation at GSK3/Sgg sites is
not sufficient to suppress either mislocalization of tau to the cytosol or Aβ42-induced augmen-
tation of tau toxicity.
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Fig 2. Knockdown of GSK3β/Sgg is not sufficient to suppress either mislocalization of tau to the cytosol or Aβ42-induced augmentation of tau
toxicity. (A) GSK3β/Sgg negatively regulates tau binding to microtubules. RNAi-mediated knockdown of GSK3/Sgg shifts all tau species to lower apparent
molecular weights, and the resultant species migrate faster than the original taulower species (indicated as asterisk). The levels of tau and tubulin in the lysate
before sedimentation (input), in the supernatant (cytosol) and in the pellet containing microtubules (microtubule) were analyzed by western blotting by using
anti-tau antibody. The same amount of proteins from each genotype was loaded. Mean ± SD, n = 4; **, p < 0.01, ***, p < 0.005 by Student's t-test.
Representative blots are shown. (B) Aβ42 increased the levels of tau phosphorylated at Ser202 and those phosphorylated at Thr231. Western blots of fly
heads expressing tau alone (tau) or that co-expressing tau and Aβ42 (tau+Aβ42) with anti-phospho-Ser202 antibody (pSer202), anti-phospho-Thr231

Tau Stabilization Mediates Aβ-Induced Tau Toxicity
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Blocking tau phosphorylation at Ser262/356 with unphosphorylatable
alanine substitutions preferentially reduces the levels of taulower and
partially suppresses the Aβ42-mediated increase in tau mislocalization
from the microtubule to the cytosol
Previous studies from several groups, including ours, showed that substitution of two Ser resi-
dues at 262 and 356 in tau to unphosphorylatable Ala (S2A) suppressed Aβ42-induced aug-
mentation of tau toxicity ([58] and Fig 3A). These mutations abolished tau phosphorylation at
Ser262 (Fig 3B, pSer262). Moreover, the SDS-PAGE migration pattern of S2A tau differed
from that of wild-type tau.

As described above (Fig 1 and S3 Fig), wild-type tau proteins expressed in fly eyes are
detected as two major bands reflecting different levels of phosphorylation (Fig 3B, Aβ42+tau in
tauC). By contrast, S2A tau exhibited only a single major band corresponding to tauupper (Fig
3B, Aβ42+S2A in tauC). Western blotting with the pan-tau antibodies tauC and tau46, which
were raised against different epitopes and detect taulower to tau

upper with slightly different sensi-
tivities, yielded similar results. To quantify this difference, we calculated the ratio of signal
intensities of taulower to tau

upper and found that S2A tau had a lower ratio of taulower to tau
upper

than wild-type tau (Fig 3C). In addition, western blotting with TAU-1 tau antibody, which spe-
cifically recognizes tau protein without phosphorylation at Ser194, Ser195, Ser198, and Ser202,
and only detected taulower (Fig 1C), revealed that the level of TAU-1-positive tau was signifi-
cantly reduced in S2A tau relative to wild-type tau (Fig 3B and 3D). These results suggest that
less phosphorylated forms of tau (taulower) were preferentially reduced in S2A tau.

Because taulower represents less phosphorylated forms of tau, S2A mutation might reduce
the relative ratio of taulower to tau

upper by promoting tau phosphorylation. However, this was
not the case: when the phosphorylation levels of S2A tau at Ser202 were normalized against
total levels of S2A tau, they were not elevated; instead, they were reduced relative to those of
wild-type tau (Fig 3B and 3E). These results suggest that tau phosphorylation at Ser262 and
Ser356 stabilizes less phosphorylated forms of tau (taulower) but does not promote tau phos-
phorylation at SP/TP sites (see also Fig 4).

Next, we analyzed the effects of S2A mutation on Aβ42-mediated mislocalization of tau to
the cytoplasm using an in vivomicrotubule-binding assay. As described above, the levels of tau-

lower were diminished in both the cytosolic and microtubule fractions. Moreover, although
Aβ42 still increased the level of S2A tauupper in the cytosol and decreased that in the microtu-
bule fraction (Fig 3F), the effects were smaller than those in wild-type tau: Aβ42 caused a
3-fold increase in the level of wild-type tauupper in the cytosol (Fig 1B), but only a 1.6-fold
increase in the level of S2A tauupper (Fig 3F, right).

Taken together, these data demonstrate that S2A mutation preferentially reduces the levels
of taulower, and partially suppresses the Aβ42-mediated increase in the levels of tau mislocalized
from the microtubule to the cytosol.

antibody (pThr231), and anti-tau antibody. Tubulin was used as a loading control. Mean ± SD, n = 5; *, p < 0.05 by Student's t-test. Representative blots are
shown. (C) Expression of Aβ42 did not increase tau phosphorylation at either of Ser202 and Thr231 in the Sgg knockdown background. Western blots of fly
heads expressing Sgg RNAi tau and (SggRNAi+tau) or that co-expressing Sgg RNAi, tau and Aβ42 (SggRNAi+tau+Aβ42) with anti-phospho-Ser202
antibody (pSer202), anti-phospho-Thr231 antibody (pThr231), and anti-tau antibody. Tubulin was used as a loading control. Mean ± SD, n = 5; no significant
difference by Student's t-test (p > 0.05). Representative blots are shown. (D) Aβ42 causes an increase in tau levels in the cytosol fraction and reduction in tau
levels in the microtubule fraction in the Sgg knockdown background. The levels of tau and tubulin in fly heads expressing Sgg RNAi and tau (SggRNAi+tau)
or that co-expressing Sgg RNAi, tau and Aβ42 (SggRNAi+tau+Aβ42) before sedimentation (input), in the supernatant (cytosol) and in the pellet containing
microtubules (microtubule) were analyzed by western blotting with anti-tau and anti-tubulin. Mean ± SD, n = 4; ***, p < 0.005 by Student's t-test.
Representative blots are shown. (E) Aβ42 enhances tau-induced retinal degeneration in the Sgg knockdown background (compare SggRNAi+tau and
SggRNAi+tau+Aβ42). Mean ± SE, N = 6–8, asterisks indicate significant differences in the surface area of the external eye (***, p < 0.005, n.s., not
significant (p > 0.05) by one-way ANOVAwith Tukey's post hoc test). Transgene expression was driven by gmr-GAL4.

doi:10.1371/journal.pgen.1005917.g002
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Fig 3. Blocking tau phosphorylation at Ser262/356 with unphosphorylatable alanine substitutions (S2A) preferentially reduces the levels of
taulower and partially suppresses the Aβ42-mediated increase in tau mislocalization from themicrotubule to the cytosol. (A) Expression of either
S2Atau (S2A) alone or co-expression of S2Atau and Aβ42 (S2A+Aβ42) does not cause eye degeneration. No significant difference in the surface area of the
external eyes between S2A and S2A+ Aβ42 (mean ± SE, n = 6–8, N.S., not significant (p > 0.05) by one-way ANOVA). Transgene expression was driven by
gmr-GAL4. (B) S2Atau shows different phosphorylation profiles compared to wild-type tau. Wild-type tau or S2Atau were co-expressed with Aβ42 (tau+Aβ42
and Aβ42+S2A, respectively) and subjected to western blotting with pan-tau antibody (tauC and tau46) or antibodies that recognize phosphorylation status of
tau at the specific sites (pSer262, TAU-1 and pSer202). (C) The ratio of signal intensities of taulower to tauupper detected by tauC. (D) The ratio of signal
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Tau phosphorylation at Ser262 and Ser356 via PAR-1 is critical for
stabilization of taulower
Drosophila PAR-1 kinase, a functional homolog of MARKs, is the major kinase of human tau
at Ser262 and Ser356 expressed in fly eye and brain [53, 63], and RNAi-mediated knockdown

intensities of TAU-1 blot to tauC blot. Mean ± SD, n = 5; ***, p < 0.005 by Student's t-test. (E) The ratio of signal intensities of pSer202 blot to tauC blot.
Mean ± SD, n = 5; ***, p < 0.005 by Student's t-test. (F) Aβ42 increased the level of S2Atau in the cytosol and decreased those in the microtubule fraction,
while the effects were smaller than those in wild-type tau. Mean ± SD, n = 4; *, p < 0.05, ***, p < 0.005 compared by Student's t-test. Representative blots
are shown. Transgene expression was driven by gmr-GAL4.

doi:10.1371/journal.pgen.1005917.g003

Fig 4. PAR-1 stabilizes less phosphorylated forms of tau (taulower) through phosphorylation at Ser262 and Ser356. (A) PAR-1 knockdown reduces
the levels of tau with more prominent effect on taulower. Western blots of fly heads expressing tau (tau) or that co-expressing tau and PAR-1RNAi (tau+PAR-
1RNAi) with anti-tau antibody. (B) PAR-1 overexpression increases the levels of tau with more prominent effect on taulower. Western blots of fly heads
expressing tau (tau) or that co-expressing tau and PAR-1 (tau+PAR-1OE) with anti-tau antibody. (C) PAR-1 knockdown does not affect S2Atau levels.
Western blots of fly heads expressing S2Atau (S2A) or that co-expressing S2Atau and PAR-1RNAi (S2A+PAR-1RNAi) with anti-tau antibody. (D) PAR-1
overexpression does not affect S2Atau levels. PAR-1 knockdown does not affect S2Atau levels. Western blots of fly heads expressing S2Atau (S2A) or that
co-expressing S2Atau and PAR-1 (S2A+PAR-1OE) with anti-tau antibody. Tubulin or actin was used as loading control. Mean ± SD, n = 4–5; *, p < 0.05,
***, p < 0.005, n.s., not significant (p > 0.05) by Student's t-test. Representative blots are shown. Transgene expression was driven by gmr-GAL4.

doi:10.1371/journal.pgen.1005917.g004
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of PAR-1 effectively decreases tau phosphorylation at Ser262 and Ser356 [63, 70]. To further
elucidate the role of tau phosphorylation at Ser262 and Ser356 in the stabilization of tau, we
asked whether knockdown of PAR-1 would also decrease the levels of less phosphorylated
forms of tau (taulower), as the S2A mutation did. Knockdown of PAR-1 significantly reduced
the levels of taulower (Fig 4A), whereas overexpression of PAR-1 preferentially increased the
levels of taulower (Fig 4B). The effects on the levels of tauupper were less prominent. Importantly,
PAR-1-mediated increases in tau levels required the presence of the Ser262 and Ser356 phos-
phorylation sites in tau. Knockdown of PAR-1 did not decrease the levels of S2A tau (Fig 4C),
whereas co-expression of PAR-1 did not increase the levels of S2A tau (Fig 4D).

Expression of tau in the brain neurons has been reported to cause structural and functional
abnormalities in Drosophila [53, 58, 71, 72]. Pan-neuronal expression of tau in the central ner-
vous system affects development of the mushroom body structure in the brain [53, 58, 71–73],
and tau expression in otherwise structurally intact adult neurons causes learning deficits [73].
Blocking tau phosphorylation at Ser262 and Ser356 suppresses these tau-induced defects [58,
71, 73], indicating that tau phosphorylation at Ser262 is critical for tau toxicity also in the brain
neurons. To ask whether blocking tau phosphorylation at Ser262 and Ser356 also reduces tau
levels in the brain neurons, we expressed tau by using the pan-neuronal driver elav-Gal4 and
tested the effect of PAR-1 knockdown on tau levels. PAR-1 knockdown reduced the levels of
tau, (S7 Fig), indicating that reduction in tau toxicity caused by blocking tau phosphorylation
at Ser262 and Ser356 is concomitant with reductions in tau levels in the brain neurons as well.

Taken together, these results indicate that PAR-1 stabilizes less phosphorylated forms of tau
(taulower) through phosphorylation at Ser262 and Ser356.

PAR-1/MARKmediates the increase in the level of tau phosphorylated
at Ser262 caused by Aβ42, and knockdown of PAR-1/MARKmarkedly
decreases the levels of taulower
The level of tau phosphorylated at Ser262 is elevated in the Aβ42 fly retina [58] (Fig 5A), and
this increase was suppressed in the PAR-1 knockdown background (Fig 5B). These results sug-
gest that tau is stabilized via phosphorylation at Ser262 by PAR-1 in the Aβ42 fly retina.

We next tested whether knockdown of PAR-1 would reduce the levels of less phosphory-
lated forms of tau (taulower) in the presence of Aβ42. Western blot analyses using the pan-tau
antibodies tauC and Tau46 revealed that PAR-1 knockdown reduced the levels of tau (Fig 5C,
tauC/Tau46), and the reductions in the levels of taulower were more prominent than those of
tauupper (Fig 5C, tauC/Tau46,). The levels of co-expressed Aβ42 were not influenced by PAR-1
knockdown (Fig 5D), suggesting that PAR-1 knockdown did not simply increase protein deg-
radation in a non-specific manner.

To further characterize the reduction of tau phosphorylation in the PAR-1 knockdown
background, we used a panel of antibodies (Fig 1C) that could distinguish the phosphorylation
status of tau at AD-associated sites. Western blot analyses using these antibodies confirmed
that PAR-1 knockdown significantly decreased the levels of tau phosphorylated at Ser262.
PAR-1 knockdown also caused a prominent reduction in the levels of TAU-1-positive, taulower
(Fig 5D). PAR-1 knockdown also reduced the levels of pThr231-positive tau, whereas the
PAR-1 knockdown-mediated reductions in the levels of pSer202- and PHF-1-positive tau were
less prominent (Fig 5D).

A previous study reported that blocking tau phosphorylation at Ser262/356 decreased the
levels of tau phosphorylation at SP/TP sites including Ser202 [53]. In that study, it has been
suggested that tau phosphorylation at Ser262/356 primes the protein for subsequent phosphor-
ylation events. In this model, blocking tau phosphorylation at Ser262/356 sites should abolish
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Fig 5. PAR-1 mediates the increase in the level of tau phosphorylated at Ser262 caused by Aβ42, and knockdown of Par-1/MARKmarkedly
decreases the levels of taulower. (A) Aβ42 increased the levels of tau phosphorylated at Ser262. Western blots of fly heads expressing tau alone (tau) or
that co-expressing tau and Aβ42 (tau+Aβ42) with anti-phospho-Ser262 antibody (pSer262) or anti-tau (tau46). Tubulin was used as a loading control.
Mean ± SD, n = 5; *, p < 0.05 by Student's t-test. Representative blots are shown. (B) Expression of Aβ42 did not increase tau phosphorylation at Ser262 in
the PAR-1 knockdown background. Western blots of fly heads expressing PAR-1 RNAi and tau (PAR-1RNAi+tau) or that co-expressing PAR-1RNAi, tau and
Aβ42 (PAR-1RNAi+tau+Aβ42) with anti-phospho-Ser262 antibody (pSer262) and anti-tau antibody (tau46). Tubulin was used as a loading control.
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the downstream phosphorylation events and a larger proportion of tau protein should be non-
phosphorylated at SP/TP sites, including Ser202. However, western blot analysis using the
TAU-1 antibody, which specifically recognizes tau lacking phosphorylation at Ser202, revealed
that blocking tau phosphorylation at Ser262/356 by either by PAR-1 knockdown (Fig 5D) or
introduction of the S2A mutation (Fig 3B), did not increase, but rather significantly decreased,
the levels of tau species that are not phosphorylated at Ser202. These data suggest that tau
phosphorylation at Ser262/356 rather regulates the stability of taulower species.

Taken together, these results suggest that blocking tau phosphorylation at Ser262/356 by
PAR-1 knockdown preferentially reduces the levels of taulower also in the presence of Aβ42.

Blocking tau phosphorylation at SP/TP sites by knockdown of GSK3/
Sgg does not reduce the levels of tau
Hyperphosphorylation of tau at SP/TP sites is thought to promote aggregation and accumula-
tion of tau [61, 74, 75]. A previous report showed that tau phosphorylation at Ser262 and
Ser356 by PAR-1 plays a priming role in subsequent tau phosphorylation at SP/TP sites, and
that knockdown of PAR-1 reduces the level of tau phosphorylated at these sites [53] (also see
Fig 5D). Moreover, a mammalian homolog of PAR-1, MARK, positively regulates the activity
of GSK3β and may promote tau phosphorylation at SP/TP sites [26, 53, 61]. Consistent with
this, phosphorylation levels of GSK3/Sgg at Ser9, which negatively regulates kinase activity
[76], were increased by PAR-1 knockdown (S8 Fig), suggesting that PAR-1 may positively reg-
ulate GSK3/Sgg activity in the fly retina as well. Because tau phosphorylation at SP/TP sites is
resistant to proteolytic degradation [77], these observations raise the possibility that knock-
down of PAR-1 might reduce tau phosphorylation at SP/TP sites, thereby promoting the deg-
radation of less phosphorylated forms of tau.

To investigate this possibility, we next asked whether blocking tau phosphorylation at SP/
TP sites by knockdown of GSK3/Sgg was sufficient to reduce tau levels. Western blot analyses
using a panel of anti-pan-tau, anti-non-phospho-tau, and anti-phospho-tau antibodies con-
firmed that knockdown of GSK3β/Sgg significantly decreased tau phosphorylation levels at SP/
TP sites (Fig 6). Migration speed of tau (Fig 6, tau46/tauC) and the level of non-phosphorylated
tau were elevated (Fig 6, TAU-1), whereas the level of PHF1-positive tau was reduced (Fig 6,
PHF1). These results suggest that knockdown of GSK3β/Sgg significantly decreased tau phos-
phorylation levels at SP/TP sites. Under this condition, the levels of tau detected with pan-tau
antibodies tau46 and tauC, TAU-1-positive tau, and tau phosphorylated at Ser262 were not
reduced, but were instead slightly elevated (Fig 6, tau46, tauC, TAU-1, and pSer262). These
results suggest that tau phosphorylation at SP/TP sites by GSK3/Sgg does not play a major role
in stabilization of tau in the fly retina.

Stabilization of tau through phosphorylation at Ser262 and Ser356
contributes to the Aβ42-induced increase in the level of tau
phosphorylated at Thr231
Because tau phosphorylation at Ser262 was increased by Aβ42 [58] (Fig 5A), we asked whether
stabilization of tau through tau phosphorylation at Ser262 and Ser356 contributed to the

Mean ± SD, n = 5; no significant difference by Student's t-test (p > 0.05). Representative blots are shown. (C-D) PAR-1 knockdown reduces the levels of tau
with more prominent effect on the levels of taulower than those of tauupper. Western blots of fly heads expressing Aβ42 and tau (Aβ42+tau) or that co-
expressing Aβ42, tau and PAR-1 RNAi (Aβ42+tau+PAR-1RNAi) with pan-tau antibody (tauC and tau46), antibodies that recognize phosphorylation status of
tau at the specific sites (pSer262, TAU-1, pSer202, pThr231, PHF-1) or anti-Aβ antibody (Aβ42). Histone was used as loading control. Mean ± SD, n = 5; *,
p < 0.05, **, p < 0.01, ***, p<0.005. Representative blots are shown. Transgene expression was driven by gmr-GAL4.

doi:10.1371/journal.pgen.1005917.g005
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Aβ42-mediated increase in the level of tau phosphorylated at AD-related SP/TP sites, Ser202
and Thr231 [58] (Fig 2B). Introduction of unphosphorylatable Ala at the Ser262 and Ser356
sites in tau (S2A) blocked Aβ42-mediated increases in the levels of tau phosphorylated at
Thr231 (Fig 7A). Similar effects were also observed upon knockdown of PAR-1 (Fig 7B). By
contrast, Aβ42 increased the level of S2A tau phosphorylation at Ser202 (Fig 7A: pS202 level
was elevated, whereas TAU-1 level was reduced).

To further validate the dependence of tau phosphorylation at Thr231 on Ser262/356 phos-
phorylation, we investigated whether upregulation of tau phosphorylation at Ser262/356 by
PAR-1 was sufficient to increase the levels of tau phosphorylated at Thr231. Overexpression of
PAR-1 significantly increased the levels of tau phosphorylation levels at Ser262 as expected
(Fig 7C, pSer262). In addition, the levels of TAU-1-positive tau were markedly increased (Fig
7C, TAU-1), consistent with its stabilizing effect on taulower (Fig 4B). Under these conditions,
the level of tau phosphorylated at Thr231 was significantly increased (Fig 7C, pThr231).

Because GSK3/Sgg is required for the Aβ42-mediated increase in the levels of tau phosphor-
ylated at Ser202 and Thr231 (Fig 2C), we also investigated whether Aβ42 increased GSK3/Sgg
activity in this model. Phosphorylation levels of GSK3/Sgg at Ser9 sites, which negatively corre-
late with GSK3/Sgg activity, were not significantly altered by Aβ42 (S9 Fig), suggesting that
Aβ42-mediated increases in the levels of tau phosphorylated at Ser202 and Thr231 were not
due to global activation of GSK3/Sgg. Indeed, the levels of tau phosphorylated at other GSK3/
Sgg-target sites were not altered by Aβ42 in this model [58].

Fig 6. Blocking tau phosphorylation at SP/TP sites by Sgg knockdown does not reduce the levels of
tau.Western blots of fly heads expressing Aβ42 and tau (Aβ42+tau) or that co-expressing Aβ42, tau and Sgg
RNAi (Aβ42+tau+SggRNAi) with pan-tau antibody (tauC and tau46), antibodies that recognize
phosphorylation status of tau at the specific sites (TAU-1, PHF-1 and pSer262) or anti-Aβ antibody (Aβ42).
Histone was used as loading control. Mean ± SD, n = 5; **, p < 0.01, ***, p < 0.005. Representative blots are
shown. Transgene expression was driven by gmr-GAL4.

doi:10.1371/journal.pgen.1005917.g006
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Taken together, these results suggest that tau phosphorylation at Thr231 depends strongly
on tau phosphorylation at Ser262 and Ser356 by PAR-1/MARK, and stabilization of tau may
contribute to the increase in the levels of tau phosphorylated at an AD-related SP/TP site,
Thr231, caused by Aβ42. These data also suggest that increases in the levels of tau phosphory-
lated at other AD-related SP/TP sites, such as Ser202, might be mediated by mechanisms dis-
tinct from tau species phosphorylated at Thr231 (model in Fig 8).

Fig 7. Stabilization of tau through phosphorylation at Ser262 and Ser356 contributes to the Aβ42-induced increase in the level of tau
phosphorylated at Thr231. (A) Aβ42 does not increase the levels of S2Atau phosphorylated at Thr231. Western blots of fly heads expressing S2Atau (S2A)
or that co-expressing S2Atau and Aβ42 (S2A+Aβ42) with antibodies that recognize phosphorylation status of tau at the specific sites (pThr231, pSer202, and
TAU-1) or pan-tau antibodies (tauC and tau46). (B) Aβ42 does not increase the levels of tau phosphorylated at Thr231 in the PAR-1 knockdown background.
Western blots of fly heads expressing PAR-1RNAi and tau (PAR-1RNAi+tau) or that co-expressing PAR-1RNAi, tau and Aβ42 (PAR-1RNAi+tau+Aβ42) with
anti-phospho-Thr231 antibody (pThr231) or pan-tau antibody (tauC). (C) PAR-1 overexpression increases the levels of tau phosphorylated at Thr231.
Western blots of fly heads expressing tau (tau) or that co-expressing PAR-1 and tau (tau+PAR-1OE) with anti-phospho-Ser262 antibody (pSer262), TAU-1 or
anti-phospho-Thr231 antibody (pThr231). Actin was used as loading control. Mean ± SD, n = 5; **, p < 0.01, ***, p < 0.005. Representative blots are shown.
Transgene expression was driven by gmr-GAL4.

doi:10.1371/journal.pgen.1005917.g007
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Discussion

Tau phosphorylation at Ser262/356 via PAR-1/MARK stabilizes
microtubule-unbound tau at an initial step of tau mismetabolism
Tau phosphorylation at Ser262/356 is detected in the pre-tangle stage of neurons in AD
brains [78]. Several reports suggest that tau phosphorylation at these sites initiates mismeta-
bolism of tau by increasing the levels of microtubule-unbound free tau [66]. Ser262 and
Ser356 are located in the microtubule-binding domain, and phosphorylation at these sites
decreases tau binding to microtubules [18, 19, 25, 26, 50, 51]. In addition, tau phosphoryla-
tion at Ser262/356 is reported to promote tau phosphorylation at other SP/TP sites [53, 55],
which may also decrease tau binding to microtubules and increases the levels of microtu-
bule-unbound tau. This study demonstrates a novel mechanism by which tau phosphoryla-
tion at Ser262/356 via PAR-1/MARK regulates the levels of microtubule-unbound tau in
the cytosol: tau phosphorylation at Ser262/356 sites preferentially stabilizes less phosphory-
lated forms of tau (taulower). Importantly, blocking this stabilization of tau suppressed tau-
mediated neurodegeneration and reduced the level of tau phosphorylated at the AD-associ-
ated residue Thr231 (Fig 7). Furthermore, these processes are involved in Aβ42-induced aug-
mentation of tau toxicity (Fig 3), suggesting the relevance of this step to AD pathogenesis.
Collectively, our data reveal a novel role for tau phosphorylation by PAR1/MARK at Ser262
and Ser356 in the stabilization of tau at an early step of mismetabolism, ultimately leading to
tau toxicity.

Fig 8. Workingmodel of the early phase of tau mismetabolism.

doi:10.1371/journal.pgen.1005917.g008
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Microtubule-detached, taulower species contributes to the augmentation
of tau toxicity caused by Aβ42
We demonstrate that blocking tau phosphorylation at AD-related Ser262/356 sites by intro-
duction of the S2A mutation preferentially decreases the levels of taulower species and sup-
presses Aβ-mediated augmentation of tau toxicity (Fig 3). These results suggest that taulower
species contribute to neurotoxicity in this experimental model. By contrast, blocking tau phos-
phorylation at SP/TP sites by RNAi-mediated knockdown of GSK3β/Sgg did not suppress
Aβ42-mediated enhancement of tau toxicity (Fig 2). This observation suggests that tau phos-
phorylation by GSK3/Sgg is not required for promotion of tau toxicity by Aβ in this model. In
addition, knockdown of Sgg significantly decreased phosphorylation levels of tau at SP/TP sites
and shifted all tau species to lower–molecular weight regions (Fig 2); therefore, Aβ is capable of
promoting tau toxicity under conditions in which the levels of tauupper species are diminished.

It has been shown that both introduction of S2A mutation and Sgg knockdown reduce tau
toxicity [26, 53], suggesting that multiple tau species mediate neurotoxicity in a context-depen-
dent manner. From the results of this study, we cannot draw an explicit conclusion regarding
which tau species, tauupper or taulower, is more toxic. In our model system, however, microtu-
bule-detached taulower species contributed to the augmentation of tau toxicity caused by Aβ42,
and tau phosphorylation at Ser262/356 played a critical role in the stabilization of taulower in
this process.

Our results also suggest that the difference between taulower and tau
upper species is not sim-

ply due to different levels of phosphorylation at SP/TP sites mediated by GSK/Sgg. If it were
the case, Sgg RNAi would increase the abundance of tau species qualitatively similar to the
original taulower species and greatly promote neurodegeneration. However, we found that Sgg
RNAi did not enhance the neurodegeneration phenotype (Fig 2E), suggesting that the original
taulower species may be qualitatively different from tau species that are less phosphorylated at
SP/TP sites as a consequence of Sgg knockdown. These results raise the possibility that the dif-
ference between the original taulower and tau

upper species includes not only phosphorylation
status at GSK3-target sites but also additional post-transcriptional modifications and/or differ-
ences in cellular localization.

How tau phosphorylation at Ser262/356 contributes to
neurodegeneration
Our results show that blocking tau phosphorylation at Ser262/356 via PAR-1/MARK reduces
tau levels and suppresses augmentation of tau-mediated neurodegeneration caused by Aβ42
(Fig 3), suggesting that elevated levels of tau phosphorylated at Ser262/356 promote neurode-
generation. Although the mechanisms underlying tau-mediated neurodegeneration remain
unclear, one potential mechanism might involve disruption of protein degradation pathways.
The majority of tau species (including tau lacking phosphorylation at Ser262/356) are degraded
by the proteasome [20], while aggregated tau or tau phosphorylated at Ser262/356 is degraded
by the autophagy-lysosome system [79–84]. This suggests that abnormal increases in the level
of tau phosphorylated at Ser262/356 may interfere with or overload the autophagy-lysosome
pathway. Consistent with this, the autophagic system and endosome/lysosome pathways are
compromised in AD brains, and chronic disturbance of this system is thought to contribute to
protein accumulation and neurodegeneration [85–87]. Alternatively, sustained activation of
the autophagy pathway might shift the balance of proteostasis and disturb normal cellular
functions, potentially causing neuronal dysfunction and degeneration. Supporting this hypoth-
esis, the lysosomal system is upregulated in vulnerable cell populations in AD brains [88]. Fur-
ther studies regarding the fate of tau phosphorylated at Ser262/356 may reveal the mechanisms
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underlying the compromised autophagy-lysosome system caused by tau and tau-mediated
neurodegeneration in AD and other tauopathies.

Blocking tau phosphorylation at Ser262/356 also reduces tau
phosphorylated at Thr231
We found that the Aβ-induced increase in tau phosphorylation at Thr231 depends on phos-
phorylation at Ser262/356 (Fig 7). Interestingly, similar to tau phosphorylated at Ser262/356,
tau phosphorylated at Thr231 is detected in the pre-tangle stage in AD brains [89], and is
often found detached from microtubules in vitro and in cultured cells [51, 90]. These observa-
tions suggest that toxic tau species generated in the early stage of mismetabolism are phos-
phorylated at both Ser262/356 and Thr231. There are ample data showing the reduction and
modification in tau phosphorylated at Thr231, which have been linked to suppression of tau
toxicity [91–94]. The HDAC inhibitor nicotinamide specifically augments degradation of tau
phosphorylated at Thr231 and suppresses tau-induced neurodegeneration in a transgenic
mouse model [91]. Tau phosphorylated at Thr231 is isomerized by the cis-trans isomerase
Pin-1, which protects against neurodegeneration [92–94]. Moreover, Thr231 and Ser262 may
work in concert to promote the abnormal metabolism of tau and augment its toxicity. Phos-
phorylation of tau at both Thr231 and Ser262 achieves maximal inhibition of microtubule
binding in vitro [95], and introduction of pseudophosphorylation at Thr231 and Thr212 with
Ser262 augments tau toxicity in cultured cells [96] and transgenic Drosophila [97]. Our data
suggest that targeting tau phosphorylated at Ser262/356 could reduce the levels of tau phos-
phorylated at Thr231, thereby suppressing tau toxicity associated with Thr231 phosphoryla-
tion. Further studies using mammalian model systems of tau toxicity are warranted to test this
hypothesis.

In addition to Thr231, a recent report showed that tau phosphorylation at Ser238 was
important for tau toxicity, and occupation of Ser262 precedes and was required for Ser238
phosphorylation [55, 71]. We investigated the possibility that tau phosphorylation at Ser238
might contribute to tau toxicity in this model. Consistent with the previous report, phospho-
Ser238 tau was detected by western blot in the fly heads expressing tau in neurons under the
control of the pan-neuronal elav promoter. However, fly heads expressing tau alone or co-
expressing tau and Aβ in the retina under the control of the gmr-GAL4 driver did not exhibit a
detectable phospho-Ser238 signal by western blot analyses (S10 Fig). This result suggests that,
when tau is expressed in the fly retina, the levels of tau phosphorylated at Ser238 are very low.

Tau phosphorylated at Ser262/356 is a potential novel therapeutic target
Current tau-lowering strategies include augmentation of protein degradation systems such as
autophagy and the proteasome [87] and immunization against tau phosphorylated at disease-
associated sites [98–106]. Pharmacological modulation of protein kinases that mediate hyper-
phosphorylation of tau, such as GSK3, Cdk5, and ERK2, also represents a feasible therapeutic
strategy [107]. Inhibition of tau aggregation is another approach, and a number of small mole-
cules that inhibit tau aggregation have been identified [108]. However, recent studies suggest
that soluble, intermediate misfolded forms of tau, which may not be targeted by aggregation
inhibitors, also exert neurotoxicity [109–111]. Thus, to effectively prevent the cascade of events
leading to tau-mediated neurodegeneration, it is important to target toxic tau species at the ear-
liest steps of abnormal metabolism. Our results suggest that tau phosphorylated at Ser262/356
represents a target for an effective strategy to reduce tau species in the early stage of mismeta-
bolism, including soluble intermediate forms. Inhibition of MARK has been suggested as a pos-
sible strategy to specifically target tau phosphorylated at Ser262/356 [112].
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Several pathways in tau mismetabolism have been dissected
This study highlights the critical roles of tau phosphorylation at Ser262/356 in stabilization of
tau and its contribution to tau-mediated neurodegeneration. Our data also suggest the exis-
tence of tau species whose stabilization is independent of tau phosphorylation at Ser262/356.
Tau toxicity is likely to be qualitatively and quantitatively heterogeneous, possibly due to the
diversity of tau species associated with distinct modifications, binding partners, and/or cellu-
lar locations [113]. Thus, targeting multiple pools of abnormal tau stabilized by distinct path-
ways could additively suppress tau-mediated toxicity. Further elucidation of the mechanisms
underlying stabilization of tau in vivomay reveal additional therapeutic targets that could
effectively lower tau levels, thereby counteracting complex tau toxicity in AD and other
tauopathies.

Materials and Methods

Fly stocks
Flies were maintained in standard cornmeal media at 25°C. The transgenic fly lines carrying
the human 0N4R tau, which has four tubulin-binding domains (R) at the C-terminal region
and no N-terminal insert (N), include a kind gift from Dr. M. B. Feany (Harvard Medical
School) [59] and the lines established following the standard method [63, 114] by using human
0N4R tau (a kind gift from Dr Mike Hutton (Mayo Clinic Jacksonville)). The UAS-Aβ42 and
UAS-luciferase RNAi transgenic flies were previously described [63, 64, 114]. The transgenic
fly line carrying UAS-S2Atau was established following the standard method [63, 114] by
using human 0N4R tau (a kind gift from Dr Mike Hutton (Mayo Clinic Jacksonville)) with ala-
nine mutation at Ser262 and Ser356 introduced by using the QuikChange site-directed muta-
genesis kit (Stratagene, La Jolla, CA, USA). The elav-GAL4, GMR-GAL4, UAS-CD8GFP were
obtained from the Bloomington Stock Center. UAS-PAR-1 RNAi is a gift from Dr. J. McDo-
nard (Cleveland Clinic, Cleveland, USA) [70]. UAS-PAR-1 is a gift from Dr. Bingwei Lu (Stan-
ford University) [115]. UAS-Sgg RNAi, UAS-mCherry RNAi (TRiP at Harvard Medical
School) were obtained from Bloomington stock center. All experiments were performed using
age-matched male flies, and genotypes are described in S1 Table.

Western blotting
Western blotting was carried out as described previously [63]. Briefly, twenty fly heads for each
genotype were homogenized in SDS-Tris-Glycine sample buffer, and the same amount of the
lysate was loaded to each lane of multiple 10% Tris-Glycine gels and transferred to nitrocellu-
lose membrane. The membranes were blocked with 5% milk (Nestle), blotted with the antibod-
ies described below, incubated with appropriate secondary antibody and developed using ECL
plus Western Blotting Detection Reagents (GE Healthcare) or imaging with an Odyssey sys-
tem. One of the membranes was probed with anti-tubulin, and used as the loading control for
other blots in each experiment. Anti-tau monoclonal antibody (Tau46, Zymed), anti-tau phos-
pho-Ser262 (Biosource and AbCam), phospho-Thr231 (AT180, Thermo and Endogen), TAU1
(millipore), anti-GSK3 (Cell Signaling), anti-GSK3 phospho-Ser9/21 (Cell Signaling), anti-Aβ
(6E10) (Signet, Covance), anti-tubulin (Sigma), anti-GFP (Clontech), anti-acetyl tubulin
(Sigma), anti-tyrosinated tubulin (Sigma) were purchased. Anti-tau pS202 (CP13) and phos-
pho-Ser396/404 (PHF1) was a kind gift from Dr. Peter Davis (Albert Einstein College of Medi-
cine, USA), and anti-tau polyclonal antibody (tauC) was a kind gift from Dr. A. Takashima
(National Center for Geriatrics and Gerontology, Japan) [116]. The signal intensity was quanti-
fied using ImageJ (NIH) or an Odyssey system. Western blots were repeated a minimum of
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three times with different animals and representative blots are shown. Flies used for Western
blotting were 3–5 day-old after eclosion.

Phosphatase treatment
Twenty fly heads for each genotype were homogenized in NEBuffer1 (50 mMHEPES, 100 mM
NaCl, 2 mMDTT, 0.01% Brij 35, pH 7.5) supplemented with 1 mMMnCl2 (NEB) and protein-
ase inhibitor cocktail (Roche), and incubated with λ protein phosphatase (NEB) for 3h at 30°C,
then subjected to western blotting as described above.

In vivomicrotubule-binding assay
Microtubule binding assay was performed using a previously reported [63]. Fifty heads from
adult flies expressing the human tau protein with the gmr-GAL4 driver were collected and
homogenized in 150 μl of Buffer-C+ [50 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonica-
cid pH 7.1, 1 mMMgCl2, 1 mM ethylene glycol tetraacetic acid, protease inhibitor cocktail
(Roche), and phosphatase inhibitor cocktail (Sigma-Aldrich)] in the presence of taxol 20 μM
(Sigma-Aldrich) diluted in dimethylsulfoxide. After centrifugation at 1,000× g for 10 min, ali-
quot of supernatant was subjected to western blotting as the “input fraction”. The remaining
supernatant was layered onto a 2 volume cushion of buffer-C+ with 50% sucrose. After centri-
fugation at 100, 000× g for 30 min, 1/3 volume of the supernatant containing soluble tubulin
was collected from the top of the tube as the cytosol fraction, and the pellet containing microtu-
bule polymers and proteins bound to microtubules was resuspended in 150 μl of SDS-Tris-Gly-
cine sample buffer. Protein concentration in each fraction was measured using the BCA
Protein Assay Kit (Pierce). The same amount of protein was loaded to each lane of Tris-Glycine
gels and analyzed by western blotting using anti-tau antibody (Tau46, Zymed) or anti-tubulin
(Sigma). For quantification, the signal intensity in each lane was quantified with an Odyssey
system.

Histological analysis
Preparation of paraffin sections, hematoxylin and eosin staining, and analysis of neurodegen-
eration were described previously [63]. To analyze internal eye structure, heads of female flies
were fixed in Bouin's fixative (EMS) for 48 hr at room temperature, incubated 24 hr in 50 mM
Tris/150 mMNaCl, and embedded in paraffin. Serial sections (6 μm thickness) through the
entire heads were prepared, stained with hematoxylin and eosin (Vector), and examined by
bright-field microscopy. Images of the sections that include the lamina were captured with
Insight 2 CCD Camera (SPOT), and vacuole area was measured using Image J (NIH). Heads
from more than five flies (more than 10 hemispheres) were analyzed for each genotype.

Statistics
Statistics was done with the JMP software (SAS) or R (R Development Core Team (2008)) with
Student's t, or one-way ANOVA followed by Tukey-Kramer HSD.

Supporting Information
S1 Fig. Co-expression of Aβ42 promotes tau-mediated retinal degeneration. External
eyes of flies expressing the gmr-gal4 driver alone (control), human tau (tau), tau and Aβ42
(tau+Aβ42) or Aβ42 (Aβ42). The surface areas of the external eyes are shown as mean ± SE
(n = 6–8, one-way ANOVA, n = 5; ���, p<0.005, n.s., not significant (p>0.05)). Genotypes
are as follows: (control) gmr-GAL4/+, (tau) gmr-GAL4/+;UAS-tau/+, (tau+Aβ42) gmr-
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GAL4/UAS-Aβ42;UAS-tau/+ and (Aβ42) gmr-GAL4/UAS-Aβ42. Transgene expression
was driven by gmr-GAL4.
(TIF)

S2 Fig. Co-expression of non-toxic proteins in the secretory pathway does not affect the lev-
els of tau free from microtubules and those bound to microtubules. The levels of tau and
tubulin in the lysate of fly heads expressing tau alone (tau) or co-expressing tau and non-toxic
proteins in the secretory pathway CD8GFP (tau+CD8GFP) before sedimentation (input), in
the supernatant (cytosol) and in the pellet containing microtubules (microtubule) were ana-
lyzed by western blotting by using anti-tau antibody. The same amount of proteins from each
genotype was loaded. Expression of CD8GFP was confirmed by western blotting with anti-
GFP antibody (CD8GFP). Mean ± SD, n = 5; p> 0.05 by Student's t-test. Representative blots
are shown. Transgene expression was driven by gmr-GAL4. Genotypes are as follows: (tau)
gmr-GAL4/+;UAS-tau/+ and (tau+CD8GFP) gmr-GAL4/UAS-CD8GFP;UAS-tau/+.
(TIF)

S3 Fig. The differences between two major tau bands are related to their phosphorylation
levels.Western blots of lysate of fly heads expressing tau with or without phosphatase treat-
ment with anti-tau antibody. Following phosphatase treatment, the two tau bands (indicated
by arrowheads) merged and were detected as a single faster-migrating band (indicated by aster-
isk). Transgene expression was driven by gmr-GAL4. The fly genotype is gmr-GAL4/+;UAS-
tau/+.
(TIF)

S4 Fig. Aβ42 expression does not affect the levels of acetylated tubulin or those of tyrosi-
nated tubulin. Aβ42 was expressed in all neuron and retina with a combination of two GAL4
drivers, the pan-neuronal elav-GAL4 driver and pan-retinal gmr-GAL4 driver. No significant
changes in the levels of acetyl tubulin or tyrosinated tubulin were detected in the Aβ42 fly
brain. Two independent transgenic fly lines expressing Aβ42 at different expression levels
(Aβ42#1 and Aβ42#2) yielded similar results. Genotypes: (control) elav-GAL4/Y;gmr-GAL4/+,
(Aβ42#1) elav-GAL4/Y;gmr-GAL4/+;UAS-Aβ42/+ and (Aβ42#2) elav-GAL4/Y;gmr-GAL4/
UAS-Aβ42.
(TIF)

S5 Fig. RNAi-mediated knockdown of Sgg reduces tau phosphorylation at SP/TP sites. (A)
Reduction in Sgg protein levels by the expression of Sgg RNAi in the retina. Heads lysates were
subjected to western blotting with anti-GSK3 antibody. Mean ± SD, n = 5, �, p< 0.05, Student's
t-test. Tubulin was used as loading control. Expression of UAS-SggRNAi was driven by the
pan-retinal gmr-GAL4 driver. Note that Sgg RNAi is only expressed in the retina, while endog-
enous Sgg is ubiquitously expressed, and protein levels of Sgg were assessed by western blot of
whole head lysate. Thus, the observed signal reflects not only Sgg protein in the retina, but also
that in other cells in the head in which Sgg expression is not suppressed. Therefore, it is likely
that reduction of Sgg protein in the retina is larger than the level shown here. Genotypes: (con-
trol) gmr-GAL4/+ and (Sgg RNAi) gmr-GAL4/+;UAS-Sgg RNAi/+. (B) RNAi-mediated
knockdown of Sgg reduces tau phosphorylation at SP/TP sites. Western blots of fly heads
expressing tau (tau) or that co-expressing tau and Sgg RNAi (tau+SggRNAi) with pan-tau anti-
body (tau46 and tauC) or antibodies that recognize phosphorylation status of tau at the SP/TP
sites (pSer202, pThr231, PHF-1 and TAU-1). Tubulin was used as loading control. Mean ± SD,
n = 5; �, p< 0.05, ��, p< 0.01, ���, p< 0.005. Expression of tau and SggRNAi was driven by
the pan-retinal gmr-GAL4 driver. Although residual Sgg-mediated phosphorylation of tau may
be present, Sgg RNAi caused significant reduction in the levels of pSer202-tau, and
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pThr231-tau and PHF1 (24%, 15%, and 22% compared to control, respectively). Representative
blots are shown. Genotypes: (tau) gmr-GAL4/+;UAS-tau/+ and (tau+Sgg RNAi) gmr-GAL4/+;
UAS-Sgg RNAi/UAS-tau.
(TIF)

S6 Fig. Expression of neither Aβ42 alone nor Aβ42 with Sgg RNAi causes a reduction in
eye size.Heads of flies expressing the gmr-GAL4 driver alone (control), tau (tau), tau and
Aβ42 (tau+Aβ42), or Aβ42 (Aβ42). The surface areas of the eyes are shown as mean ± SE
(n = 6–8, one-way ANOVA, p> 0.05). Genotypes: (control) gmr-GAL4/+, (Sgg RNAi) gmr-
GAL4/+;UAS-SggRNAi/+, (Aβ42+SggRNAi) gmr-GAL4/ UAS-Aβ42; UAS-SggRNAi/+ and
(Aβ42) gmr-GAL4/UAS-Aβ42.
(TIF)

S7 Fig. Knockdown of Par-1/MARK markedly decreases the levels of tau in the brain neu-
rons.Western blots of fly heads expressing tau (tau) or that co-expressing tau and PAR-1
RNAi (tau+PAR-1RNAi) driven by elav-GeneSwitch with pan-tau antibody (tauC). Tubulin
was used as loading control. Mean ± SD, n = 5; ���, p<0.005. Representative blots are shown.
Genotypes are as follows: (tau) UAS-tau /+;elav-GeneSwitch/+ and (tau+PAR-1RNAi) UAS-
tau /+;UAS-PAR1RNAi/elav-GeneSwitch. Transgene expression was induced by feeding newly
eclosed flies RU486 for two days.
(TIF)

S8 Fig. Phosphorylation levels of Sgg at Ser9 are increased by PAR-1 knockdown.Western
blots of fly heads expressing gmr-GAL4 driver alone (control) or that expressing PAR-1 RNAi
(PAR-1 RNAi) with anti-phospho-Ser21/9 antibody (pSer21/9) or a pan-GSK3 antibody (Sgg).
Mean ± SD, n = 5; ���, p<0.005. Representative blots are shown. Genotypes: (control) gmr-
GAL4/+ and (PAR-1RNAi) gmr-GAL4/+;UAS-PAR-1RNAi/+.
(TIF)

S9 Fig. Phosphorylation levels of Sgg at Ser9 are not changed by expression of Aβ42. Aβ42
was expressed in all neuron and retina with a combination of two GAL4 drivers, the pan-neu-
ronal elav-GAL4 driver and pan-retinal gmr-GAL4 driver. Western blots of fly heads express-
ing driver alone (control) or that expressing Aβ42 (Aβ42) with anti-phospho-Ser21/9 antibody
(pSer21/9), or a pan-GSK3 antibody (Sgg). Mean ± SD, n = 5; p>0.05. Representative blots are
shown. Genotypes: (control) elav-GAL4/Y;gmr-GAL4/+ and (Aβ42) elav-GAL4/Y;gmr-GAL4/
UAS-Aβ42.
(TIF)

S10 Fig. Tau phosphorylation at Ser238 is low in the retina of flies expressing tau alone or
co-expressing tau and Aβ. (A). Western blotting of fly heads expressing tau alone or co-
expressing tau and Aβ under the control of the pan-retinal gmr-GAL4 driver. No specific signal
was detected with an anti-pSer238-tau antibody. (B) Western blotting of fly heads without
expression of tau (control), expressing tau under the control of the pan-neuronal elav promoter
(elav-tau (1) and elav-tau (2)), or expressing tau under the control of the gmr-GAL4 driver
(gmr>tau). pSer238 was detected in elav-tau (1) and elav-tau (2), but not in gmr>tau. Geno-
types: (control) gmr-GAL4/+, (tau) gmr-GAL4/+;UAS-tau/+, (tau+Aβ) gmr-GAL4/
UAS-Aβ42;UAS-tau/+, (elav>tau(1)) elav-tau(1)/TM3Ser, (elav>tau(2)) elav-tau(2)/elav-tau
(2), and (gmr>tau) gmr-GAL4/UAS-Aβ42;UAS-tau/+.
(TIF)

S1 Table. Genotype of flies used in this study.
(DOC)
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