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Abstract: Postbiotics are a promising functional ingredient that can overcome the limitations of
viability and storage stability that challenge the production of probiotics. To evaluate the effects of
postbiotics on oral health, eight spent culture supernatants (SCSs) of probiotics were prepared, and
the effects of SCSs on Streptococcus mutans-induced cariogenic biofilm formation and the receptor
activator of the nuclear factor κB ligand (RANKL)-induced osteoclastogenesis were evaluated in
RAW 264.7 macrophages. SCS of Lactobacillus salivarius MG4265 reduced S. mutans-induced biofilm
formation by 73% and significantly inhibited tartrate-resistant acid phosphatase (TRAP) activity,
which is a biomarker of mature osteoclasts in RAW 264.7 macrophages. The suppression of RANKL-
induced activation of mitogen activated the protein kinases (c-Jun N-terminal kinase, extracellular
signal-regulated kinase, and p38) and nuclear factor κB pathways, as well as the upregulation of heme
oxygenase-1 expression. The suppression of RANK-L-induced activation of mitogen also inhibited
the expression of transcriptional factors (c-fos and nuclear factor of activated T cells cytoplasmic 1)
and, subsequently, osteoclastogenesis-related gene expression (tartrate-resistant acid phosphatase-
positive (TRAP), cathepsin K, and matrix metalloproteinase-9).Therefore, SCS of L. salivarius MG4265
has great potential as a multifunctional oral health ingredient that inhibits biofilm formation and
suppresses the alveolar bone loss that is associated with periodontitis.

Keywords: spent culture supernatant; Streptococcus mutans; biofilm formation; osteoclastogenesis

1. Introduction

Probiotics are defined as viable microorganisms that exert health benefits on the host
when they are consumed in sufficient amounts [1]. The beneficial health effects of probiotics
are strain-specific and related to several fundamental mechanisms, such as competition
with pathogens [2], reinforcement of the intestinal barrier function [3], modulation of
immune responses [4], and production of neurotransmitters [5]. Postbiotics refer to diverse
metabolites or microbial components produced by probiotics during fermentation. Postbi-
otics are an emerging functional ingredient since they effectively increase the efficacy of
probiotics without causing problems related to colonization and viability [6,7]. Cell-free
probiotic culture supernatants are characterized as a typical type of postbiotics. Consider-
ing that postbiotics are mixture of various compounds produced during fermentation, they
display broad bioactivity spectrum and have synergistic activity between various com-
pounds [8]. There has been an increase in the application of postbiotics in food processing,
and the fabrication of postbiotic-incorporated edible antimicrobial film has been the subject
of considerable interest [9,10].

Oral diseases, such as dental caries and periodontal diseases (gingivitis and periodon-
titis), are among the most prevalent global diseases and have physical, psychological, and
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economic consequences. Furthermore, normal oral function significantly affects the quality
of life [11]. The oral cavity harbors more than 1000 microbial species and establishes a
dynamic balance between microbial species [12]. Application of probiotics can contribute
to the homeostasis of oral microflora by inhibiting the growth of periodontal pathogens
and the modulation of the host immune responses [13].

Streptococcus mutans is a gram-positive facultative anaerobic bacterium that causes
dental caries in the oral cavity. S. mutans produces dental plaque and creates acidic envi-
ronment in the oral cavity [14]. Several studies have demonstrated that culturing S. mutans
in the probiotic supernatants or coculturing S. mutans with probiotics reduced S. mutans-
mediated biofilm formation [15–17]. Bacterial accumulation in the oral cavity also triggers
inflammation in gingival tissue and increases inflammatory cytokines and oxidative stress,
leading to periodontal diseases causing gum damage and alveolar bone loss [18,19]. Nu-
clear factor κB ligand (RANKL)-mediated osteoclast differentiation is also closely related
to alveolar bone loss in periodontal disease [20]. Thus, suppression of osteoclast differenti-
ation can ameliorate osteoclast-related disorders including periodontitis. Liu et al. [21] re-
ported that the ethanol extract of Lactobacillus paracasei subsp. paracasei NTU 101-fermented
skim milk significantly suppressed periodontal inflammation in lipopolysaccharide (LPS)-
induced periodontitis rat model. Application (0.1 mL, 2 times/day for 14 days) of a
Weissella cibaria suspension (5 × 109 CFU/mL) on the gingival sulcus reduced alveolar
bone loss in ligature-induced experimental periodontitis mice model [22].

The present study was conducted to identify potential biotherapeutic culture super-
natants for the development of functional oral health ingredients. To achieve this goal,
the effect of culture supernatants on the growth of S. mutans and biofilm formation were
examined. Furthermore, we systemically investigated the effects of a selected culture
supernatant (Lactobacillus salivarius MG4265) on RANKL-induced osteoclastogenesis and
related molecular mechanisms.

2. Results and Discussion
2.1. Effect of Probiotic Strains on the Growth of S. mutans

The potential inhibitory activity of eight probiotic strains on the growth of S. mutans
was evaluated (Figure 1A). The tested probiotic strains significantly suppressed the growth
of S. mutans. The highest inhibitory activity was obtained with Lactococcus lactis MG5125
and L. salivarius MG4265. When the spent culture supernatants (SCSs) of the probiotic
strains were used, there was an overall significant reduction in the growth of S. mutans. SCS
of Lactobacillus fermentum MG901 showed lower inhibitory effect on S. mutans compared
to other SCSs, while no clear differences were observed among other SCSs (Figure 1B).
Similarly, SCSs obtained from several Lactobacillus spp. with different metabolic patterns
(Lactobacillus salivarius, Lactobacillus casei, Lactobacillus plantarum, and Lactobacillus reuteri)
resulted in a significant reduction in the growth S. mutans as determined at 600 nm but
no difference was detected among the samples [16]. These results suggest that the tested
probiotic strains produced metabolites or extracellular components that have an ability to
inhibit growth of S. mutans.

S. mutans is an acid-producing bacterium and can tolerate acidic environments. The
glucosyltransferase-expressing ability to synthesize water-insoluble glucans contributes
to its virulence traits [14]. Lactobacillus spp.-mediated growth inhibition of S. mutans was
demonstrated in humans, and considerable differences were found in oral lactobacilli
between individuals containing no dental caries and active caries [23].

Tong et al. [24] reported that Lactococcus latis exerted an antagonizing effect against
growth of S. mutans, especially under nutrient-deficient conditions, and delayed the in-
cidence of dental caries. Two L. lactis strains, HY 449 and ATCC 19435, significantly
downregulated expression of the glucosyltransferase gene (gtfs) of S. mutans [25]. Two
L. salivarius strains, K35 and K43, which have strong inhibitory activity on the growth
and biofilm formation of S. mutans, have been identified [26]. The anticariogenic activity
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of these two strains is greater than that of Lactobacillus rhamnosus GG (LGG), and they
effectively downregulate glucosyltransferase-encoding genes (gtfB, gtfC, and gtfD).
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Figure 1. Effect of (A) probiotic strains and (B) their spent culture supernatants (SCSs) on the growth
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2.2. Effect of SCSs on S. mutans-Induced Preformed Biofilm Formation

Numerous studies have reported that lactobacilli produce various secondary metabo-
lites that have been characterized as antibacterial substances, such as organic acids (pri-
marily acetic acid and lactic acid), peptides (biosurfactant and bacteriocins), and hydrogen
peroxide [17,27,28]. The use of probiotic supernatants without live cells might be more ad-
vantageous in preventing dental caries because, although live bacteria such as Lactobacillus
fermentum NCINB 5221-inhibited S. mutans have attached to gingival epithelial cells as a
co-aggregated complex with S. mutans [29]. Additionally, based on an investigation of the
correlation between oral lactobacilli and dental caries, few lactobacilli were found in the oral
cavities of caries-free children [30]. Thus, we examined the effect of SCSs from probiotic
strains on S. mutans-induced preformed biofilm formation (Figure 2). L. lactis MG5125,
L. salivarius MG4265, Lactobacillus casei MG311, and Lactobacillus rhamnosus MG316 super-
natants showed a stronger reducing activity on the S. mutans-induced biofilm than other
SCSs (p < 0.05).
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This result suggests that Lactobacillus strains release bioactive substances that suppress
S. mutans-induced biofilm formation, and this anti-biofilm formation effect is strain-specific.
Dental plaque is a biofilm structure and consists of caries-related bacterial cells and an
extracellular matrix [31]. Considering that the cariogenic activity of S. mutans is mainly due
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to its ability to adhere to teeth and produce exopolysaccharide [32], the biofilm-reducing
activity of parabiotics is essential for the prevention of dental caries. Wasfi et al. [16]
reported that the SCS of L. salivarius exerted the greatest reduction activity on the S. mutans-
induced biofilm. The L. salivarius-mediated antibiofilm effect was attributed to significant
downregulation of the gtfB gene of S. mutans. In this context, transcriptional gtfs gene
regulation by the probiotic Lactobacillus strains positively contributed to the homeostasis of
the oral microbiome [33].

Surface-active protein-rich biosurfactants derived from lactobacilli possibly decrease
surface tension and inhibit biofilm formation [34,35].

L. plantarum lipoteichoic acid (a cell-wall component of gram-positive bacteria) sup-
pressed S. mutans-induced biofilm formation by interfering with sucrose degradation,
which is required for exopolysaccharide synthesis. The structural differences in the D-
alanine repeating unit and glycolipid in lipoteichoic acid are responsible for selective
inhibitory activity [36].

Based on the above results, the SCSs of L. lactis MG5125 and L. salivarius MG4265 have
the potential to ameliorate dental caries by inhibiting the growth of S. mutans (Figure 1)
and its biofilm formation (Figure 2).

2.3. Effect of SCSs on RANKL-Induced Osteoclast Differentiation

Osteoclasts are multinuclear cells that originate from precursor cells, such as mono-
cyte or macrophage lineages, and play key roles in the bone loss from osteoporosis and
periodontitis [37]. RAW 264.7 macrophages have been widely used as in vitro models of
osteoclastogenesis since they are easily differentiated to osteoclasts by RANKL stimula-
tion [38]. Tartrate-resistant acid phosphatase-positive (TRAP) activity was used to deter-
mine whether two preselected SCSs (L. salivarius MG4265 and L. lactis MG5125) also had a
beneficial effect on RANKL-induced osteoclast formation in RAW 264.7 cells. L. salivarius
MG4265 significantly reduced TRAP activity in RANKL-stimulated differentiated RAW
264.7 cells (p < 0.05, Figure 3A), whereas there was no significant difference in the case of
L. lactis MG5125. The SCS of L. salivarius MG4265 significantly inhibited TRAP activity in a
dose-dependent manner (p < 0.05, Figure 3B) and did not exhibit any cytotoxicity at the
tested concentrations (p < 0.05, Figure 3C) These results indicate that the SCS of L. salivarius
MG4265 actively suppressed RANKL-induced osteoclastogenesis. Thus, we further an-
alyzed the effect of the SCS of L. salivarius MG4265 on osteoclast specific transcriptional
factors and osteoclast associated genes expression.

2.4. Effect of the SCS of L. salivarius MG4265 on Osteoclast Specific Transcriptional Factors and
Osteoclast-Associated Gene Expression

RANKL is an essential signaling molecule, and binding of RANKL to its receptor
RANK induces the differentiation and activation of osteoclasts. This interaction stimu-
lates the expression of osteoclast-specific key transcriptional effectors such as c-Fos and
NFATc1 [39]. The effect of the SCS of L. salivarius MG4265 on the gene expression of these
two transcriptional factors was examined using qRT-PCR. The gene expression of c-Fos and
nuclear factor of activated T cells cytoplasmic 1 (NFATc1) was decreased by 55% and 27%,
respectively, in response to 50 µg/mL MG4265 treatment (Figure 4A,B).

NFATc1 is a master regulator of osteoclast activation and modulates osteoclast adhesion
and absorption of bone matrices through the upregulation of TRAP, cathepsin K, and matrix
metalloproteinase-9 (MMP-9) [40,41]. The induction of NFATc1 is governed by c-Fos and
c-Fos overexpression and has been recovered decreased NFATc1 expression by a p38-specific
inhibitor [42,43].

Osteoclast-specific gene expression, including TRAP, cathepsin K, and MMP-9 was
also significantly decreased by treatment of MG4265 in a dose-dependent manner (Figure 5).
Cathepsin K expression reflects the number of osteoclasts since it is mainly expressed in
mature osteoclasts [44]. TRAP, cathepsin K, and MMP-9 play a key role in osteoclast-
mediated degradation of bone organic matrices such as collagen and osteopontin [45,46].
Downregulation of TRAP, cathepsin K, and MMP-9 by L. salivarius MG4265 indicates that
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MG4265 can effectively inhibit bone resorption via regulation of osteoclast proteases. It
has been demonstrated that the suppression of RANKL-mediated osteoclastogenesis in the
RAW 264.7 cell model was highly correlated with decreased bone loss in ovariectomized
rats [47].
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2.5. Effect of the SCS of L. salivarius MG4265 on RANKL-Induced Mitogen Activated Protein
Kinase (MAPKs) Activation

RANKL/RANK binding on osteoclast precursors such as RAW 264.7 cells recruits
TNF receptor associated factor 6 (TRAF6), which mediates downstream signaling cascades.
It is well known that MAPKs, such as c-Jun N-terminal kinase (JNKs), extracellular signal-
regulated kinase (ERKs), and p38, are involved in osteoclast metabolism [48].

NF-κB is another crucial target of RANKL signaling, and selective inhibition of NF-κB
nuclear translocation has been suggested as a therapeutic target for inflammatory bone
loss [49]. Thus, the effect of the SCS of L. salivarius MG4265 on RANKL-mediated MAPK
activation and NF-κB signaling were analyzed by Western blotting to investigate the
molecular mechanisms related to c-Fos and NFATc1 downregulation.

The phosphorylation of all MAPKs was significantly increased upon RANKL stim-
ulation. Also, L. salivarius MG4265 treatment markedly inhibited the phosphorylation of
all three MAPKs and the nuclear translocation of NF-κB (Figure 6). These results indicate
that the SCS of L. salivarius MG4265 inhibited osteoclastogenesis by blocking the RANKL-
activated MAPK and NF-κB signaling cascades, consequently downregulating c-Fos and
NFATc1 gene expression in osteoclast precursors.

The combination of RANKL and interleukin-1β, an inflammatory cytokine, synergisti-
cally activated ERK during osteoclastogenesis [50]. RANKL is a potent activator of JNK
pathway, and the blocking of JNK signaling with a specific JNK inhibitor (SP600125) effec-
tively reduced MMP expression and bone absorption in inflammatory arthritis rats [51].
Stimulation of p38 triggers the activation of osteoclastogenesis-specific transcriptional
factors, such as NFATc1, and upregulates target gene expressions, such as cathepsin K [52].

NF-κB is normally confined to the cytoplasm in a complex with inhibitory κB (IκB),
and it enters the nucleus upon degradation of IκB by RANKL or inflammatory cytokines.
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Liberated NF-κB binds to DNA target sites and expresses MMP-9, which leads to inflam-
matory bone damage [49,53].

Figure 6. Effects of the SCS of L. salivarius MG4265 on (A) extracellular signal-regulated kinase (ERK),
(B) c-Jun N-terminal kinase (JNK), (C) p38, and (D) nuclear NF-κB expression in RANKL-induced
RAW 264.7 macrophages. Different letters (a–c) indicate significant difference at p < 0.05.

There are only a few reports regarding parabiotics that attenuate periodontitis. In one
study, the culture medium of Lactobacillus reuteri 6475 significantly suppressed RANKL-
induced osteoclastogenesis in RAW 264.7 cells, and the authors suggested that lactobacillic
acid was one of the active metabolites. GPR 120, a long-chain fatty acid receptor, was
activated by the L. reuteri 6475 culture supernatant, and the MAPK pathway was involved
in the suppression of osteoclastogenesis [54,55].
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2.6. Effect of the SCS of L. salivarius MG4265 on HO-1 Induction

HO-1 is a stress-induced enzyme that modulates oxidative and inflammatory stress,
and various phytochemicals inducing HO-1 have successfully inhibited RANKL-induced
osteoclast differentiation [22,56]. RANKL exposure resulted in increased HO-1 expression,
and it was further increased even with 50 µg/mL MG4265 treatment (Figure 7). The HO-1
induction was increased by 3.3-fold with treatment of 200 µg/mL of L. salivarius MG4265
(p < 0.05).

Figure 7. Effect of the SCS of L. salivarius MG4265 on HO-1 induction in RANKL-stimulated RAW
264.7 macrophages. Different letters (a–c) indicate significant difference at p < 0.05.

In a pathophysiological state, free heme content derived from myoglobin or other
hemoproteins increases and iron atoms of hemes exert oxidative stress by catalyzing excess
reactive oxygen species (ROS) production [57]. Periodontal disease is also under the influ-
ence of ROS produced from both the host and bacteria. Although the direct mechanisms
are not clear, ROS is indirectly involved in periodontal tissue destruction by the stimulation
of bone matrix proteinases [58]. In this regard, the SCS of L. salivarius MG4265 can alleviate
periodontal disease by inhibiting S. mutans growth and its exopolysaccharide production.
Mutan isolated from S. mutans directly induced differentiation of osteoclasts and acceler-
ated alveolar bone loss in rats [59]. In addition, SCS of L. salivarius MG4265 have a positive
effect on periodontal diseases through the modulation of osteoclastogenesis. L. salivarius
MG4265 can decrease periodontal tissue damage by inhibiting the gene expression of
encoding bone matrix degradation enzymes such as TRAP, cathepsin K, and MMP-9.

The efficacy of freeze-dried probiotic tablets containing Lactobacillus salivarius WB21
was demonstrated in randomized, double-blind, and placebo-controlled 8-week interven-
tion study. Clinical parameters such as plaque index and probing pocket depth were
significantly improved in the test group compared with those in the placebo group [60].

Lipoteichoic acid is a major virulence factor in S. mutans. It is involved in bacterial
adhesion to dentin and eventually elicits host immune responses [61]. Considering that
SCS of L. salivarius MG4265 actively decreased S. mutans-induced biofilm formation and
RANKL-induced osteoclastogenesis, metabolites that were produced during fermentation
possibly acted as effector molecules. The genus Lactobacillus secretes various metabolites,
such as muropeptides, aggregation-promoting factors, bacteriocin, short-chain fatty acids,
and trytophan-related metabolites [62,63], which may suppress biofilm formation and
immune regulation.

SCFA acts as a key regulator of bone formation and absorption. Butyric acid and
L. rhamnosus GG (LGG) exhibited equal activity in improving bone density [64]. The
ethanol extract from L. paracasei subsp. paracasei NTU-fermented skim milk improved
LPS-induced periodontal inflammation and decreased alveolar bone loss [21]. A mixture
of tyrosine and lactic acid in a ratio of 3:1 was identified as an anti-periodontitis ingredient
in the fermented extract [65].

Krzy’sciak et al. [66] reported that Lactobacillus salivarius HM6 Paradens significantly
reduced the double-species biofilm of S. mutans and Candida albicans isolated from the
dental caries of children. They further explained that L. salivarius might release agents that
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are able to inhibit cariogenic biofilm, but they could not identify active compounds that
block biofilm formation or its mode of action. Characterization of the active compounds in
SCS of L. salivarius MG4265 is required in future studies.

3. Materials and Methods
3.1. Strains and Cultivation

Eight probiotic strains (Lactobacillus plantarum MG207 (isolated from kimchi), Lacto-
bacillus paracasei MG310 (isolated from fermented food), L. casei MG311 (isolated from
fermented food), L. rhamnosus MG316 (isolated from infant feces), L. salivarius MG4265
(isolated from human origin), L. lactis MG5125 (isolated from fermented food), L. fermen-
tum MG901 (human origin), and Lactobacillus plantarum MG989 (human origin)) were
kindly provided from MEDIOGEN (Jecheon, Republic of Korea). S. mutans KCTC3065
was purchased from the Korean Collection for Type Culture (Daejeon, Republic of Korea).
Probiotic strains were cultured in de Man, Rogosa, and Sharpe (MRS) broth (1% peptone,
0.8% meat extract, 0.4% yeast extract, 2% glucose, 0.5% sodium acetate, 0.2% dipotassium
hydrogen phosphate, 0.02% magnesium sulfate heptahydrate, 0.005% manganese sulfate
tetrahydrate, 0.02% triammonium citrate). S. mutans was cultured in brain-heart infusion
(BHI) media (0.77% calf brains, 0.98% beef heart, 1% proteose peptone, 0.2% dextrose, 0.5%
sodium chloride, 0.25% disodium phosphate). Probiotic strains were cultured at 37 ◦C
in a CO2 incubator (Vision Scientific, Daejeon, Korea), and S. mutans was anaerobically
cultured using GasPakTM EZ container systems (Becton Dickinson & Co., Sparks, MD,
USA) at 37 ◦C.

3.2. Preparation of SCSs

The SCSs of probiotic strains were prepared according to the method of Lin et al. [17].
Probiotic strains were grown in MRS at 37 ◦C for 48 h. SCSs were obtained by centrifu-
gation at 3470× g for 10 min followed by filtration using 0.2 µm filters (Advantec, Tokyo,
Japan). The supernatants were lyophilized and used in the biofilm inhibition assay and cell
culture study.

3.3. Effect of Probiotic Strains on the Growth of S. mutans

The effect of probiotic strains on the growth of S. mutans was examined using the
method of Lin et al. with slight modifications [17]. The probiotic strains were grown in
MRS at 37 ◦C for 48 h, and S. mutans was cultured in a BHI medium at 37 ◦C for 48 h under
anaerobic stationary conditions. The concentrations of each probiotic strain and S. mutans
were adjusted to 108 CFU/mL using phosphate-buffered saline (PBS). Finally, 50 µL of the
S. mutans and each probiotic culture were combined and incubated under microaerophilic
conditions at 37 ◦C for 24 h. After incubation, the suspensions were plated on MSB (Mitis
Salivarius Sucrose Bacitracin) agar (Kisanbio, Seoul, Korea) and incubated at 37 ◦C for 24 h
before counting the S. mutans colonies. The colony number of S. mutans in BHI medium
without the probiotic strain was used as a negative control while PBS (50 µL) was used as
blank control. The inhibition (%) was calculated as follows:

Inhibition (%) = (A − B) × 100/B

where A—colony number of the experimental group, B—negative control.

3.4. Effect of SCSs on the Growth of S. mutans

The effect of SCSs on the growth of S. mutans was measured by the method of
Wasfi et al. [16]. S. mutans was grown at 37 ◦C in BHI broth and diluted to 108 cells/mL
with a BHI broth medium. SCSs (100 µL) from each probiotic strain were mixed with an
equal volume of S. mutans suspension placed in a 96-well microplate. The plate was further
incubated at 37 ◦C for 24 h and absorbance was measured at 600 nm using a microplate
reader (Biotek Instruments Inc., Winooski, VT, USA). Sterilized MRS broth instead of SCS
was used as a control.
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3.5. Effect of SCSs on S. mutans-Induced Biofilm Formation

The culture of S. mutans was adjusted to 108 CFU/mL in BHI containing 0.2% sucrose,
and aliquots of the culture (100 µL) in the plate (96 well polystyrene plate; SPL Life Sciences
Inc., Pocheon, Korea) were incubated overnight at 37 ◦C. The culture supernatant was
replaced with the same volume of SCSs and incubated for another 48 h at 37 ◦C. After
incubation, the medium was discarded, and the wells were thoroughly washed with
sterilized distilled water. Then, the wells were stained with crystal violet solution (0.5%,
0.1 mL) for 10 min and washed. After drying, the absorbance of solubilized blue-colored
biofilm in the wells was measured at 595 nm using the microplate reader [20].

3.6. RANKL-Induced Osteoclast Differentiation of Murine Osteoclast Progenitor RAW 264.7 Cells

The RAW 264.7 macrophages were purchased from American Type Culture Collection
(ATCC, Manassas, VA, USA) and cultured and maintained as previously described [22].
RAW 264.7 cells were seeded (1 × 104 cells/well) and incubated at 37 ◦C for 24 h. α-MEM
(Welgene Inc., Daegu, Korea) containing RANKL (50 ng/mL; Prospec, Rehovot, Israel)
and M-CSF (25 ng/mL, Sigma-Aldrich, St. Louis, MO, USA) was used as a medium for
differentiation from RAW 264.7 macrophages into osteoclasts. The medium was changed
every other day during the incubation period. Cell viability was evaluated using MTT
[3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay.

3.7. Tartrate-Resistant Acid Phosphatase-Positive (TRAP) Activity

RAW 264.7 cells were seeded (1 × 104 cells/well) and incubated for another 8 days in
the presence of the samples. After cells were lysed using a Triton X-100/saline solution,
they were dispersed in citrate buffer containing 10 mM sodium tartrate and 10 mM p-
nitrophenylphosphate (pH 4.7, 50 mM). TRAP activity was measured at 405 nm after
incubation for 30 min at 37 ◦C.

3.8. RNA Extraction and Quantitative Real Time PCR (qRT-PCR)

RAW 264.7 cells were differentiated into osteoclasts for 42 h at various MG4265 SCS
concentrations (50 µg/mL, 100 µg/mL, and 200 µg/mL). The differentiated cells were
isolated using NucleoZOL (QIAGEN, Hilden, Germany) and RNA was extracted according
to the manufacturer’s instruction. cDNA was synthesized using a cDNA kit (Applied
Biosystems, Foster City, CA, USA), and quantitative relative expression of osteoclast-
specific transcriptional factor genes (c-fos and NFATc1) and osteoclastogenesis-associated
genes (TRAP, cathepsin K, and MMP-9) in RANKL-stimulated RAW 264.7 cells were
analyzed by StepOne Plus RT-PCR system (Applied Biosystems, Foster City, CA, USA)
using TaqMan® Master mix (Applied Biosystems) [22]. The housekeeping gene β-actin
was used as a reference gene to normalize the target-gene expressions.

3.9. Western Blotting Analysis

RAW 264.7 cells were seeded in a 6-well plate at 1 × 105 cells/well and induced
differentiation of osteoclast as described above. The cells were washed with cold PBS and
lysed with a RIPA lysis buffer (ATTO, Tokyo, Japan) supplemented with phosphatase and
protease inhibitors in a 98:1:1 (v/v/v) ratio. Nuclear proteins were isolated using NE-PER™
nuclear and cytoplasmic extraction reagents (Thermo Scientific, Rockford, IL, USA) ac-
cording to the manufacturer’s instructions. Equal amounts of proteins, adjusted by the
Bradford assay, were separated by SDS-PAGE (10% acrylamide) and then transferred onto
polyvinylidene fluoride membranes (Millipore, Billerica, MA, USA). The immunoreactive
proteins of interest were visualized and quantified by an enhanced chemiluminescence de-
tection system (Bio-Rad, Hercules, CA, USA) following incubation with primary antibodies
(c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase (ERK), p38, nuclear
factor κB (NF-κB), heme oxygenase-1 (HO-1), β-actin, and TATA-binding protein (TBP);
(Cell signaling Technology, Danvers, MA, USA)), followed by horse radish peroxidase
conjugated secondary antibody (1:2500), as described previously [67]. The expressions of
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JNK, ERK, p38, and HO-1 were normalized to β-actin, whereas the expression of NF-κB in
the nucleus was normalized to TBP.

3.10. Statistical Analysis

All quantitative experiments were conducted in triplicate. Data were expressed as the
mean ± standard deviation and analyzed using SPSS 13.0 (SPSS, Inc., Chicago, IL, USA).
One-way analysis of variance (ANOVA) and Duncan’s multiple comparison tests were
used to determine significant differences (p < 0.05) among treatment means.

4. Conclusions

SCS of L. salivarius MG4265 strongly inhibited S. mutans-induced biofilm formation
and RANKL-induced osteoclastogenesis. The suppression of RANKL-induced activation
of the MAPKs and NF-κB pathways and upregulation of HO-1 expression inhibited the
expression of transcriptional factors (c-fos and NFATc1) and osteoclastogenesis-related
gene expression (TRAP, cathepsin K, and MMP-9). Therefore, SCS of L. salivarius MG4265
has great potential as a multifunctional oral health ingredient that inhibits not only biofilm
formation but also suppresses the alveolar bone loss associated with periodontitis.
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