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Abstract

Coral reefs are facing increasingly devasting impacts from ocean warming and acidification

due to anthropogenic climate change. In addition to reducing greenhouse gas emissions,

potential solutions have focused either on reducing light stress during heating, or on the

potential for identifying or engineering “super corals”. A large subset of these studies, how-

ever, have tended to focus primarily on the bleaching response of corals, and assume erro-

neously that corals that bleach earlier in a thermal event die first. Here, we explore how

survival, observable bleaching, coral skeletal growth (as branch extension and densifica-

tion), and coral tissue growth (protein and lipid concentrations) varies for conspecifics col-

lected from distinctive reef zones at Heron Island on the Southern Great Barrier Reef. A

reciprocal transplantation experiment was undertaken using the dominant reef building

coral (Acropora formosa) between the highly variable reef flat and the less variable reef

slope environments. Coral colonies originating from the reef flat had higher rates of survival

and amassed greater protein densities but calcified at reduced rates compared to conspecif-

ics originating from the reef slope. The energetics of both populations however potentially

benefited from greater light intensity present in the shallows. Reef flat origin corals moved to

the lower light intensity of the reef slope reduced protein density and calcification rates. For

A. formosa, genetic differences, or long-term entrainment to a highly variable environment,

appeared to promote coral survival at the expense of calcification. The response decouples

coral survival from carbonate coral reef resilience, a response that was further exacerbated

by reductions in irradiance. As we begin to discuss interventions necessitated by the CO2

that has already been released into the atmosphere, we need to prioritise our focus on the

properties that maintain valuable carbonate ecosystems. Rapid and dense calcification by

corals such as branching Acropora is essential to the ability of carbonate coral reefs to

rebound following disturbance events and maintain 3D structure but may be the first prop-

erty that is sacrificed to enable coral genet survival under stress.
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Introduction

Primary (skeletal extension) and secondary (skeletal densification) calcification by reef-build-

ing corals [1,2] is critical to reef construction [3], and the ecosystem function and services pro-

vided by coral reef ecosystems [4]. However, corals (even thriving hard coral communities) are

not always capable of calcifying at rates that are necessary to maintain coral reefs in a net posi-

tive carbonate balance [5]. Scleractinian corals have arguably survived past climatic events by

dispensing altogether with their skeletons [6], and the coral taxa that survive present marine

heatwaves appear to be those that extend at lesser rates than corals with lower survival [7]. Cal-

cification is energetically expensive [8] and under ocean acidification potentially toxic (via aci-

dosis and proton build up in calicoblastic epithellium) [9,10]. In some environments, it may

therefore be necessary to either cease calcification or redirect energy investment away from

calcification in order to facilitate coral survival [11]. Here, we evaluate drivers such as long-

term pre-conditioning to thermal stress a putative epigenetic driver [12], and exposure to

reduced light levels over summer and their influence on primary and secondary calcification

for the branching coral, Acropora formosa (Dana, 1846). Acropora formosa is abundant in

diverse zones of a coral reef where it contributes to the 3-dimensional structure and carbonate

accumulation within coral reef ecosystems [13]. A. formosa is one of the most dominant

branching corals found on Heron Island Reef in the Southern Great Barrier Reef (GBR) of

Australia and is present on the reef slope and in lagoons typically [14]. A reef whose inhabi-

tants are exposed to significant seasonal abiotic variation [15] and daily abiotic variation for

inhabitants located on reef-flat habitats [16,17]. Underwater marine heat waves are increasing

globally and are impacting multiple ecosystems including the Great Barrier Reef [18–20]. Ini-

tially, coral bleaching observed over a large area drew attention to the negative impacts ocean

warming was having on coral hosts and their endosymbiotic dinoflagellates [21]. Now, more

prolonged and intense thermal marine heatwaves are associated with mass coral mortality

with observations suggesting that delaying the onset of bleaching in a thermal event provides

no safeguard against coral mortality [7,19,22]. High rates of coral mortality along with an

expected increase in the frequency of high intensity marine heatwaves suggest that future con-

ditions will negatively impact biodiversity and services provisioned by coral communities [23].

A negative impact on coral communities is expected even under the adoption of CO2 mitiga-

tion pathways, such as that agreed to in Paris at the United Nations Climate Change Confer-

ence in 2015. Increases in atmospheric pCO2, principally due to the burning of fossil fuels,

have increased the global temperature by 1˚C, and equilibration of atmospheric pCO2 with the

oceans has increased ocean acidification by 0.1 pH units, since pre-industrial times [24]. In

addition to the effects of warming, more significant levels of acidification, tend to reduce the

bulk density of coral skeletons, or eliminate skeleton in favour of giant fleshy standalone pol-

yps [1,25]. Ultimately this will lead to negative outcomes for entire coral reef ecosystems which

require positive calcification to maintain carbonate balances and structural complexity.

The degree to which these ecosystems will be impacted under reduced CO2 emission sce-

narios such as RCP2.6 [26] is nonetheless debated. Some argue that pre-conditioning to ther-

mal stress can accelerate coral survival/adaptation either naturally [27] or via assisted

evolution [28,29]. Preconditioning has been associated with exposure to highly variable tem-

perature regimes that appear to confer increased tolerance to subsequent thermal stress albeit

over days rather than weeks [30,31]. Some refer to this preconditioning as acclimatization

[27], others as epigenetic entrainment that may be inherited by offspring providing “super cor-

als” for the future restocking of reefs [28,32,33]. In the literature, inheritable epigenetic

changes to gene expression in response to thermal stress tend to be expressed irrespectively of

the presence of the stress in future habitats [12]. In this sense, epigenetic entrainment limits
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future transcriptional plasticity (i.e. inhibits reversion to previous state) and has been investi-

gated in the literature through reciprocal transplantation experiments [34–36].

In literature regarding “super corals”, bleaching susceptibility (bleaching earlier rather than

later as thermal stress accumulates) is often erroneously assumed to be interchangeable with

mortality [36–39]. Furthermore, the potential “adaptive” costs of increased thermal tolerance

on carbonate deposition are rarely considered [40,41]. Here, it is generally assumed that corals

consistently retain a plasticity to accelerate rates of calcification when conditions become

more favourable [3]. A lack of space to vertically accrete into is often viewed as the limiting fac-

tor when it comes to the extension rate of corals on shallow reef flats, rather than any epigenet-

ically imposed constraints [41,42].

Other managerial or adaptive solutions to protecting reefs of the future involve the applica-

tion of shade to reefs exposed to thermal stress [43]. Given that stress events often have signifi-

cant longevity (e.g. 2016 Northern GBR ~3 months), the consequences of applying shading to

prevent bleaching have not been fully rationalised. Shading can lead to light acclimation by the

holobiont negating the benefit of reducing light exposure on symbiont reactive oxygen species

(ROS) production [44]. Symbiont ROS production is linked to a bleaching mechanism in cor-

als [45,46]. Alternatively, an absence of light acclimation in response to a reduction in light

intensity would coincide with lost photosynthetic energy acquisition. A cost that may not be

that dissimilar to a reduction in symbionts [47], but that might be more harmful to the host if

the symbiont switch to facultative heterotrophy [48,49]. The present study was conducted at

two different reef locations (habitats) (a) the shallow reef flat (1–3 m) and (b) the deeper reef

slope (7–8 m) of Heron Island, in the southern GBR. Colonies from the reef flat sites are

thought to experience a large diel range and variability in sea water chemistry (e.g. pCO2), tem-

perature and light intensity, which is associated with the large tidal range (3m) and the result-

ing ponding of reefs at low tide [17,50,51]. Periods of excessively high (in summer) or low (in

winter) temperatures associated with ponding can inhibit the efficiency of photosynthesis [52].

Over such periods, corals may be forced to consume previously deposited biomass to facilitate

genet survival [53,54]. Survival in such environments may therefore favour organisms with

larger biomass per unit surface area [55–57], a property that in turn may be facilitated by

reductions in coral expansion and/or in rates of secondary calcification [57–59].

By contrast, on the reef slope of Heron Island, temperature and pCO2 conditions are

thought to be relatively stable over daily time scales due its proximity and exchange with exter-

nal ocean waters [60]. Light, however, attenuates significantly with depth and can constrain

photoautotrophy. On the other hand, the increased exposure to high energy of waves tends to

limit the potential for net colony expansion, especially for corals that deposit less dense skele-

tons over the long term [61,62]. The combination of fragmentation, driven by high wave

energy and rapid rates of skeletogenesis can spread the risk of genotype mortality across a

larger area [3]. Therefore, it may be hypothesized that, in general, fast growing morphotypes

are more frequently associated with high energy locations; whilst fleshier morphotypes, that

tend to invest more in tissue than skeletal expansion, are associated with more marginal, low

energy habitats [63].

We ran a reciprocal field experiment on A. formosa collected from in two distinct habitats.

We aimed to test an alternative hypothesis that corals survive highly variable environments

because they minimise extension rates that enable them to invest their energy into tissue main-

tenance and production (change in protein density for fixed extension rates). We further

aimed to explore whether there was any influence of prior environmental history (i.e. poten-

tially epigenetic memory) that might constrain the responses of colonies of A. formosa. Specifi-

cally, we sought to: (i) determine whether exposure to higher abiotic variability in prior life

history increases coral survival irrespective of the characteristic of the new environment; (ii)
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Whether properties that potentially increase survival are traded for reduced rates of calcifica-

tion (extension or densification rates); (iii) whether light reductions associated with alteration

in depth and reef location, led to a rapid acclimation response (ability to add greater quantities

of both protein and calcium carbonate) or not and whether a potential decrease in energy

acquisition occurs as corals face changed environmental conditions.

Materials and methods

Study site

Heron Reef (23˚27’S, 151˚55’E) is a lagoonal platform reef which is part of the Capricorn Bun-

ker group located on the southern end of the Great Barrier Reef, Australia. Past sea surface

temperatures (SST) for the sea surrounding Heron Reef had a maximum monthly mean

(MMM) of 27.3˚C (between 1985 and 2001; Weeks, Anthony [64]). This is also the MMM

used to determine hotspots and degree heating weeks (DHW), and thereby exposure to ther-

mal stress [65]. For this study, one site was located on the reef flat, and one site on the outer

reef slope. Both are on the southern side of Heron Island. Conditions on the reef flat [1-3m,

66] are highly variable with regular periods of ponding with minimal or no inward or outward

exchange of water [15,67–70]. Heron Reef has a semi-diurnal tide cycle, which drives a large

scale variation in temperature, oxygen, and carbon dioxide [17]. The reef slope site (depth

7-8m at mid-tide, Harry’s Bommie, dive site Heron Island) is on the outer margin of the reef

nearby (~0.5km) Wistari channel and hence exposed to well mixed ocean waters along with

significant wind and wave activity [71,72]. Brown, Bender-Champ [16] conducted studies at

the same locations finding that mean photosynthetically active radiation (PAR) was two to

three times higher on the reef flat than the reef slope throughout the year, and more variable

(Reef slope mean = 69.35 μmol quanta m-2s-1, SD = 265.24, Reef flat mean = 394.74 μmol

quanta m-2s-1, SD = 564.92). Mean temperature at the reef flat and slope locations remained

similar between sites seasonally but was significantly more variable on the reef flat (Reef slope

mean = 24.32˚C, SD = 0.84, Reef flat mean = 24.32˚C, SD = 1.15). Heron Reef is dominated by

Acropora spp. [16,51] which are typically fast growing under normal conditions, and as a result

can rapidly recolonise after events that have led to reef degradation [3], especially via fragmen-

tation, making them fundamental in maintaining positive carbonate balances within coral reef

communities [73].

Reciprocal transplantation

Fragments (7-10cm) of A. formosa were collected from different colonies, roughly 5m apart, at

each location (Flat n = 125; Slope n = 125) in late September 2017. Fragments were randomly

collected from the growing tips of colonies fragments with axial branches or damaged apical

corallites were excluded. While these were selected from different colonies to avoid pseudo-rep-

lication the colony from which a fragment was collected was not tracked. Corals were kept in

flow through aquaria under a shade cloth for 2 weeks during initial measurements and prepara-

tion for the different experimental treatments. All fragments were trimmed to 7cm using bone

cutter scissors. A total of 25 fragments from each location (Flat, Slope) were sampled to assess

initial coral condition. These fragments were stored at -20˚C and analysed at Heron Island

Research Station and/or the University of Queensland. A hole was drilled ~1cm from the base

of each fragment intended for reciprocal transplantation, in order to attach the coral to pieces of

flat live rock (~25cm x 25cm) for outplanting, 20 corals were attached to each rock. Live rock

was used to stabilise fragments rather than plastic or metal structures to limit algal growth and

potential competition (Fig 1). Fragments were randomly assigned to treatments in a fully

crossed design (Fig 1), corals originating from the reef flat were either returned to the reef flat
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(“Origin[Flat]/ Transplant[Shallow]”, n = 50), or transplanted to the reef slope (“Origin[Flat]/

Transplant[Deep]”, n = 50), and corals originating from the reef slope were either returned to

the reef slope (“Origin[Slope]/ Transplant[Deep]”, n = 50), or transplanted to the reef flat (“Ori-

gin[Slope]/ Transplant[Shallow]”, n = 50). Once attached to live rock corals were deployed on

metal frames at each location in late September 2017 (1 frame per location, n = 2). The live

rocks with fragments attached were collected in late November 2017 for observation. All dead

corals were removed (n = 24) prior to redeployment. Final collection of the fragments was con-

ducted in mid-February 2018, each fragment had final buoyant weight measurements taken

before being stored at -20˚C until further analysis could be undertaken. Specific methodologies

for individual measurements are described below. Buoyant weight changes are reported as total

change over time of each individual fragment. All other physiological measurements are

Fig 1. Coral fragments were transplanted between locations on the reef flat (red) and reef slope (blue) of Heron Island in the Southern Great Barrier Reef of

Australia. For clarity, sites of colony origin are referred to as “reef slope” (blue zip tie) and “reef flat” (red zip tie), and locations of experimental positioning

(transplantation) are referred to as “deep” and “shallow”, however, they describe the same habitat. In total 250 fragments of Acropora formosa were collected, 25 of these

were stored as representative fragments to be used for initial measurements. The remaining 200 fragments had holes drilled and zip ties threaded through; these were

attached to live rock for transplantation onto a metal rack. Created in Adobe Illustrator.

https://doi.org/10.1371/journal.pone.0269526.g001
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reported as total change over the experimental period based on the average value calculated

from the 25 fragments collected and processed at the beginning of the experiment.

Physiological analyses

Calcification rates were calculated from initial and final buoyant weight measurements of each

individual fragment. Buoyant weight (BW) was measured using methods described by Spencer

Davies [74], and Jokiel, Rodgers [75]. BWs were not converted to dry-weight equivalents as

this requires an assumed coral density [76]. Changes in wet BW can be driven by calcification

contributions to extension (increase in volume or surface area) or densification (BW changes

for fixed extension rate). Coral tissue was removed from the skeleton by airbrush using 0.06 M

phosphate buffer solution (PBS). Skeletons were then cleaned using a 10% bleach solution to

remove any residual tissue. If corals had any tissue die-back this was marked on skeletons in

preparation for living surface area analysis. Fragments were rinsed and then dried at 70˚C for

two hours. The modified double wax dipping method described by Holmes [77] was used to

measure the surface area of living tissue. Paraffin wax was heated to 65˚C, and coral fragments

were maintained at room temperature throughout. This method has been shown to give the

most accurate surface area estimation compared to X-ray CT scanners for Acroporid corals

[78,79]. Methods for determining bulk volume were based off calculations described in

Bucher, Harriott [80].

Venclosed ¼ DWwax � BWwaxð Þ � @m Eq 1

where V = volume, DWwax = dry weight of skeleton with single coat of wax, BWwax = buoyant

weight of skeleton with single coat of wax, @m = density of the fluid medium.

The coral tissue in PBS was centrifuged at 4500rpm for 5 minutes (3K15 Sigma laborzentri-

fugen GmbH, Osterode, Germany), to separate the symbiont pellet. The resulting supernatant

was stored in two parts to allow for protein and lipid analyses. For protein analyses the super-

natant was analysed with a spectrophotometer (Spectramax M2 Molecular Devices, California,

USA), using absorbance values at 235nm and 280nm. Protein densities were then calculated

using equations in Whitaker and Granum [81]. For lipid analyses, the supernatant was stored

at -80˚C overnight. Frozen samples were placed in a freeze dryer (Coolsafe 9l Freeze Dryer

Labogene, Allerød, Denmark) at -110˚C for 24 to 48 hours until all moisture was removed.

Total lipid extraction from each sample was conducted using methods described in Dunn,

Thomas [82].

Mortality

Fragments in the reciprocal transplant could only be identified as dead in collection periods

(2.5 months after the start of the experiment, and the end of the experimental period), at

which point they were removed from the live rock. At the midway point of the study, 24 corals

were classified as dead (defined as 100% tissue loss) and removed, with one additional coral

removed due to mortality at the end point of the study.

Minor tissue dieback (less than 5%) on all live fragments was also assessed at the end of the

experiment. Approximately 80% of shallow transplants, and 77% of deep transplants experi-

enced a small (<1cm, shown in Fig 2A and 2B) amount of dieback near the point of attachment

to the live rock. Algal growth was also apparent in some cases (Fig 2A), and the absence of cora-

lites and tissue in others (Fig 2B). This was marked and accounted for when conducting live sur-

face area measurements. Additionally, 5% of corals transplanted to the deep exhibited tissue

dieback beyond the attachment region but not total mortality, these fragments were excluded

from the analysis of physiological properties as accurate measurements could not be taken.
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Fig 2. End-point examples of Acropora formosa fragments following a reciprocal transplantation experiment conducted

at Heron Island (Southern Great Barrier Reef). (a) Fragments experimentally located as transplants to the “deep” reef slope,

and (b) Fragments experimentally located as transplants to the “shallow” reef flat. Zip-ties represent location of colony Origin

(slope = blue, flat = red). Tissue dieback can be observed at the base of fragments where zip-ties have been attached,

differential levels of dieback are due to a lack of uniformity in the live rock corals were attached to. The red circle in (a)
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Environmental variables

Field environmental variables were measured using temperature (Hobo pendent logger Onset,

MA, USA), and photosynthetically active radiation (PAR; Odyssey logger Dataflow systems

LTD, Christchurch, NZ) loggers. Three PAR and three temperature loggers were placed at

each location (“deep” reef slope, and “shallow” reef flat) each within 5 metres of the metal

frames on which the corals were attached. On the reef slope, two of the three PAR loggers

failed and as a result only one set of data was able to be used for analyses. PAR loggers were fit-

ted with a copper washer around the sensor to prevent biofouling and were cleaned at the mid-

way point when corals were collected for measurements. Temperature loggers collected data as

hourly means; PAR loggers collected data as integrated values every 2 hours. For analyses, 24h

daily means, 25th percentile (Q1) and 75th percentile (Q3) were determined for temperature,

12h (6h – 18h) daytime mean, Q1 and Q3 were determined for PAR.

Statistical analyses

Host protein was used as a proxy for host biomass, as has been used across multiple peer

reviewed studies [83–85]. We used our statistical analyses to distinguish skeletal extension and

densification; where either increase in volume or surface area (SA) were proxies for skeletal

extension rates. We then modelled, the impact of Habitat and Origin on buoyant weight (BW)

changes applying either Volume or SA as a covariate. This allows us to partition BW into

extension and densification components. The slope of BW to SA provided an estimate of BW

that went into the extension component. BW responses of the other predictors are then esti-

mated for an unchanging extension rate (fixed) and therefore the BW change for these predi-

cators represents a change in densification of the skeleton. Energetic or resource limitations in

corals were observed as the necessity to trade between increasing biomass and one or both

parameters of calcification. Abiotic conditions that lead to accelerated rates of calcification

without compromising biomass were assumed to be energetically positive [58,86,87].

All statistical analyses were conducted with R version 3.6.2 software (2018), figures were

created using the ggplot2 package [88] and sjPlot package [89]. All physiological data (bulk

volume (BV), living surface area (LSA), buoyant weight (BW), total protein, and total lipids)

were initially calculated as total change over time, however after comparison of initial bulk vol-

ume between locations of origin, these were converted to percentage change. Linear mixed

effects (LME) models were then developed using a stepwise procedure, Akaike information

criterion was applied in each case to select the model with the best fit. Each model was assessed

for normality and homogeneity of variance through visual inspection of Q-Q plots and resid-

ual vs fitted values prior to analysis. Models with different response variables were built up in

order of increasing complexity in order to explore trades between variables (Table 1). The

function Anova [90] was applied to models, with the type 2 or 3 selection of treatment of sum

of squares based on whether optimal models suggested significant interactions amongst

variables.

For physiological analysis, model response variables were: BV, LSA, BW, total protein, and

total lipids all of which were continuous. Of the fixed predictors, Origin and Transplant were

categorical, while the remaining (BV, LSA, and BW) were continuous. Due to collinearity as

measured through variance inflation factor (VIF), covariates BV and LSA were identified as

interchangeable in subsequent models. The model with the best fit was chosen as previously

highlights dieback with algal growth, and in (b) highlights dieback with the absence of coralites and tissue. (c) in situ

photograph of experimental rack on the reef flat.

https://doi.org/10.1371/journal.pone.0269526.g002
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described. All physiological analysis and mortality models included live rock as a random

effect, which refers to the live rock on which the coral was placed, this remained constant

throughout the experimental period and is representative of the coral’s location in space.

The probability of mortality was analysed as a binomial response variable using a mixed

effect logistic regression [GLMER, lme4, 91] to take the random effect of live rock into consid-

eration. Binomial response is based on probability theory, from which we can estimate the

probability of an outcome. The probability was then converted into relative risk using the

“odds_to_rr” function [89]. Laplacian approximation was used to determine the best fit

model. The full and best fit models are shown in Table 1.

A generalized least squares (GLS) model was used to compare environmental variables

(Temperature and PAR) between each site (Shallow and Deep) over the four-month experi-

mental period. A GLS model was used as data were identified as being temporally autocorre-

lated. The daily mean, and interquartile range (IQR, between Q1 and Q3 as previously

described), as an indication of variability, were both analysed for temperature and PAR, full

and best fit models are shown in Table 1, with date and location as categorical predictors.

Degree heating weeks (DHW) were calculated using Q3 to measure heat accumulation over

the experimental period. Calculations were based on theory from NOAA (Liu et al. 2014)

where heating weeks accumulate when temperatures rise above MMM +1.

Response and predictor variables for the initial and best fit models applied to the analysis of

samples from the reciprocal transplantation experiment conducted on Heron Island (Southern

GBR). Underlined predictors in best fit model indicate a significant effect (P<0.05), the direc-

tion of these significant effects is indicated in brackets of the best fit models. Continuous pre-

dictors such as “BV” (+) defines a positive correlation to the response variable. For categorical

predictors such as “transplant” the relationship between levels of the factor are provided;

Transplant, Sh = Shallows, D = Deep; Origin, F = Flat, and Sl = Slope. The direction of interac-

tion effects is not indicated in this table. Variables are abbreviated in model outputs; bulk

volume = BV, living surface area = LSA, buoyant weight = BW.

Results

Initial measurements, environmental parameters, and mortality potential

Mean temperature increased over time (with the onset of summer) at both sites (Anova,

F(3,290) = 830.900, P =<0.001, Fig 3A) although mean temperature did not differ between the

shallow site and deep site (Anova, F(3,290) = 3.500, P = 0.062, Fig 3A). The variability in

Table 1. Summary of statistical models.

Response Variable Predictors (Initial Model) Predictors (Best Fit Model) Statistical Analysis

Mortality Transplant � Origin Origin (F<Sl) GLMER

Bulk Volume Transplant � Origin Transplant (Sh>D) + Origin (F<Sl) LME

Living Surface Area Transplant � Origin + BV Transplant (Sh>D) + Origin (F<Sl) + BV (+) LME

Buoyant Weight Transplant � Origin + BV/LSA Transplant � Origin + LSA (+) LME

Total Protein Transplant � Origin + BV/ LSA + BW Transplant � Origin + LSA (+) LME

Total Lipids Transplant � Origin + BV/LSA + BW Transplant � Origin + LSA (+) LME

Mean PAR Date � Location Date � Location GLS

IQR PAR Date � Location Date � Location GLS

Mean Temperature Date � Location Date (+) + Location GLS

IQR Temperature Date � Location Date (+) � Location (F>Sl) GLS

https://doi.org/10.1371/journal.pone.0269526.t001
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temperature (daily interquartile range, IQR), however, was significantly higher in the shallow

than in the deep (Anova, F(3,290) = 666.535, P =<0.001, Fig 3A). Temperature variability

Fig 3. Fragment mortality potential, initial bulk volume of fragments and abiotic conditions associated with the reciprocal transplantation exercise

conducted between the reef flat and reef slope of Heron Island (Southern GBR). (a) In situ 24hr mean temperature (˚C) and (b) in situ daytime mean PAR

(photosynthetically activate radiation, μmol m−2 s−1) between 6:00 h and 18:00 h. Abiotic conditions for the deep site (depth = 7-8m, blue line), and the

shallow site (depth = 1-3m, red line) were recorded from October 2017 –February 2018. Shading on both abiotic condition figures represent 25th percentile

(Q1) on the bottom, and 75th percentile (Q3) on the top, of daily data recorded at each location. The dashed line in figure (a) represents the local MMM + 1

(28.3˚C) which is associated with bleaching threshold. Grey area under curve indicates Q3 degree heating week (DHW) accumulation on the reef flat. (c)

Initial differences in bulk volume (ml) between A. formosa fragments from each location of Origin (p<0.05). (d) The probability of fragment mortality by their

location of Origin4, error bars represent a 95% confidence interval, grey dots show data points, and red dots indicate the mean value in data set.

https://doi.org/10.1371/journal.pone.0269526.g003
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significantly increased at both locations over the experimental period (Anova, F(3,290) = 5.680,

P = 0.017, Fig 3A). The Q3, and mean to a lesser degree, periodically breached the MMM+1

(28.3˚C) threshold, established for the greater region, in the shallow but not in the deep. The

Q3 temperature of the shallow site breached these thresholds for periods that were sustained

for less than 2 weeks 4 times over the end of the experimental period. Q3 temperature for the

shallow site was associated with heat accumulation maximising as>7.5 degree heating weeks

(Fig 3A).

A significant interactive effect was observed between date and location for mean PAR

(Anova, F(3,270) = 5.9214, P = 0.0156). Mean daily (06:00–18:00) PAR over the experimental

period was always higher in the shallows (Mean = 590.52 μmol quanta m-2s-1, SD = 178.79)

than the deep (Mean = 229.67 μmol quanta m-2s-1, SD = 68.00). However, amplitude changes

in mean daily PAR over successive days were often greater in the shallows than in the deep

(Fig 3B). Likewise, variability in PAR, measured as the daily IQR also involved a similar signifi-

cant interaction between date and location (Anova, F(3,270) = 5.807, P = 0.0166, Fig 3B).

Acropora formosa fragments from the reef slope had significantly greater initial bulk volume

than reef flat origin fragments (Anova, F(1,46) = 15.420, P =<0.001, Fig 3C). Initial protein

density and lipid concentrations did not differ among branches from the distinct habitats (t-

test, p<0.300, <0.600, respectively).

Over the length of the experimental period, corals that originated from the reef slope, irre-

spective of their transplant location, were 20% less likely to survive than reef flat origin corals

(Anova, χ2 = 4.604, d.f. = 1, P = 0.032, Fig 3D). This occurred irrespective of the random effect

of live rock (fragment position in space) on mortality. Over the course of the 5-month experi-

mental period 25 coral fragments perished. All were transplanted to the deep. Of these 25 frag-

ments, 8 originated from the reef flat, and the remaining 17 from the reef slope.

Physiological response

Acropora formosa fragments that were transplanted to the shallow transplant site had a greater

percentage increase in relative bulk volume than those transplanted to the deep (Shallow: 79%

vs. Deep: 37%, equivalent absolute volume increases of 3.9 mL vs. 2.1 mL; Anova, χ2 = 33.913,

d.f. = 1, P =<0.001, Fig 4A), irrespective of their location of origin. Location of origin had a

separate significant effect on percentage change in relative bulk volume of fragments, those

originating from the reef slope increased their bulk volume significantly more than those from

the reef flat (Slope: 65% vs. Flat: 56%, or 4.1mL vs. 2.3 mL; Anova, χ2 = 4.026, d.f. = 1,

P = 0.045, Fig 4B).

Analysis of relative rates of change in living surface area (LSA) found that when other

parameters were held constant at mean value: (i) rates of change in LSA correlated positively

with rates of change in coral volume (Anova, χ2 = 171.814, d.f. = 1, P =<0.001); (ii) rates of

change in LSA were significantly greater in corals transplanted to reef flat compared to those

transplanted to reef slope (Shallow: 64% vs. Deep: 53%, equivalent absolute surface area

increases of 19.2 mm2 vs. 7.1 mm2; Anova, χ2 = 5.601, d.f. = 1, P = 0.018, Fig 4C); (iii) rates of

change in LSA were significantly greater in corals of reef-slope origin than in corals of reef-flat

origin (Slope: 67% vs. Flat: 52%, equivalent absolute surface area increases of 18.01 mm2 vs.

10.0 mm2; Anova, χ2 = 14.708, d.f. = 1, P =<0.001, Fig 4D). For the same rate of change in vol-

ume, changes in coral LSA were greater in reef slope origin corals and tended to indicate

increased surface rugosity as opposed to reduced partial tissue mortality.

Relative rates of change in buoyant weight (BW) between Acropora formosa fragments ana-

lysed when other parameters were held constant at mean value found that: (i) rates of change

in BW correlated positively with rates of change in fragment LSA (Anova, χ2 = 24.383, d.f. = 1,

PLOS ONE Colonies of Acropora formosa with greater survival potential have reduced calcification rates

PLOS ONE | https://doi.org/10.1371/journal.pone.0269526 June 9, 2022 11 / 23

https://doi.org/10.1371/journal.pone.0269526


Fig 4. Change in bulk volume (ml/ml) of A. formosa fragments form Heron Island. (Southern GBR) by (a) location

of Transplantation (P<0.05), and (b) location of Origin (P<0.05). Change in living surface area (LSA, cm2/cm2) of A.

formosa fragments by (c) location of Transplantation (P<0.05), and (d) location of Origin (P<0.05) for fixed rate of

change in volume. The percentage change in buoyant weight for (e) percentage change in living surface area and (f)

percentage change in total protein. For both (e) and (f) the black line indicates mean value, and the shaded band the
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P =<0.001, Slope = 0.45 +/- 0.06%BW/%SA; (ii) corals that originated from the reef flat and

were transplanted to the shallow (“Flat/Shallow”; 130%, equivalent absolute BW increases of

3.5g) had significantly higher rates of change than any other group (Anova, χ2 = 4.980, d.f. = 1,

P = 0.026, Fig 4E), all other treatments (“Flat/Deep”, “Slope/Deep”, and “Slope/Shallow”; 95%

vs. 89% vs. 104%, equivalent absolute BW increases of 1.6g vs. 2.4g vs 2.9g) were not signifi-

cantly different from each other.

Analysis of relative rates of change in total proteins found that when other parameters were

held constant at mean value: (i) rates of change in total proteins correlated positively with rates

of change in LSA (Anova, χ2 = 6.342, d.f. = 1, P = 0.012); (ii) rates of change in total proteins

were significantly greater in fragments originating from the reef flat transplanted to the shal-

low, than transplanted to the deep (“Flat/Shallow” 102% vs “Flat/Deep” 64% equivalent abso-

lute protein increases of 50.8mg vs 9.4mg; Anova, χ2 = 5.046, d.f. = 1, P = 0.025, Fig 4F), but

not different between reef slope origin corals transplanted to the shallow or deep (“Slope/Shal-

low” 74% vs “Slope/Deep” 72% equivalent absolute protein increases of 44.7mg vs 28.8mg).

Relative rates of change in total lipids of A. formosa fragments when analysed with other

parameters held constant at mean value were significantly correlated with LSA (Anova χ2 =

11.948, d.f. = 1, P =<0.001). But showed no significant effect of fragment origin or transplant

location.

Discussion

We hypothesized that long-term exposure to the highly variable reef-flat environment would

both increase survival potential and engender a conservative growth response, where greater

biomass is accumulated at the cost of conserving primary calcification rates. A conservative

response that would be maintained upon transplantation to the new reef slope environment.

The results of our study supported our hypotheses, and thereby, suggest that any potential epi-

genetic memory implanted by exposure to long-term prior stress is unlikely to be a panacea

that will save carbonate coral reefs in the short-term. It is highly likely that reef-flat coral are

better survivors irrespective of habitat because they have reduced rates of primary extension.

In the present study, reef-flat native coral properties were maintained over 5 months but

removal to the less stressful reef-slope environment did not coincide with an increase in rates

of calcification. These findings are consistent with previous studies using Porites cylindrica at

the same locations which maintained native properties over 21 months [36]. Other studies

have demonstrated that epigenetic memories can remain in some organisms for generations

[12] however, there is currently limited evidence for this in corals [92]. Consequently, the

reductions in the rate of calcification have the potential to reduce carbonate coral reef resil-

ience, the ability of carbonate reefs to bounce back from damage incurred from any distur-

bance events that engenders a loss of 3-dimentional framework or carbonate from the reef

ecosystem [93]. The resilience of shallow tropical reefs may slide towards that of deep-cold

water reefs that are able to establish as carbonate reefs, over tens of thousands of years, only

because disturbance events are rare (presently, mostly man-made and occur in the form of

drag-nets), and reef erosion rates scale with reef calcification rates [5,94,95]. In addition, evi-

dence supports that ocean acidification will reduce rates of calcification by reducing bulk

confidence interval. (g) Change in buoyant weight (g/g) for fixed changes in living surface area between location of

Transplantation (shallow and deep), and location of Origin (flat and slope). (h) Change in total proteins (mg/mg) for

fixed changes in living surface area between location of Transplantation (shallow and deep), and location of Origin

(flat and slope). Error margins in all graphs represent a 95% confidence interval. All variables are reported as

percentage relative change from initial over the experimental period, as indicated by “% Δ” in all axis titles.

https://doi.org/10.1371/journal.pone.0269526.g004
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density resulting in negative consequences for coral reefs and their ability to keep up with sea

level rise [22].

The environmental contrast between the reef slope and reef flat is exhibited by the differ-

ence between the mean and variability of the recorded PAR and temperature. The high vari-

ability in temperature on the reef flat observed in this study is comparable to temperature

fluctuations observed in studies identifying specific coral populations with superior thermal

tolerance [30,96]. The pre-conditioning response is based on the assumption that corals from

variable habitats are exposed to high temperatures at the top of their daily variable range each

day. It is this exposure that is hypothesized to build bleaching and mortality tolerance to future

warming. However, this appears to be a species-specific mechanisms, and in some cases has

been observed to produce corals that are more vulnerable to heat stress [97]. To quantify this

effect, we monitored the heat stress associated with the upper quartile (Q3) of daily tempera-

tures. We found that Q3-DHWs accumulated to 8˚C weeks over the height of summer, but

only on the reef flat, not on the reef slope. Despite this apparent difference in heat stress, there

was no apparent (visible) bleaching irrespective of coral origins (Fig 2A and 2B), only signifi-

cant mortality differences by coral origin, but not experimental location. Significantly, the

Q3-DHW accumulating over the 5 months of our experiment are notably greater than esti-

mates of a Q3-DHW <3 for the 5 experimental days in Oliver and Palumbi (30) that led to

greater bleaching and mortality in conspecific from less variable environments. The key differ-

ence being that our experiment allows gradual acclimation to warming rather than abrupt

introduction to thermal stress. Current events in the field tend to accumulate heat gradually

over prolonged periods [7].

Whilst mean temperature between the reef flat and reef slope did not differ significantly,

mean PAR did. Based on these data, we conclude that the primary difference between the deeper

slope and shallower flat zones is light. However, there could be additional confounding factors

such as differences in the concentration of available dissolved or particulate organic matter that

were not measured but have been described in other studies [98–100]. The higher light environ-

ment of the reef flat appeared to promote primary calcification, whilst experimental positioning

on the deeper slope reduced all aspects of coral growth from primary and secondary calcification

to protein accumulation. Nonetheless, reef slope origin corals experienced significantly greater

primary calcification than reef flat origin corals at both experimental locations. Greater light

and/or greater availability of organic nutriment may increase the energy available for growth

processes to reef flat located corals relative to reef slope located corals over the long-term.

Over the experimental period of 5 months, reef flat origin corals showed a reduced ability

relative to corals originating from the reef slope to acclimate to their new environment. Reef

flat origin corals appeared unable to increase their energy acquisition to maintain the addi-

tional energy required to increase skeletal and protein densities on the slope, despite their gen-

eral tendency to exhibit slower volume and tissue expansion rates [58,86]. This could be, either

a result of symbionts that do not acclimate to the new light environment, and/or because

organic nutrients are less available at the interface between the ocean and the reef, than within

a ponding reef-flat where excreted dissolved organic carbon can be enriched by microbial

activity [100,101]. By contrast, reef slope origin corals that expand relatively rapidly irrespec-

tive of location, were not apparently photo-inhibited or photo-oxidised [102] by the move to

the higher light regime, but actually benefited from an apparent increase in available energy

observed as a slight increase in rates of secondary calcification. This is contrary to expectations.

The literature tends to argue that zooxanthellate corals can be photo-inhibited, potentially

resultant from photooxidation, by increases in light, especially if light increases come in com-

bination with increases in thermal stress [102,103]. By contrast, many corals can acclimate

over days to weeks to reduction in light [87,104].
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A potential reason the corals benefitted from the higher light environment in our study is

that the high light habitat is potentially relatively richer in dissolved and particulate organic

food [99,100]. Corals with thicker tissues and reduced rugosities, have been linked to a reduced

ability of dinoflagellate endosymbionts to respond to external light fluxes due to the probability

that the skeleton plays a lesser role in increasing the path-length of these photons [105]. Here,

host pigment and other tissue structures compete with symbionts to absorb photons [106,107].

This could be the optimal response of a coral subjected to highly variable light dosing through

time, that otherwise may consume significant energy as they rebuild light harvesting structures

and repair D1-protein when light fluxes exceed the capacity of short-term responses such as

xanthophyll cycling [108,109]. Such hosts may depend more on heterotrophy. The data from

our study does not suggest that primary calcification on the reef flat is limited by the available

‘accommodation space’ of water above colonies [41,110,111]. This experiment was performed

on small fragments that were not limited by water depth at either location. Furthermore, reef-

slope corals translocated to the reef-flat did not show any limitations in their ability to increase

extension rates. Increasing water depth, is likely to reduce light levels unless corals have the

capacity to keep up, and/or acclimate their energy acquisition in response to the reduction in

light [112]. Reef-flat origin corals in this study did not demonstrate this potential.

We have demonstrated here that conspecific of A. formosa that showed greater potential to

survive a diversity of environments appear to exhibit a reduced ability to acclimate to changes

in light availability. Attempting to further protect such corals from bleaching by periodically

reducing light fields [43], would therefore impart further restrictions on energy acquisition

and calcification. By contrast, the translocation of reef slope communities to the reef flat, did

not generate any evidence of bleaching, despite the significant increase in the light field and

regular incursions into stressful temperatures. Given that the mortality rate of these corals did

not vary by transplant location, the evidence suggests that Acroporids originating from the

reef slope acclimate to the changing light regime relatively quickly [21 days; 87,109]. Rapid

photo-acclimation however has significant ramifications on the efficacy and practicality of

applying shade to protect such corals should they be exposed to greater heat stress. Shade is

intended to reduce excitation pressure at Photosystem II (PSII) and prevent the photo-oxida-

tion to the Symbiodiniaceae photosystems, but if these photosystems rapidly increase the effi-

ciency of photon capture in response to reductions in the light field, then shade will not serve

to reduce excitation pressure. Shading will however consume additional energy as symbionts

would need to invest in rebuilding their light harvesting antennae [113,114], potentially reduc-

ing quanta of energy translocation to host.

On a more positive note, reef flat origin coral transferred back to the reef flat had higher

skeletal density relative to other treatments, whilst also maximising protein density. Conse-

quently, primary calcification was reduced. Increases in skeletal density can reduce fragmenta-

tion and over the long-term [115,116], even colonies with limited primary calcification can

accumulate to cover a large area in space as long as physical forces do not exceed the strength

of the produced skeleton [117]. Notably lower expansion rates would be beneficial to the main-

tenance of symbiont densities, as the need for production of new symbionts to occupy the new

material would be reduced. Rapid outward expansion is reportedly associated with “bleached”

coral tissue [118]. Clearly, some of these hypotheses regarding the explanation of the observed

responses require testing. If epigenetic memory is responsible for increasing the survival of

reef flat corals exposed to highly variable environments, then environments that tandem vari-

ability in light and temperature, in addition to many other abiotic variables, result in corals

that sacrificed calcification [119,120]. Survival appears not to be based on the reduced ability

to bleach, but rather correlates with reductions in volume and tissue expansion in the Acro-

porid coral tested. Other corals [121], may maintain rates of linear extension, but it is
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questionable whether other aspects of calcification are not compromised. For example, reef

flat and reef slope conspecifics of A. formosa from this study, clipped to the same length, have

different volumes and skeletal densities that forced the use of relative changes to preserve the

statistical assumption that covariates are independent of treatment effect.

Presently, we assume that the differences observed between these relatively proximal A. for-
mosa populations are driven by epigenetic consequences associated with prior long-term expo-

sure to different abiotic environments within the reef-scape. There is, however, the potential

that the relative inflexibility of the two coral populations to alter properties when exposed to

new environments has a genetic cause in the form of local adaptation. The two populations

may hide cryptic speciation, a phenomenon that is increasingly observed amongst coral taxa

[33,121,122]. For cryptic speciation to occur amongst spawning populations that are relatively

proximal in space, gene flow may be limited [123]. In this regard, temperature can change the

timing of spawning [124], and asynchronous spawning can inhibit gene flow [122]. Alterna-

tively, cryptic species could exhibit different larval and settlement properties that reinforce dif-

ferential recruitment in these zones [125]. In a brooding species, Seriatopora hystrix genetic

isolation has been observed to result from differences in reproductive timing between popula-

tions in deep and shallow habitats [126,127]. More recently the same has been determined for

Pocillopora damicornis [33]. Interestingly, this genetic differentiation in P. damicornis was

observed on Heron Reef over similar geographic distances as in the current study. However, P.

damicornis is a brooding species while the target species in the current study, A. formosa, is a

broadcasting species.

Corals that have a prior life history of chronic exposure to highly variable environments

tend to be less susceptible to mortality. In this study, we observed that corals fragments

raised on the reef flat have a greater survival potential in any environment than conspecifics

raised on the reef slope. Daily third quartile temperature (3Q-DHW) accumulated to an

8˚C week over the summer on the reef flat. In combination with an increased irradiance for

reef slope origin corals moved to the reef flat, the new environment however did not

increase bleaching susceptibility of these reef slope origin corals. Rather, they demonstrated

that coral expansion in these slope origin corals was suppressed by the lower light condi-

tions under which they appear to nonetheless thrive on the reef slope. The greater survival

potential of reef flat origin corals was correlated to their having greater tissue thickness (as

measured by protein density) likely facilitated by reduced rates of primary and secondary

calcification. Furthermore, these reef flat origin corals failed to acclimate to the lower light

levels offered on the reef slope as suggested by a lack of energy to maintain high tissue pro-

tein densities despite reduced branch expansion. The fact that reef flat origin corals do not

physiologically morph into reef slope origin corals upon relocation to the reef slope and

vice-versa suggests that these corals have become epigenetically or genetically distinct pop-

ulations. This study supports the hypothesis that exposure to a highly variable environment

results in “tough” corals, but it identifies that one of the costs of increased survival potential

is reduced calcification. These corals therefore lack the properties that are required to

maintain healthy and functioning carbonate reefs exposed to increases in the intensity and

frequency of disturbance events as a result of climate change. Further, they lack the ability

to respond positively to the reductions in light field likely associated with future sea-level

rise. Branching Acroporids are important to the 3-dimensional structure and many services

provided by carbonate reefs [73]. The present study suggests that the characteristic that

allow corals to survive and prosper in highly variable reef environments, do not align with

those that are required to maintain carbonate coral reefs exposed to the many consequences

of climate change.
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