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Cross-tissue Analysis of Gene and 
Protein Expression in Normal and 
Cancer Tissues
Idit Kosti, Nishant Jain, Dvir Aran, Atul J. Butte & Marina Sirota

The central dogma of molecular biology describes the translation of genetic information from mRNA 
to protein, but does not specify the quantitation or timing of this process across the genome. We have 
analyzed protein and gene expression in a diverse set of human tissues. To study concordance and 
discordance of gene and protein expression, we integrated mass spectrometry data from the Human 
Proteome Map project and RNA-Seq measurements from the Genotype-Tissue Expression project. We 
analyzed 16,561 genes and the corresponding proteins in 14 tissue types across nearly 200 samples. 
A comprehensive tissue- and gene-specific analysis revealed that across the 14 tissues, correlation 
between mRNA and protein expression was positive and ranged from 0.36 to 0.5. We also identified 
1,012 genes whose RNA and protein expression was correlated across all the tissues and examined 
genes and proteins that were concordantly and discordantly expressed for each tissue of interest. 
We extended our analysis to look for genes and proteins that were differentially correlated in cancer 
compared to normal tissues, showing higher levels of correlation in normal tissues. Finally, we explored 
the implications of these findings in the context of biomarker and drug target discovery.

In recent years, techniques used to conduct tissue-wide analysis of gene expression, such as microarrays and 
RNA sequencing technologies (RNA-Seq), have become widely used1,2. An example of an effort in this area is the 
Genotype-Tissue Expression (GTEx) project, which contains RNA-Seq measurements from 43 different tissues 
in hundreds of samples3. As central functional units in many complex biological pathways, proteins are also a 
subject of much interest in various areas of translational medicine, including diagnostic biomarker discovery, 
drug discovery and personalized medicine. Measuring global protein levels directly in human tissue samples, 
however, has traditionally presented many challenges, as well as major difficulties including reproducibility4. 
Recent advances in protein analysis technology provide methods for exploring the relationship between mRNA 
expression and protein abundance. For example, mass spectrometry (MS)5 has been used to map the proteomes 
of yeasts, worms, and flies6. MS-based comparative analysis of several human cell lines has also been conducted7. 
Other technologies, such as immunohistochemistry, produce images that aid in measuring levels of protein 
expression8. However, these methods do not scale to capture genome-wide protein measurements. Thus, despite 
advances in high-throughput methods for proteomics, the relationship between gene expression and protein 
abundance is still unclear.

Comparative studies have found that correlations between mRNA and protein levels in model organisms can 
be relatively weak and uncertain or moderately positive9, and that they vary between experiments and organisms. 
For example, Gygi et al. observed a moderately positive Pearson correlation of R =  0.48 when studying a subset of 
proteins in S. cerevisiae. Correlations vary greatly among genes, depending on regulatory processes that govern 
the rates of translation and protein degradation10. Schwanhausser et al. obtained similar results in mouse fibro-
blasts, where expression of a subset of 5000 genes was moderately correlated with protein levels (R =  0.44)11. In 
humans, Gry et al. described a similar lower relationship in 23 cell lines, where R values ranged from 0.25 to 0.52, 
depending on the methodology that was applied12. Studies of gene and protein expression correlation in cancer 
tissues are less common, and findings are often contradictory. For example, in bone osteosarcoma, squamous 
cell carcinoma and brain glioblastoma, concordance has been shown to be high (R values ranging from 0.58 and 
0.63)7, while in lung adenocarcinomas, R values ranged from − 0.467 to 0.44213. In the aforementioned projects, 
sample sizes were small and analysis focused on a subset of genes.
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To date, a comprehensive study of the correlation between gene expression and protein abundance in the 
human body has yet to be performed. With the release of two independent MS-based draft maps of the human 
proteome in May 2014, researchers now have unprecedented access to a database of system-wide tissue-specific 
protein levels14,15. One of these efforts, the Human Proteome Map Project (HPM), cataloged proteins correspond-
ing to 84% of the known protein-encoding genes in the human genome across 30 different human tissues14. 
Combined with the existing transcriptomic data libraries from GTEx, these seminal advances have created an 
opportunity to explore the central dogma of biology and document correlations between gene expression and 
protein levels.

Here, we present a large-scale analysis of protein abundance and gene expression across a diverse set of human 
tissues. We examined ~80% of human genes for tissue- and gene-specific correlations. Furthermore, we extend 
our initial analysis to determine which genes and tissues are correlated in their protein abundance and gene 
expression in cancer tissues to inform the identification of new drug targets and biomarkers.

Results
We analyzed the GTEx and HPM datasets and found that 16,561 genes and their corresponding proteins 
were represented in both repositories across 14 tissues. More than 39,000 transcripts, consisting mainly of 
non-coding RNAs, were present only in the GTEx dataset, while 688 proteins were present only in the HPM data 
(Supplementary Fig. S1). These data were excluded from our analysis. The number of genes expressed in each 
tissue in this combined dataset varied from 9,937 (heart) to 13,054 (testis). The number of proteins present per 
tissue varied from 5,022 (esophagus) to 11,030 (testis; Supplementary Table S1).

Correlating Gene and Protein Expression Across Tissues.  For each tissue, GTEx transcriptomic sam-
ples were paired with a corresponding proteomic measurement from the HPM dataset. A Spearman correlation 
was calculated for each pair. Fig. 1A illustrates this analysis (comparison 1), while Fig. 2 shows the distributions 
of correlations per tissue. Correlations ranged from 0.36 to 0.50, with a median of 0.45. Esophageal tissue had the 

Figure 1.  Analysis overview. (A) Analysis of normal tissues based on GTEx and HPM expression data. (1) 
Tissue-specific correlations (2) Gene-specific correlations (3) Concordance/discordance analysis (4) Functional 
analysis including drug targets and biomarkers. (B) Cancer and normal tissues analysis based on TCGA data. 
(1) Tissue-specific correlation (2) Differential ranking analysis (3) Therapeutic drug target analysis.



www.nature.com/scientificreports/

3Scientific Reports | 6:24799 | DOI: 10.1038/srep24799

lowest score distribution and pancreatic tissue had the highest (supplementary Fig. S2). These results agree with 
previous attempts to correlate mRNA expression with protein abundance10–12.

We compared tissue similarity by performing principal component analysis (PCA) and by comparing the 
topology of hierarchical clusters based on either GTEx or HPM data (Fig. 3). In both PCA plots, there were 
similarities between different tissue types, with prostate, colon, and urinary bladder samples clustering together 
in both gene and protein expression analysis. Testis, frontal cortex, and spinal cord samples were outliers. PCA 
revealed a high similarity between GTEx samples from the same tissues (also shown previously16), which led us 
to use medians for all relevant samples per tissue in the next step of the analysis.

We found a matching clustering pattern through hierarchical clustering approaches (Supplementary Fig. S4A,B)  
based on gene and protein expression. The gene expression dendrogram in Fig. S4A shows three main clusters 
with p-values  < 0.05 (marked in red). They include the following-cluster one: ovary, colon, urinary bladder, pros-
tate; cluster two: lung, kidney; cluster three: spinal cord, testis. The HPM dendrogram in Supplementary Fig. S4B 

Figure 2.  Tissue-specific correlations of protein-gene expression. Tissues are ranked by their average 
Spearman correlation value.

Figure 3.  Tissue-specific correlations of protein-gene expression. (A) PCA based on gene expression.  
(B) PCA based on protein expression.
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shows four main groups with significant correlations for all tree branches (p-value <  0.05, significant clusters 
marked in red): cluster one: heart, esophagus; cluster two: frontal cortex, spinal cord; cluster three: prostate, 
colon, urinary bladder; and cluster four: liver, adrenal gland, kidney, ovary, testis, lung, pancreas. To measure 
similarity between the two trees, we used cophenetic correlation based on Spearman correlations. The analysis 
returned a weak value (c =  0.25), illustrating the different gene and protein expression landscapes. The only sig-
nificant similarity between the dendrograms was the clustering of the prostate gland, colon and urinary bladder 
tissues.

We used sample similarities to examine the relationships of gene and protein expression between different 
tissues. We first correlated all tissues based on gene expression (Fig. 4A) and protein expression (Fig. 4B) using 
the Spearman correlation metric (see Supplementary Fig. S2 for data distributions). The tissues with the highest 
correlation based on gene expression were observed on the diagonal of the matrix, which was expected. For many 
tissues in the GTEx dataset, gene expression correlation values were very similar among tissues forming a large 
cluster (rho values: 0.81–1). Expression in the frontal cortex was very similar to that of the spinal cord (rho values: 
0.85–1; Fig. 4A). Gene expression correlation in testicular samples was low with all tissues except itself.

Highly correlated protein expression among tissues was once again on the diagonal of the matrix. We saw high 
concordance in the following tissues: colon, urinary bladder, and prostate (rho values: 0.83–1), spinal cord and 
frontal cortex (rho values: 0.765–1), and ovary and testis (rho values: 0.87–1; Fig. 4B).

Finally, we correlated the tissues based on their protein abundance and gene expression across all tissues ana-
lyzed (Fig. 4C). Overall correlations were lower than gene-gene correlations (highest values), and protein-protein 
comparisons. In many tissues, we found that a gene-protein pairing in a single tissue had one of the highest corre-
lation values; however, we found many other tissue pairings in which one tissue’s gene expression profile was cor-
related more strongly with protein expression from another tissue, suggesting similarities between tissues (Fig. 4C 
for median correlation values and Supplementary Fig. S3 for sample pairwise correlation values). An example is 
the frontal cortex and spinal cord. Both are part of the central nervous system, and both share similar gene and 
protein expression profiles. In other cases, such as testis, connections between gene and protein expression were 
asymmetric. A gene-protein correlation heatmap (Fig. 4C) shows that while GTEx testis gene expression had 
similarities to many tissues in HPM, the HPM protein expression of the testis only seemed to correlate with the 
GTEx testis and ovary samples.

Identifying significantly correlated genes and proteins across all tissues.  In order to identify 
genes that were highly correlated with protein expression across all tissues, we computed Spearman correlations 
for each gene, correlating mRNA and protein expression across all 14 tissues. Figure 1A has an illustration of 
the analysis (comparison 2). Overall, statistically significant correlation between mRNA expression and protein 
abundance was observed in only 1,012 genes out of 16,561 (6.1%). Rho values ranged from 0.77 to 1 (p-value 
< 0.05; Supplementary Fig. S2). Of these genes, 262 (~25%) were expressed in only one tissue. They were pre-
dominantly in the testis (~47%) and the frontal cortex (~21%), both of which are known for unique expression 
patterns17,18. The remaining 750 genes showed a significant correlation between mRNA expression and protein 
abundance across at least two tissues (Supplementary Table S2). Furthermore, there was correlation across all 
tissues in 169 out of 1,012 genes (17%).

In this group of genes and proteins with highly correlated expression, we found representatives of different 
cellular classes, such as the splicing factor SRSF6, the demethylase KDM5A, the ribosome-binding protein of the 
endoplasmic reticulum RRBP1, and the immune system regulator HLA-A. The genes in these examples share 
basic essential cellular functions. GO annotation analysis revealed a high enrichment of genes involved in oxi-
dation reduction (Benjamini adjusted p-value: 9.3E-09), and various transport activities, including ion transport 
(Benjamini adjusted p-value: 2.6E-05) and transmembrane transporter activity (Benjamini adjusted p-value: 
1.3E-04), both performing basic functions of the cell.

This highly correlated group of genes and proteins is of special interest because it contains genes and proteins 
that are known biomarkers and drug targets. We carried out functional analysis of highly correlated genes and the 
full gene set by using Ingenuity Pathway Analysis (IPA). We identified 101 genes known to be biomarkers in our 
1,012 highly correlated genes set (Table 1), comprising 10% of the highly correlated genes. When the same analy-
sis was performed on the full gene set, only 6.1% of genes were identified as biomarkers. This comparison shows 
enrichment for biomarker genes in the highly correlated gene set (p-value: 8.1E-06, chi-square test). One example 
is CKB, Creatine Kinase chain B (rho: 0.84, p-value: 2.8E-04). CKB is a biomarker used in drug safety experiments 
and a suggested biomarker for cardiovascular diseases19 and squamous cell lung cancer20. It is quantified in serum 
for accurate measurement by different proteomic methods.

We also studied known drug targets in the full and highly correlated gene sets. The highly correlated set 
was enriched for drug targets (142 genes out of 1,012, p-value: 0.02, chi-square test) compared to the full set 
(1,551 genes out of 16,551). The 142 highly correlated genes are targets for 449 different drugs according to the 
DrugBank21 (Table 2). Drug targets include genes such as Protein Kinase C, Alpha (PRKCA, rho: 0.77, p-value: 
0.04) which is targeted by tamoxifen, and Gamma-Aminobutyric Acid A Receptor, Alpha 3 (GABRA3, rho; 1, 
p-value: <  2.2E-16) which is targeted by diazepam.

Tissue-specific concordance-discordance analysis.  In the full dataset, we identified a set of 983 genes, 
which were not expressed in any of the tissues, but for which protein expression was observed. These genes 
were highly enriched in sensory perception annotations (see Supplementary Table S3 for full annotations list 
with p-values). We also identified 1,200 proteins which were not expressed in our dataset, but corresponding 
mRNA expression was observed. These genes were also highly enriched in the regulation of transcription (see 
Supplementary Table S4 for full annotations list with p-values).
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We further characterized several groups of interest with respect to gene and protein expression by tissue. 
We analyzed four “corner case” groups: high gene expression-high protein expression, high gene expression-low 
protein expression, low gene expression-high protein expression, and low gene expression-low protein expres-
sion (see Materials and Methods and Supplementary Figs S2 and S5). We examined genes whose over- or 

Figure 4.  (A) Tissue-specific correlations of gene expression (GTEx). (B) Tissue-specific correlations of protein 
expression (HPM). (C) Tissue-specific correlations of protein-gene expression.
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Gene symbol Correlation P-value corrected
# tissues used 

for correlation

CRH 1 < 2.2E-16 1

GCG 1 < 2.2E-16 2

GRM1 1 < 2.2E-16 1

IAPP 1 < 2.2E-16 1

IDO1 1 < 2.2E-16 1

INS 1 < 2.2E-16 1

LINGO2 1 < 2.2E-16 1

NKX2-5 1 < 2.2E-16 1

OPCML 1 < 2.2E-16 2

SLC22A1 1 < 2.2E-16 1

SLC28A1 1 < 2.2E-16 2

S100B 0.95 1.20E-05 9

ALDH1A1 0.94 < 2.2E-16 14

HGD 0.94 2.30E-05 6

KCNMA1 0.94 4.40E-05 8

RBP1 0.92 < 2.2E-16 13

ARSE 0.92 1.40E-04 4

AGR2 0.91 3.90E-04 8

KRT18 0.89 < 2.2E-16 14

TPM2 0.89 < 2.2E-16 14

MUC1 0.89 9.40E-04 7

PDE5A 0.88 1.50E-03 8

FLNC 0.88 1.70E-03 14

DAO 0.87 2.80E-03 4

CDH1 0.87 3.00E-03 12

CLDN3 0.87 3.10E-03 8

CD36 0.87 3.30E-03 12

LCN2 0.86 3.30E-03 13

CDH2 0.86 3.80E-03 14

CLDN1 0.86 3.80E-03 9

ABCC3 0.86 4.00E-03 12

HPGD 0.86 4.30E-03 7

SST 0.85 4.80E-03 3

GGT1 0.85 4.90E-03 11

FGF1 0.85 5.00E-03 7

ITGA3 0.85 5.80E-03 13

RTN4 0.85 5.80E-03 14

CLDN4 0.84 7.20E-03 7

ACTA2 0.84 8.60E-03 14

CKB 0.84 1.00E-02 14

CDH13 0.83 9.20E-03 14

CRYAB 0.83 1.40E-02 14

PDCD4 0.83 1.40E-02 14

SERPINB5 0.82 1.30E-02 6

GNA12 0.82 1.50E-02 14

S100A4 0.82 1.50E-02 14

ABCB1 0.81 1.50E-02 10

NCAM1 0.81 1.60E-02 13

PEMT 0.81 1.60E-02 6

GSTM3 0.81 2.10E-02 14

LAMA5 0.81 2.10E-02 14

FOLR1 0.8 1.80E-02 4

ALOX5 0.8 2.00E-02 11

CAT 0.8 2.50E-02 14

ANPEP 0.79 2.10E-02 13

Continued
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under-expression was in the top 10% in a given tissue, and found that, on average, 240 genes fell into the high 
gene expression-high protein expression group, 20 fell into the low gene expression-high protein expres-
sion group, 25 fell into the high gene expression-low protein expression group and 138 fell into the low gene 
expression-low protein expression group (Supplementary Figs S2 and S5). The functions of genes in these groups 
are well-characterized11. For example, genes whose expression was low tend to have longer 3′  UTRs with AU rich 
elements and specific TF binding sites.

We studied known drug targets in the context of these four gene sets (Supplementary Fig. S6, Supplementary 
Tables S5–S8). Most targets had high and concordant gene-protein expression (70–91% across tissues), show-
ing that expression of target genes as measured with microarrays corresponded well to protein levels in the 
treated tissue. This finding was also true for genes with low and concordant gene-protein expression, the second 
biggest group (8–19% across tissues). Targets with high gene expression-low protein expression and low gene 

Gene symbol Correlation P-value corrected
# tissues used 

for correlation

DAPK1 0.79 2.10E-02 4

TPD52 0.79 2.20E-02 14

MMP7 0.79 2.40E-02 8

CHGA 0.79 2.50E-02 10

TAGLN 0.79 3.20E-02 14

KRT19 0.78 2.50E-02 14

BAK1 0.78 2.70E-02 10

SPP1 0.78 2.90E-02 4

LGALS3 0.78 3.50E-02 14

SOD2 0.78 3.50E-02 14

TFRC 0.78 3.70E-02 14

CEACAM6 0.77 3.00E-02 6

FOLH1 0.77 3.30E-02 7

HLA-A 0.77 4.20E-02 14

NOS2 0.76 3.60E-02 3

P2RX7 0.76 3.80E-02 6

KIF1A 0.76 3.90E-02 12

DHCR7 0.76 4.20E-02 14

MYLK 0.76 4.20E-02 14

FABP5 0.75 4.20E-02 14

KRT17 0.75 4.20E-02 14

SULT1A1 0.75 4.20E-02 14

APOE 0.75 4.40E-02 14

GPX2 0.74 4.20E-02 13

ITGB4 0.74 4.20E-02 12

WFS1 0.74 4.20E-02 12

EPHX1 0.74 4.90E-02 14

CACNG2 0.73 4.20E-02 2

CASR 0.73 4.20E-02 1

CDX1 0.73 4.20E-02 1

CDX2 0.73 4.20E-02 1

CYP1A1 0.73 4.20E-02 2

CYP24A1 0.73 4.20E-02 1

CYP3A4 0.73 4.20E-02 1

GPR158 0.73 4.20E-02 1

KLK13 0.73 4.20E-02 1

KLK2 0.73 4.20E-02 1

KLK8 0.73 4.20E-02 2

MAGEB10 0.73 4.20E-02 2

ANXA3 0.73 4.40E-02 14

FXYD3 0.73 4.50E-02 6

LGALS4 0.72 4.70E-02 7

SPARCL1 0.72 5.00E-02 12

CSF1 −0.73 4.60E-02 8

Table 1.   Highly correlated biomarkers, with correlation score and corrected p-value, and number of 
tissues used for correlation calculation.



www.nature.com/scientificreports/

8Scientific Reports | 6:24799 | DOI: 10.1038/srep24799

Gene symbol Drug(s)

ABAT L-Glutamic Acid,Phenelzine,Pyridoxal Phosphate,Pyruvic acid,Valproic Acid,Vigabatrin,Adenosine triphosphate

ABCB1 FM-VP4,Roxithromycin,NADH

ACADS NADH

ACAT1 Sulfasalazine

ACSBG1 2-(6-HYDROXY-1,3-BENZOTHIAZOL-2-YL)-1,3-THIAZOL-4(5H)-ONE

ACY3 L-Aspartic Acid

ADCY5 2′ ,5′ -DIDEOXY-ADENOSINE 3′ -MONOPHOSPHATE

ADH1B Fomepizole,NADH,Glycine

AGXT2 L-Alanine,Pyridoxal Phosphate,Pyruvic acid,3,4-DIHYDRO-4-OXO-3-((5-TRIFLUOROMETHYL-2-BENZOTHIAZOLYL)METHYL)-
1-PHTHALAZINE ACETIC ACID

AKR1B10 3,4-DIHYDRO-4-OXO-3-((5-TRIFLUOROMETHYL-2-BENZOTHIAZOLYL)METHYL)-1-PHTHALAZINE ACETIC ACID

ALDH1A1 Tretinoin,Vitamin A,NADH

ALDH1B1 NADH

ALDH6A1 NADH

ALOX5 Balsalazide,Diclofenac,Diethylcarbamazine,Masoprocol,Meclofenamic acid,Mesalazine,Minocycline,MLN-977,Montelukast,Sulfasalaz-
ine,Vitamin E,Zileuton,Ezetimibe

ANPEP Icatibant,Hydralazine

AOC3 Phenelzine,Human Serum Albumin

APOE Serum albumin iodonated,Phosphatidylserine

ATP8A1 Phosphatidylserine

BAAT Glycine

BHMT L-Methionine

CA12 Ellagic Acid,Hydrochlorothiazide,Hydroflumethiazide,Zonisamide,Acetazolamide

CA4
Bendroflumethiazide,Benzthiazide,Brinzolamide,Chlorothiazide,Cyclothiazide,Diclofenamide,Dorzolamide,Ellagic Acid,Ethoxzola-
mide,Hydrochlorothiazide,Hydroflumethiazide,Methazolamide,Methyclothiazide,Topiramate,Trichlormethiazide,Zonisamide,Brinzola-
mide

CA5A Ellagic Acid,Zonisamide,Acetazolamide

CA7 Diclofenamide,Ellagic Acid,Ethoxzolamide,Methazolamide,Zonisamide,Cyclosporine

CAMLG Cyclosporine

CASR Cinacalcet

CAT Fomepizole

CEACAM5 2,2,5,5-TETRAMETHYL-3-(SULFANYLMETHYL)-2,5-DIHYDRO-1H-PYRROL-1-OL

CELA2A 2-(2-HYDROXY-CYCLOPENTYL)-PENT-4-ENAL

CES1 (1S,7S,8S,8AR)-1,2,3,7,8,8A-HEXAHYDRO-7-METHYL-8-[2-[(2R,4R)-TETRAHYDRO-4-HY DROXY-6-OXO-2H-PYRAN-2-YL]
ETHYL]-1-NAPHTHALENOL,L-Carnitine,Oseltamivir,Creatine

CKB Creatine

CRH Corticotropin

CRYZ Dicoumarol

CTH Pyridoxal Phosphate,Aminoglutethimide

CYP11A1 Aminoglutethimide

CYP1A2 lidocaine patch,Paliperidone

CYP3A4 pradefovir mesylate,NADH

CYP4A11 NADH

DAO (2E)-3-(3,4-DIHYDROXYPHENYL)-2-IMINOPROPANOIC ACID

DAPK1 6-(3-AMINOPROPYL)-4,9-DIMETHYLPYRROLO[3,4-C]CARBAZOLE-1,3(2H,6H)-DIONE

DHCR7 NADH

DRD4
Apomorphine,Aripiprazole,Asenapine,Bromocriptine,Cabergoline,Chlorpromazine,Clozapine,Dopamine,L-DOPA,Lisuride,Loxap-
ine,Methotrimeprazine,Olanzapine,Paliperidone,Pergolide,Pramipexole,Promazine,Propiomazine,Quetiapine,Remoxipride,Risperi-
done,Ropinirole,Rotigotine,SLV 308,Thiethylperazine,Ziprasidone,Amifostine

ENPP1 Ribavirin,ING-1

EPCAM oportuzumab monatox,5-[(2-methyl-5-{[3-(trifluoromethyl)phenyl]carbamoyl}phenyl)amino]pyridine-3-carboxamide

EPHA7 5-[(2-methyl-5-{[3-(trifluoromethyl)phenyl]carbamoyl}phenyl)amino]pyridine-3-carboxamide

FAAH 4-(3-{[5-(trifluoromethyl)pyridin-2-yl]oxy}benzyl)piperidine-1-carboxylic acid,4-(quinolin-3-ylmethyl)piperidine-1-carboxylic 
acid,Thiopental,2,5-DICHLORO-N-(5-CHLORO-1,3-BENZOXAZOL-2-YL)BENZENESULFONAMIDE

FBP1
2,5-DICHLORO-N-[5-METHOXY-7-(6-METHOXYPYRIDIN-3-YL)-1,3-BENZOXAZOL-2-YL]BENZENESULFONAMIDE,4-AMI-
NO-N-[(2-SULFANYLETHYL)CARBAMOYL]BENZENESULFONAMIDE,Adenosine monophosphate,N-[7-(3-AMINOPHE-
NYL)-5-METHOXY-1,3-BENZOXAZOL-2-YL]-2,5-DICHLOROBENZENESULFONAMIDE,5-AMINO-NAPHTALENE-2-MO-
NOSULFONATE

FGF1 Amlexanox,Pazopanib,Pentosan Polysulfate,(2S)-2-{[HYDROXY(4-IODOBENZYL)PHOSPHORYL]METHYL}PENTANEDIOIC ACID

FOLH1 Capromab,L-Glutamic Acid,N-({(1R)-1-carboxy-2-[(4-fluorobenzyl)sulfanyl]ethyl}carbamoyl)-L-glutamic acid,Cyclothiazide

FXYD2 Cyclothiazide

Continued



www.nature.com/scientificreports/

9Scientific Reports | 6:24799 | DOI: 10.1038/srep24799

Gene symbol Drug(s)

GABRA1

Adinazolam,Alprazolam,Amobarbital,Amoxapine,Aprobarbital,Barbital,Bromazepam,Butalbital,Butethal,Clobazam,Clorazepate,Clo-
tiazepam,Desflurane,Diazepam,Enflurane,Ergoloid mesylate,Estazolam,Estazolam,Eszopiclone,Ethanol,Ethchlorvynol,Etomidate,-
Fludiazepam,Flumazenil,Flumazenil,Flurazepam,Ginkgo biloba,Glutethimide,Glutethimide,Halazepam,Halothane,Hexobarbital,Iso-
flurane,Lorazepam,Meprobamate,Metharbital,Metharbital,Methoxyflurane,Methoxyflurane,Methylphenobarbital,Methyprylon,Olan-
zapine,Oxazepam,Pentobarbital,Phenobarbital,Picrotoxin,Primidone,Primidone,Propofol,Secobarbital,Sevoflurane,Talbutal,Tal-
butal,Temazepam,Temazepam,Thiamylal,Topiramate,Topiramate,Triazolam,Zaleplon,Zolpidem,Zopiclone

GABRA3
Adinazolam,Amobarbital,Aprobarbital,Barbital,Barbituric acid derivative,Bromazepam,Butalbital,Butethal,Clotiazepam,Diazepam,Esta-
zolam,Eszopiclone,Fludiazepam,Flunitrazepam,Flurazepam,Halazepam,Heptabarbital,Hexobarbital,Meprobamate,Metharbital,Methyl-
phenobarbital,Midazolam,Oxazepam,Pentobarbital,Primidone,Secobarbital,Talbutal,Temazepam,Thiopental,Triazolam,Zolpidem,Zop-
iclone

GABRA4
Amobarbital,Aprobarbital,Barbital,Barbituric acid derivative,Bromazepam,Butalbital,Butethal,Flunitrazepam,Flurazepam,Heptabar-
bital,Hexobarbital,Meprobamate,Metharbital,Methylphenobarbital,Midazolam,Oxazepam,Pentobarbital,Primidone,Secobarbital,Tal-
butal,Temazepam,Thiopental,Triazolam

GABRA5
Amobarbital,Barbital,Barbituric acid derivative,Bromazepam,Butalbital,Butethal,Clotiazepam,Diazepam,Estazolam,Eszopiclone,Fludi-
azepam,Flumazenil,Flunitrazepam,Flurazepam,Halazepam,Heptabarbital,Hexobarbital,Meprobamate,Metharbital,Methylphenobarbi-
tal,Midazolam,Oxazepam,Pentobarbital,Primidone,Secobarbital,Talbutal,Temazepam,Thiopental,Triazolam,Zopiclone

GABRB1 Adinazolam,Bromazepam,Clotiazepam,Diazepam,Estazolam,Fludiazepam,Flurazepam,Gamma Hydroxybutyric Acid,Halazepam,Lin-
dane,Midazolam,Oxazepam,Temazepam,Triazolam

GABRB2 Adinazolam,Bromazepam,Clotiazepam,Diazepam,Estazolam,Fludiazepam,Flurazepam,Fospropofol,Ginkgo biloba,Halazepam,Mida-
zolam,Oxazepam,Propofol,Temazepam,Triazolam

GABRG1 Adinazolam,Bromazepam,Clotiazepam,Diazepam,Estazolam,Fludiazepam,Flurazepam,Halazepam,Midazolam,Oxazepam,Temaze-
pam,Triazolam

GABRG2 Adinazolam,Bromazepam,Clotiazepam,Diazepam,Estazolam,Fludiazepam,Flumazenil,Flurazepam,Ginkgo biloba,Halazepam,Midazola-
m,Oxazepam,Temazepam,Triazolam

GAMT Creatine,Guanidine

GATM Glycine,L-Ornithine

GGCX Anisindione,Coagulation Factor IX,Coagulation factor VIIa,Drotrecogin alfa,L-Glutamic Acid,Menadione,Phylloquinone

GGT1 Glutathione

GLYAT Glycine

GLYATL1 Glycine

GNMT Glycine,S-Adenosylmethionine

GOT1 L-Aspartic Acid,L-Cysteine,L-Glutamic Acid,Pyridoxal Phosphate

GPX2 Glutathione

GRM1 L-Glutamic Acid

GRM4 L-Glutamic Acid

GSTA1 Glutathione

GSTA2 Chloroquine,Glutathione

GSTM3 Glutathione

HAGH Glutathione

HIBADH NADH

HPGD NADH

HSD11B1

(1S,3R,4S,5S,7S)-4-{[2-(4-METHOXYPHENOXY)-2-METHYLPROPANOYL]AMINO}ADAMANTANE-1-CAR-
BOXAMIDE,(2R)-1-[(4-tert-butylphenyl)sulfonyl]-2-methyl-4-(4-nitrophenyl)piperazine,(3,3-dimethylpiperidin-1-yl)
(6-(3-fluoro-4-methylphenyl)pyridin-2-yl)methanone,(5R)-2-[(2-fluorophenyl)amino]-5-(1-methylethyl)-1,3-thiazol-4(5H)-
one,(5S)-2-(cyclooctylamino)-5-methyl-5-propyl-1,3-thiazol-4(5H)-one,(5S)-2-{[(1S)-1-(2-fluorophenyl)ethyl]amino}-5-methyl-5-
(trifluoromethyl)-1,3-thiazol-4(5H)-one,(5S)-2-{[(1S)-1-(4-fluorophenyl)ethyl]amino}-5-(1-hydroxy-1-methylethyl)-5-methyl-1,3-
thiazol-4(5H)-one,1-{[(3R)-3-methyl-4-({4-[(1S)-2,2,2-trifluoro-1-hydroxy-1-methylethyl]phenyl}sulfonyl)piperazin-1-yl]methyl}
cyclopropanecarboxamide,2-(2-CHLORO-4-FLUOROPHENOXY)-2-METHYL-N-[(1R,2S,3S,5S,7S)-5-(METHYLSULFONYL)-2-AD-
AMANTYL]PROPANAMIDE,2-(6-{[(3-chloro-2-methylphenyl)sulfonyl]amino}pyridin-2-yl)-N,N-diethylacetamide,N-{1-[(1-car-
bamoylcyclopropyl)methyl]piperidin-4-yl}-N-cyclopropyl-4-[(1S)-2,2,2-trifluoro-1-hydroxy-1-methylethyl]benzamide,N-cyclopro-
pyl-N-(trans-4-pyridin-3-ylcyclohexyl)-4-[(1S)-2,2,2-trifluoro-1-hydroxy-1-methylethyl]benzamide,NADH,Prednisone

HSD17B6 Succinic acid

HTR1B
Almotriptan,Amitriptyline,Amoxapine,Apomorphine,Aripiprazole,Asenapine,Bopindolol,Bromocriptine,Cabergoline,Clozapine,Dihy-
droergotamine,Eletriptan,Ergotamine,Frovatriptan,Lisuride,Loxapine,MAP-0004,Methysergide,Naratriptan,NXN-188,Olanzapine,On-
dansetron,Penbutolol,Pergolide,Pindolol,Pramipexole,Propranolol,Quetiapine,Rizatriptan,Ropinirole,Sumatriptan,Yohimbine,Ziprasi-
done,Zolmitriptan

HTR2A

3,4-Methylenedioxymethamphetamine,ACP-103,Amisulpride,Amitriptyline,Amoxapine,Amperozide,Apomorphine,Arip-
iprazole,Asenapine,BL-1020,Bromocriptine,Cabergoline,Chlorpromazine,Chlorprothixene,Cinitapride,Cisapride,Clo-
mipramine,Clozapine,Cyclobenzaprine,Cyproheptadine,Desipramine,Dimethyltryptamine,Donepezil,Doxepin,Epicept 
NP-1,Epinastine,Ergotamine,Flupentixol,Haloperidol,Imipramine,Ketamine,Lisuride,Loxapine,Lurasidone,MAP-0004,Maprotiline,Me-
soridazine,Methotrimeprazine,Methysergide,Mianserin,Minaprine,Mirtazapine,MMDA,Nefazodone,Nortriptyline,Olanzapine,Pali-
peridone,Paroxetine,Pergolide,Pramipexole,Promazine,Promethazine,Propiomazine,Quetiapine,Remoxipride,Risperidone,Ropinirole,-
Sertindole,Tegaserod,Thioridazine,Trazodone,Trimipramine,Yohimbine,Ziprasidone,Zuclopenthixol acetate,Zuclopenthixol decanoate

IMPA2 Lithium

INS MYRISTIC ACID

KCNA1 Amitriptyline,Dalfampridine,Desflurane,Enflurane,Isoflurane,Methoxyflurane,Nifedipine,Sevoflurane

KCNA4 Dalfampridine

KCNJ3 Halothane

Continued



www.nature.com/scientificreports/

1 0Scientific Reports | 6:24799 | DOI: 10.1038/srep24799

Gene symbol Drug(s)

KCNMA1 Bendroflumethiazide,Chlorzoxazone,Cromoglicic acid,Diazoxide,Halothane,Hydrochlorothiazide,Hydroflumethiazide,Miconazole,Pro-
caine

KLK1 Aprotinin

LCMT1 L-Leucine

LDHB NADH

LEPRE1 L-Proline,Succinic acid,Vitamin C

LIPT1 Lipoic Acid

MAP1A Estramustine

MC2R Corticotropin,Cosyntropin

MMP7
(1R)-N,6-DIHYDROXY-7-METHOXY-2-[(4-METHOXYPHENYL)SULFONYL]-1,2,3,4-TETRAHYDROISOQUINOLINE-1-CAR-
BOXAMIDE,5-METHYL-3-(9-OXO-1,8-DIAZA-TRICYCLO[10.6.1.013,18]NONADECA-12(19),13,15,17-TETRAEN-10-YLCARBA-
MOYL)-HEXANOIC ACID,Marimastat,N4-HYDROXY-2-ISOBUTYL-N1-(9-OXO-1,8-DIAZA-TRICYCLO[10.6.1.013,18]NONADE-
CA-12(19),13,15,17-TETRAEN-10-YL)-SUCCINAMIDE

MST4 [4-({4-[(5-CYCLOPROPYL-1H-PYRAZOL-3-YL)AMINO]QUINAZOLIN-2-YL}IMINO)CYCLOHEXA-2,5-DIEN-1-YL]ACETONI-
TRILE

NAE1 Adenosine triphosphate

NDUFA8 NADH

NDUFB5 NADH

NOS2

(2S)-2-methyl-2,3-dihydrothieno[2,3-f][1,4]oxazepin-5-amine,(3R)-3-[(1,2,3,4-tetrahydroisoquinolin-7-yloxy)
methyl]-2,3-dihydrothieno[2,3-f][1,4]oxazepin-5-amine,(3S)-1-(1,3-BENZODIOXOL-5-YLMETHYL)-3-[4-(1H-IM-
IDAZOL-1-YL)PHENOXY]PIPERIDINE,1-(6-CYANO-3-PYRIDYLCARBONYL)-5′ ,8′ -DIFLUOROSPIRO[PIPERI-
DINE-4,2′ (1′ H)-QUINAZOLINE]-4′ -AMINE,1-[4-(AMINOMETHYL)BENZOYL]-5′ -FLUORO-1′ H-SPIRO[PIP-
ERIDINE-4,2′ -QUINAZOLIN]-4′ -AMINE,4-({4-[(4-methoxypyridin-2-yl)amino]piperidin-1-yl}carbonyl)
benzonitrile,4-(1,3-BENZODIOXOL-5-YLOXY)-2-[4-(1H-IMIDAZOL-1-YL)PHENOXY]-6-METHYLPYRIMIDINE,4-(1,3-BEN-
ZODIOXOL-5-YLOXY)-2-[4-(1H-IMIDAZOL-1-YL)PHENOXY]PYRIMIDINE,4-(1H-IMIDAZOL-1-YL)PHENOL,5-(4′ -AMI-
NO-1′ -ETHYL-5′ ,8′ -DIFLUORO-1′ H-SPIRO[PIPERIDINE-4,2′ -QUINAZOLINE]-1-YLCARBONYL)PICOLINONITRILE,Dexameth-
asone,ETHYL 4-[(4-CHLOROPYRIDIN-2-YL)AMINO]PIPERIDINE-1-CARBOXYLATE,ETHYL 4-[(4-METHYLPYRIDIN-2-YL)
AMINO]PIPERIDINE-1-CARBOXYLATE,L-Arginine,L-Citrulline,Miconazole,N-[2-(1,3-BENZODIOXOL-5-YL)ETHYL]-1-[2-
(1H-IMIDAZOL-1-YL)-6-METHYLPYRIMIDIN-4-YL]-D-PROLINAMIDE,N-[2-(4-AMINO-5,8-DIFLUORO-1,2-DIHYDRO-
QUINAZOLIN-2-YL)ETHYL]-3-FURAMIDE,N-[2-(6-AMINO-4-METHYLPYRIDIN-2-YL)ETHYL]-4-CYANOBENZAMIDE,Triflu-
sal

P2RY12 Clopidogrel,Epoprostenol,Prasugrel,Ticagrelor,Ticlopidine,Treprostinil

PADI2 L-Citrulline

PC 5-(HEXAHYDRO-2-OXO-1H-THIENO[3,4-D]IMIDAZOL-6-YL)PENTANAL,Biotin,Pyruvic acid

PCSK1 Insulin Regular,Insulin, porcine

PDE3A Aminophylline,Amrinone,Anagrelide,Cilostazol,Ibudilast,Levosimendan,Milrinone,Oxtriphylline,Theophylline,Tofisopam

PDE5A
3-ISOBUTYL-1-METHYLXANTHINE,5-ethoxy-4-(1-methyl-7-oxo-3-propyl-6,7-dihydro-1H-pyrazolo[4,3-d]pyrimidin-5-yl)thio-
phene-2-sulfonamide,3-ISOBUTYL-1-METHYLXANTHINE,Avanafil,Dipyridamole,OSI-461,Pentoxifylline,Sildenafil,Tadalafil,Theo-
phylline,Udenafil,Vardenafil

PDK2
(N-{4-[(ETHYLANILINO)SULFONYL]-2-METHYLPHENYL}-3,3,3-TRIFLUORO-2-HYDROXY-2-METHYLPROPANA-
MIDE,4-({(2R,5S)-2,5-DIMETHYL-4-[(2R)-3,3,3-TRIFLUORO-2-HYDROXY-2-METHYLPROPANOYL]PIPERAZIN-1-YL}CAR-
BONYL)BENZONITRILE,N-(2-AMINOETHYL)-2-{3-CHLORO-4-[(4-ISOPROPYLBENZYL)OXY]PHENYL} ACETAMIDE

PDXP Pyridoxal Phosphate

PHGDH NADH

PHYH Antihemophilic Factor,Vitamin C

PIPOX Glycine

PRKACA

(1S)-1-(1H-INDOL-3-YLMETHYL)-2-(2-PYRIDIN-4-YL-[1,7]NAPHTYRIDIN-5-YLOXY)-EHYLAMINE,(1S)-2-(1H-INDOL-3-YL)-
1-[({5-[(E)-2-PYRIDIN-4-YLVINYL]PYRIDIN-3-YL}OXY)METHYL]ETHYLAMINE,(1S)-2-(1H-INDOL-3-YL)-1-{[(5-ISOQUIN-
OLIN-6-YLPYRIDIN-3-YL)OXY]METHYL}ETHYLAMINE,(2R)-2-(4-CHLOROPHENYL)-2-[4-(1H-PYRAZOL-4-YL)PHENYL]
ETHANAMINE,(2R)-2-(4-CHLOROPHENYL)-2-PHENYLETHANAMINE,(2S)-1-(1H-INDOL-3-YL)-3-{[5-(3-METHYL-1H-IN-
DAZOL-5-YL)PYRIDIN-3-YL]OXY}PROPAN-2-AMINE,(2S)-1-(6H-INDOL-3-YL)-3-{[5-(7H-PYRAZOLO[3,4-C]PYRIDIN-5-YL)
PYRIDIN-3-YL]OXY}PROPAN-2-AMINE,(2S)-1-{[5-(1H-INDAZOL-5-YL)PYRIDIN-3-YL]OXY}-3-[(7AS)-7AH-INDOL-3-YL]
PROPAN-2-AMINE,(2S)-1-{[5-(3-METHYL-1H-INDAZOL-5-YL)PYRIDIN-3-YL]OXY}-3-PHENYLPROPAN-2-AMINE,(2S)-
2-(4-CHLOROPHENYL)-2-[4-(1H-PYRAZOL-4-YL)PHENYL]ETHANAMINE,(4R,2S)-5′ -(4-(4-CHLOROBENZYLOXY)
PYRROLIDIN-2-YLMETHANESULFONYL)ISOQUINOLINE,(R)-TRANS-4-(1-AMINOETHYL)-N-(4-PYRIDYL) CYCLOHEX-
ANECARBOXAMIDE,(S)-1-PHENYL-1-[4-(9H-PURIN-6-YL)PHENYL]METHANAMINE,(S)-2-METHYL-1-[(4-METHYL-5-ISO-
QUINOLINE)SULFONYL]-HOMOPIPERAZINE,1-(5-ISOQUINOLINESULFONYL)-2-METHYLPIPERAZINE,1-[4-(4-chloroben-
zyl)-1-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)piperidin-4-yl]methanamine,1-[4-(4-chlorophenyl)-1-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)
piperidin-4-yl]methanamine,2-[4-(3-METHYL-1H-PYRAZOL-4-YL)PHENYL]ETHANAMINE,3-(1H-INDOL-3-YL)-4-{1-[2-
(1-METHYLPYRROLIDIN-2-YL)ETHYL]-1H-INDOL-3-YL}-1H-PYRROLE-2,5-DIONE,3-pyridin-4-yl-1H-indazole,3-PYRI-
DIN-4-YL-2,4-DIHYDRO-INDENO[1,2-.C.] PYRAZOLE,4-(4-chlorobenzyl)-1-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)piperidin-
4-aminium,4-(4-CHLOROPHENYL)-4-[4-(1H-PYRAZOL-4-YL)PHENYL]PIPERIDINE,5-(1,4-DIAZEPAN-1-SULFONYL)
ISOQUINOLINE,5-benzyl-1,3-thiazol-2-amine,6-{4-[4-(4-CHLOROPHENYL)PIPERIDIN-4-YL]PHENYL}-9H-PURINE,Ellagic 
Acid,ISOQUINOLINE-5-SULFONIC ACID (2-(2-(4-CHLOROBENZYLOXY)ETHYLAMINO)ETHYL)AMIDE,MYRISTIC ACID,N-
[(1S)-2-AMINO-1-(2,4-DICHLOROBENZYL)ETHYL]-5-[2-(METHYLAMINO)PYRIMIDIN-4-YL]THIOPHENE-2-CARBOXAM-
IDE,N-[2-(4-BROMOCINNAMYLAMINO)ETHYL]-5-ISOQUINOLINE SULFONAMIDE,N-[2-(METHYLAMINO)ETHYL]-5-ISO-
QUINOLINESULFONAMIDE,N-METHYL-1-[4-(9H-PURIN-6-YL)PHENYL]METHANAMINE

PRKCA Ellagic Acid,Phosphatidylserine,Tamoxifen,Vitamin E

PRODH L-Proline

PTGIS (6E)-7-{6-[(1E)-OCT-1-ENYL]-2,3-DIAZABICYCLO[2.2.1]HEPT-2-EN-5-YL}HEPT-6-ENOIC ACID,Epoprostenol,Phenylbutazone

RBP1 Acitretin,Vitamin A

Continued
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RLBP1 Vitamin A

S100A2 Olopatadine

S100A4 Trifluoperazine

S100B (Z)-2-[2-(4-methylpiperazin-1-yl)benzyl]diazenecarbothioamide,2-[(5-hex-1-yn-1-ylfuran-2-yl)carbonyl]-N-methylhydrazinecarboth-
ioamide,Calcium,Olopatadine,ONO-2506

SCARB1 Phosphatidylserine

SDHB Succinic acid,UBIQUINONE-1

SDSL Pyridoxal Phosphate

SIGMAR1 Amitriptyline,Dextromethorphan,Dimethyltryptamine,Pentazocine,Remoxipride

SLC1A1 L-Aspartic Acid,L-Glutamic Acid

SLC1A2 L-Glutamic Acid

SLC1A5 L-Asparagine

SLC22A11 Probenecid

SLC23A1 Vitamin C

SLC2A2 Streptozocin

SLC6A1 Guvacine,Tiagabine

SLC6A4

3,4-Methylenedioxymethamphetamine,4-Methoxyamphetamine,Amitriptyline,Amoxapine,Amphetamine,Atomoxetine,Chlorphe-
namine,Citalopram,Clomipramine,Cocaine,CRx-119,Desipramine,Desvenlafaxine,Dexfenfluramine,Dexmethylphenidate,Dex-
tromethorphan,Dopamine,Doxepin,Duloxetine,Ephedra,Escitalopram,Fenfluramine,Fluoxetine,Fluvoxamine,Imipramine,Levomil-
nacipran,Loxapine,Mazindol,Methamphetamine,Methylphenidate,Mianserin,Minaprine,Mirtazapine,MMDA,Nefazodone,Nortriptyl-
ine,OPC-14523,Paroxetine,Pethidine,Phentermine,Protriptyline,Pseudoephedrine,Sertraline,Sibutramine,Tapentadol,Tramadol,Trazo-
done,Trimipramine,Venlafaxine,Verapamil

SLC7A11 Acetylcysteine,L-Cystine,L-Glutamic Acid,Riluzole,Sulfasalazine

SLC8A1 Alpha-Linolenic Acid,Icosapent

SMPD3 Phosphatidylserine

SOAT1 Ezetimibe,Hesperetin

SRD5A2 Azelaic Acid,Dutasteride,Finasteride

SST Cysteamine

SULT1E1 Cyclizine

THNSL1 L-Threonine,Pyridoxal Phosphate

TPO Carbimazole,Dextrothyroxine,Methimazole,Propylthiouracil

TPSAB1 1-(1′ -{[3-(methylsulfanyl)-2-benzothiophen-1-yl]carbonyl}spiro[1-benzofuran-3,4′ -piperidin]-5-yl)methanamine,1-[1′ -(3-phenylacry-
loyl)spiro[1-benzofuran-3,4′ -piperidin]-5-yl]methanamine

TPSB2 (5-(aminomethyl)-2H-spiro[benzofuran-3,4′ -piperidine]-1′ -yl)(5-(phenylethynyl)furan-2-yl)methanone

UQCRC2
2-NONYL-4-HYDROXYQUINOLINE N-OXIDE,FAMOXADONE,METHYL (2Z)-2-(2-{[6-(2-CYANOPHENOXY)PYRIMI-
DIN-4-YL]OXY}PHENYL)-3-METHOXYACRYLATE,METHYL (2Z)-3-METHOXY-2-{2-[(E)-2-PHENYLVINYL]PHENYL}
ACRYLATE,UBIQUINONE-2

Table 2.   Complete list of highly correlated drug targets across all tissues.

expression-high protein expression were poorly represented (0–4% and 0–11% across tissues, respectively). These 
two discordant groups should get close attention, as therapeutic decisions based on gene expression can lead to 
critical mistakes.

Identifying differentially correlated genes based on protein and gene expression in cancer.  We 
studied differential gene-protein correlation in cancers, using mRNA and protein data from the Cancer Proteome 
Atlas (TCPA). TCPA is a cancer functional proteomics database and is a part of the Cancer Genome Atlas 
(TCGA) project22. Like our analysis for normal tissues, we compared the Spearman correlation between mRNA 
and protein expression patterns for 153 genes in 10 types of cancer from TCPA with 8 corresponding normal tis-
sues (adrenal gland, urinary bladder, colon, frontal cortex, lung, ovary, pancreas, and testis) from the GTEx and 
HPM datasets (Fig. 1B, marked as comparison number 1). Figure 5 shows our results. Interestingly, Spearman 
RNA-protein correlations for this set of genes were lower in almost all cancer types compared to corresponding 
normal tissues. The correlation was similar in only one cancer (lung adenocarcinoma, LUAD).

To further explore differences between cancer and normal tissues, we investigated changes in the relationship 
between gene and protein expression by gene, in tissue pairs. For each cancer-normal tissue pair, we compared 
the ranking of genes based on the correlation of gene and protein expression. Table 3 summarizes genes that 
showed differential behavior between cancer and normal tissues (See Supplementary Tables S9 and S10 for full 
data on genes that were correlated in cancer). One highly correlated gene in cancer vs. normal was Y box binding 
1 (YBX1), which was differentially correlated in ACC, COAD, LUAD and LUSC. YBX1 is a transcription factor 
and a splicing factor. It controls many genes involved with cancer, such as p5323. It is known for overexpression 
in cancer, and is involved in malignant progression of colorectal adenocarcinoma24,25 and lung cancer26, among 
other tumors. It is also associated with poor survival. A recent paper suggests that tRNA-derived fragments 
can suppress breast cancer progression via binding to YBX1, and by that mechanism, prevent it from binding 
pro-oncogenic transcripts27. RAC-alpha serine/threonine-protein kinase (AKT1) is another gene that was highly 
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Figure 5.  Tissue-specific correlations of protein-gene expression for 10 tumor types and corresponding 
normal tissues: adenoid cystic carcinoma (ACC—adrenal gland: pheochromocytoma and paraganglioma 
(PCPG)—adrenal gland; bladder urothelial carcinoma (BLCA)—urinary bladder; colon adenocarcinoma 
(COAD)—colon; lower grade glioma (LGG)—frontal cortex; lung adenocarcinoma (LUAD)—lung; lung 
squamous cell carcinoma (LUSC)—lung; ovarian serous cystadenocarcinoma (OV)—ovary; pancreatic 
adenocarcinoma (PAAD)—pancreas. 

correlated in cancer (LGG, PAAD and TGCT). AKT1 is a target in cancer therapy28 via several drugs29. There was 
a strong correlation between its mRNA and protein levels in some of the cancer types in this study, but not in 
normal tissues. Because it has three known isoforms30, we hypothesize that targeting AKT1 at the mRNA level and 
identifying a cancer-specific isoform may lead to better chemotherapies.

Finally, we compared the genes with differential gene-protein expression relationships to drug targets in the 
DrugBank database21. Table 4 lists all drug targets that were differentially correlated between cancer and normal 
tissues. An example of a gene with highly correlated protein expression in cancer is receptor tyrosine-protein 
kinase erbB-2 (ERBB2), which is targeted in LUAD and LUSC that by ado-trastuzumab emtansine, afatinib, and 
trastuzumab. Another example is Proto-oncogene Tyrosine-protein Kinase (SRC), which is targeted by bosutinib, 
dasatinib, and ponatinib in COAD. Gene expression measurements in both of these cases and others can be used 
(or are already in use) as biomarkers and drug targets. Other genes on our list showing differential protein-gene 
expression correlation in cancer have the potential to be used as new biomarkers and drug targets.

Discussion
The publication of datasets such as the Human Proteome Map (HPM)14 enables researchers to ask new questions 
regarding proteins in different tissues. Although it is clear that the number of detected proteins does not resemble 
the full scope of the protein landscape, due to alternative splicing and other similar processes28, the HPM dataset 
provides an informative glimpse into the human proteome. Our first goal in the current analysis was to explore 
connections between mRNA levels and protein abundances, in a large-scale study, using publically available data 
in normal human tissues. We achieved this goal by combining proteomic data from the HPM project and mRNA 
expression data from the GTEx project.

Our analysis revealed a positive gene-protein expression correlation (0.36–0.5) for the majority of human 
tissues. For a subset of genes, there was a statistically significant relationship between mRNA expression and 
protein abundance in all measured tissues. Furthermore, for each tissue we identified a set of genes and proteins 
that were concordantly expressed at high and low levels, and a much smaller set of genes and proteins that were 
discordantly expressed. Surprisingly, for genes that were highly correlated across all tissues, or highly concord-
antly expressed in individual tissues, we could not find an overall strong functional enrichment within the group. 
This result suggested that a diverse set of genes is under similar regulatory pressure that shapes their correlation. 
Furthermore, we identified two interesting groups, those with gene expression but no protein expression, and vice 
versa. Non-detectable expression may be due to technical limitations, a short half-life of the mRNA or protein, or, 
in the case of RNA expression only, non-coding RNAs. Surprisingly, non-detectable levels of gene expression had 
no effect on the levels of the detected protein expression, suggesting fast translation in the case of a short half-life 
or efficient translation from a small amount of mRNA in the case of a low level of mRNA.

We performed functional analysis of gene sets that are known biomarkers and drug targets. A bottleneck in 
the usage of biomarkers is the long and expensive process required for proteomic measuring of each sample. 
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Measuring mRNA expression levels is cheaper, but is insufficient to determine protein levels because correlations 
between mRNA expression and protein abundance are relatively low. We found that gene-protein expression of 
biomarkers and drug targets was more correlated than expected across all tissues and in tissue-specific analysis. 
These biomarkers are already in use for diagnosis, prognosis, to monitor disease progression, drug efficacy, drug 
safety and/or response to treatment. mRNA expression and protein abundance was highly correlated in these bio-
markers, implying that mRNA expression levels may, in some cases, be sufficient to determine protein abundance. 
This approach would allow for easier estimates of protein levels.

Although the highly correlated biomarkers and drug targets were the vast majority, we found that gene and 
protein expression was uncorrelated for some biomarkers and drug targets. These genes are important for further 
study and for consideration in the context of drug discovery or therapeutic decisions. Gene expression measure-
ments that do not correspond to protein measurements could lead to inaccurate therapeutic decisions. Clearly, 
many processes can affect drug efficacy, such as gene and protein expression for drug transport29.

In order to investigate the relationships of gene and protein expression in disease, we used TCPA, a cancer 
functional proteomics dataset that is a part of the TCGA project. By choosing genes based on their differential 
correlation of mRNA and protein expression, we were able to identify a set of such genes across all cancer types 
and within each cancer tissue that contains a number of known biomarkers and therapeutic targets. This list 
can be used in combination with the traditional differential expression analysis for new biomarker and drug 
target discovery. We hypothesize that testing a patient for highly correlated mRNA transcript before treating him 
with a drug against the corresponding protein could improve treatment outcomes by improving treatment target 
specificity.

Our study has several limitations that should be recognized. The first is the source of our data. Unfortunately, 
the GTEx and HPM data were not collected in a single experiment on the same samples. This fact may affect 
measurements of expression and correlation across the two experiments. To overcome this limitation, we used 
the Spearman correlation metric in our tissue-specific and gene-specific analysis. This approach is based on rank 
rather than on expression values. Another limitation is our ability to work with available protein data. Recently, 
Protein Atlas, another source of protein expression based on antibody staining to determine protein expression, 
was published8. Due to collection methodology, protein expression data in that resource is categorical and cannot 
be used in the same way as the continuous HPM data. For this reason, it was omitted from our analysis. Finally, 
our cancer analysis examined only 153 genes. These genes were carefully chosen for the study. Therefore, it is 
not surprising to find a connection between them and cancer. As more untargeted proteomics-based normal 
and tumor datasets are generated in the next several years, the approaches presented here can be applied more 
extensively.

In conclusion, we have performed a systematic analysis to examine the central dogma of biology and look for 
similarities and differences between protein and gene expression in a large number of healthy and cancer tissues. 
We found that different tissues are differently correlated in their protein and gene expression. We also found that 
gene and protein expression was highly correlated across tissues in a small set of genes. We further identified a 
set of genes that were concordantly abundant in each tissue based, on gene and protein levels. This analysis found 
that a statistically significant proportion of these genes are known biomarkers and therapeutic targets. We also 
examined genes with discordant gene and protein expressions levels, and hypothesize that those with oppo-
site behavior should be under proper consideration if being detected only by gene expression levels. We finally 
extended our analysis to diseased tissues, focusing on cancer and identified lower gene protein concordance in 
cancer in comparison to normal tissues. We posit that concordance and discordance in gene and protein expres-
sion has important implications for therapeutics and diagnostics.

Tissue Cancer Genes with higher gene and protein correlation in cancer Genes with lower gene and protein correlation in cancer

Adrenal Gland ACC BCL2L1, CCND1, FN1, FOXO3, PARK7, RAB11A, RAF1, RPS6, 
SHC1, STMN1, TSC2, YAP1, YBX1 BID, EGFR, NF2, PDK1, PIK3CA, SMAD3, STAT5A

Adrenal Gland PCPG BCL2, BCL2L1, BCL2L11, ERCC1, FOXO3, GAB2, GATA3, IGFBP2, 
JUN, MAP2K1, PTEN, TP53BP1, TSC2, XRCC1, XRCC5 BECN1, ERBB2, MAPK8, NF2, NFKB1

Colon COAD ARID1A, CLDN7, NOTCH1, SRC, STK11, TGM2, TSC2, YAP1, 
YBX1

EGFR, ERCC1, KIT, MAPK8, MAPK9, MSH2, SMAD4, 
XRCC1

Frontal Cortex LGG AKT1, BCL2, BCL2L11, MAPK1, MYC, NF2, PARK7, TP53, 
YWHAE ANXA1, CAV1, PIK3CA, RPS6KB1

Lung LUAD ARID1A, CCND1, CDH1, ERBB2, PTEN, YAP1, YBX1 BCL2, BID, CASP9, EGFR, KIT, PIK3CA, PRKCA, SRC

Lung LUSC ARID1A, BIRC2, CCNB1, CCND1, CDH1, EIF4EBP1, ERBB2, 
IGFBP2, MSH6, NOTCH3, PTEN, YAP1, YBX1 CASP3, CASP9, KIT, MAPK8, PIK3CA, PRKCA, SRC

Ovary OV ANXA1, BIRC2, CDH1, CLDN7, ERBB3, ESR1, GAB2, GSK3A, 
TGM2

ACACA, BCL2, CDKN1B, EGFR, PDK1, PGR, PIK3CA, 
PRKCA, RB1, RPS6KB1

Pancreas PAAD AKT1, ANXA1, BCL2L1, CLDN7, CTNNA1, ERBB3, GSK3A, IGF-
BP2, MYC, PEA15, PXN, RAB25, SRC, SYK, XRCC5 BECN1, CASP7, MRE11A, RAD50, RPS6KB1, SMAD4

Testis TGCT AKT1, ANXA1, BAX, CCND1, CDH1, CDH3, CDKN1A, ERBB2, 
ERBB3, FN1, IGFBP2, KIT, MAPK14, PXN, RAF1, TSC2, YWHAE AR, ATM, RAD50, RB1, SMAD4

Urinary Bladder BLCA CCNB1, CCND1, CLDN7, EIF4EBP1, ERBB3, GSK3A, MYC KIT, PIK3CA, PRKCA, SMAD4

Table 3.  Genes with higher or lower gene and protein correlation in cancer vs. normal tissues. Genes in 
bold are known drug targets.
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Materials and Methods
Dataset sources.  The mRNA data in this analysis was extracted from the Genotype-Tissue Expression 
(GTEx) Project (http://www.GTExportal.org), which is based on RNA-seq data expression levels in various 
human tissue samples3. The GTEx project contains data from a combination of sources and technologies, includ-
ing gene expression microarrays and RNA sequencing. Of the 53 tissue types in the project, we chose 18 tissues 
corresponding to 14 HPM tissues. The final subset of the GTEx data included RNA sequencing of 921 tissue 
samples, each of which belonged to one of the 18 tissue subtypes, while esophagus, colon, and heart had more 
than one tissue. To remove bias, transcript reads on a gene-level basis were normalized for gene length, resulting 
in transcript data that was in the form of reads per kilobase per million (RPKM).

Protein data was extracted from the Human Proteome Map (HPM) Project (http://www.humanproteomemap.
org). Data in this project is based on mass spectroscopy (MS) protein levels in various tissue samples across 
the systems of the human body14. As part of the HPM project, 30 histologically normal tissue types were pro-
filed in totality, 17 of which were adult human tissues. For each tissue type, samples from three individuals were 
pooled and analyzed using MS. The project detected proteins corresponding to 17,294 genes, or ~84% of the 
protein-encoding regions of the human genome. In this work, 14 of the 17 adult tissues corresponding to tissue 
gene expression data existed in the GTEx database are in use. A subset of 16,571 genes that were commonly meas-
ured in HPM and GTEx datasets were used in this work.

Both datasets were evaluated in terms of data quality, detection limit, and number of samples per category. 
Expression values < 1 in both datasets were counted as zero values.

For the cancer analysis, RNA-seq and reverse-phase protein arrays (RPPA) data from the Cancer Proteome 
Atlas (TCPA) was extracted for ten cancer types: adenoid cystic carcinoma (ACC), pheochromocytoma and par-
aganglioma (PCPG), bladder urothelial carcinoma (BCLA), colon adenocarcinoma (COAD), lower grade glioma 
(LGG), lung adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), ovarian serous cystadenocarci-
noma (OV), pancreatic adenocarcinoma (PAAD), and testicular germ cell tumors (TGCT). These cancers cor-
respond to eight normal tissues: adrenal gland (ACC and PCPG), urine bladder (BCLA), colon (COAD), frontal 
cortex (LGG), lung (LUAD and LUSC), ovary (OV), pancreas (PAAD), and testis (TGCT). A total of 153 genes 
were compared between TCPA and GTEx-HPM data.

Tissue correlation.  The Spearman correlation was calculated between gene and protein measurements 
across all tissues. Correlation values are presented in a heatmap. Clustering of data was done by pvclust30, based 
on correlation as the distance method and Ward’s method as the hierarchical clustering method. Statistically sig-
nificant clusters (p-value:  <  0.05) are marked in red. Dendrogram comparison using cophenetic correlation was 
performed using the R package dendextend http://cran.r-project.org/web/packages/dendextend.

Identifying and analyzing highly correlated genes across and within different tissues.  An 
adjusted p-value of the Spearman correlation was used on the full dataset to create a list of 1,012 highly correlated 
genes across all tissues. From this set, 750 genes with correlations of two or more tissues were chosen for further 
annotation.

Functional analysis for highly correlated genes across and within different tissues.  Functional 
annotation was performed for the group of highly correlated genes across all tissues, and for 14 groups of 
tissue-specific highly correlated genes, using several tools. The GO annotation Molecular function was conducted 
using DAVID31. REVIGO32 was used for summarizing GO annotation terms. Biomarker gene annotation was 

Tissue Cancer Drug targets with higher gene and protein correlation in cancer
Drug targets with lower gene and protein correlation 
in cancer

Adrenal Gland ACC RAF1 (Sorafenib, iCo-007, Regorafenib) EGFR (Trastuzumab, Gefitinib, Lapatinib, HuMax-EGFr, 
IMC-11F8, Afatinib) PIK3CA (Caffeine)

Adrenal Gland PCPG BCL2 (Ibuprofen, Paclitaxel, Rasagiline) JUN (Arsenic trioxide, LGD-1550) NFKB1 (Thalidomide, P54, NOX-700)

Colon COAD SRC (Bosutinib, Dasatinib, Ponatinib) EGFR (Trastuzumab, Panitumumab, Afatinib, CI-1033, 
IMC-11F8)

Frontal Cortex LGG NA ANXA1 (Amcinonide,Hydrocortisone)

Lung LUAD ERBB2 (ado-trastuzumab emtansine, Afatinib, Trastuzumab)
BCL2 (Ibuprofen, Docetaxel) EGFR (Vandetanib, Cetux-
imab) KIT (Regorafenib, Ponatinib, Sorafenib, Sunitinib) 
SRC (Ponatinib)

Lung LUSC ERBB2 (ado-trastuzumab emtansine, Afatinib, Trastuzumab) CASP3 (IDN-6556) KIT (OSI-930) SRC (Ponatinib)

Ovary OV
ANXA1 (Amcinonide, Hydrocortisone) ESR1 (Chlorotrianisene, Conjugated 
Estrogens, Etonogestrel, Desogestrel, Progesterone, Raloxifene, Estrone, Estra-
diol, Clomifene, Fulvestrant, Norgestimate, Ethinyl Estradiol, Melatonin, Trilos-
tane, Fluoxymesterone, Estramustine, Allylestrenol, RALOXIFENE CORE)

PGR (Levonorgestrel,Progesterone,Mifepristone,Norg-
estimate)

Pancreas PAAD NA CASP7 (IDN-6556)

Testis TGCT MAPK14 (SCIO-469) RAF1 (Sorafenib, iCo-007, Regorafenib)
AR (Flutamide, Oxandrolone, Nilutamide, Ketocona-
zole, Fluoxymesterone, Methyltestosterone, Nandrolone 
decanoate, Enzalutamide)

Urinary Bladder BLCA CCND1 (Arsenic trioxide) KIT (Imatinib, Pazopanib) PRKCA (Tamoxifen)

Table 4.   Drug targets with higher or lower gene and protein correlation in cancer vs. normal tissues, and 
related drugs.

http://www.GTExportal.org
http://www.humanproteomemap.org
http://www.humanproteomemap.org
http://cran.r-project.org/web/packages/dendextend
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performed using IPA (www.ingenuity.com). A comparison with drug targets was performed using data from the 
DrugBank database21, while confining the search to drug targets.

Concordant and discordant expression analysis in GTEx and HPM dataset.  We divided the data 
into four groups by using a top and bottom 10% criteria for each tissue. A high gene expression-high protein 
expression group included all data points whose gene and protein expression were in the top 10%. The high 
gene expression-low protein expression group contained all data points in the top 10% in the gene expression 
dataset and those in the bottom 10% in the protein expression dataset. The low gene expression-high protein 
expression group included all data points in the bottom 10% for gene expression and the top 10%, while the low 
gene expression-low protein expression group contains data points in the bottom 10% in both gene and proteins 
expression datasets. Drug target analysis was performed as explained for highly correlated genes across all tissues.

Characterization of correlation and differential ranking in the cancer dataset.  Spearman correla-
tion between protein and gene expression was calculated across all tissues and within each tissue. For ranking com-
parison, the GTEx-HPM dataset was reduced to the same 153 genes as the cancer dataset. We sorted both datasets 
based on Spearman’s rho and ranked the results. We then compared the ranking based on gene-protein expression 
in normal and cancer datasets. A gene was considered as differentially correlated if the difference between the 
ranking based on the cancer dataset and the ranking based on the normal expression set was at least 30.

Functional annotation for cancer and normal data.  Drug target analysis was performed as explained 
for highly correlated genes across all tissues only for genes showing differential correlation in at least one cancer 
tissue.
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