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Noise correlations in neuronal responses can have a strong influence on the information

available in large populations. In addition, the structure of noise correlations may have

a great impact on the utility of different algorithms to extract this information that

may depend on the specific algorithm, and hence may affect our understanding of

population codes in the brain. Thus, a better understanding of the structure of noise

correlations and their interplay with different readout algorithms is required. Here we

use eigendecomposition to investigate the structure of noise correlations in populations

of about 50–100 simultaneously recorded neurons in the primary visual cortex of

anesthetized monkeys, and we relate this structure to the performance of two common

decoders: the population vector and the optimal linear estimator. Our analysis reveals

a non-trivial correlation structure, in which the eigenvalue spectrum is composed of

several distinct large eigenvalues that represent different shared modes of fluctuation

extending over most of the population, and a semi-continuous tail. The largest eigenvalue

represents a uniform collective mode of fluctuation. The second and third eigenvalues

typically show either a clear functional (i.e., dependent on the preferred orientation of the

neurons) or spatial structure (i.e., dependent on the physical position of the neurons).

We find that the number of shared modes increases with the population size, being

roughly 10% of that size. Furthermore, we find that the noise in each of these collective

modes grows linearly with the population. This linear growth of correlated noise power

can have limiting effects on the utility of averaging neuronal responses across large

populations, depending on the readout. Specifically, the collective modes of fluctuation

limit the accuracy of the population vector but not of the optimal linear estimator.

Keywords: population coding, population vector, optimal linear estimator, eigendecomposition, collective modes

of fluctuation

INTRODUCTION

The information provided by a neuronal population depends on the relationship among several
quantities: the signal provided by the population (i.e., how the mean response of each neuron varies
with stimulus parameters—the tuning); the variability of the neuronal population, particularly the
structure of variability that is shared between neurons (often termed “noise” correlations); and the
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manner in which the information is extracted (the decoder and
its weights) (Georgopoulos et al., 1982; Salinas and Abbott,
1994; Abbott and Dayan, 1999; Deneve et al., 1999; Sompolinsky
et al., 2001; Averbeck et al., 2006; Shamir, 2006; Shamir and
Sompolinsky, 2006; Ecker et al., 2011; Graf et al., 2011).

Numerous studies have described the structure of shared
fluctuations in neuronal populations, reporting that noise
correlations (hereafter referred to as simply “correlations”)
depend on the physical and functional distance between neurons
(Smith and Kohn, 2008; Rothschild et al., 2010; Cohen and Kohn,
2011; Smith and Sommer, 2013) as well as other features that may
lead to shared variability (Cui et al., 2016). More recent work
has emphasized that correlations arise from a low-dimensional
form of dependency—in the simplest scenario, correlations may
arise from a single fluctuation shared throughout the population
(Ecker et al., 2014; Lin et al., 2015; Schölvinck et al., 2015, but see
Rabinowitz et al., 2015; Rosenbaum et al., 2017).

Previous work that has investigated the effect of correlated
variability on information has usually compared information in
raw and shuffled (randomly permuting across trials to strongly
reduce correlations) data (Gawne and Richmond, 1993; Panzeri
et al., 1999; Petersen et al., 2002; Romo et al., 2003; Averbeck
and Lee, 2006; Graf et al., 2011). This provides a quantitative
evaluation of how shared variability affects information. However
it does not providemuch insight into the outcome—howmuch of
the effect should be attributed to the distribution of noise? How
much to the distribution of the signal? Howmuch depends on the
choice of readout algorithm? The importance of the relationship
between these three factors is made clear by recent progress
in understanding which correlations limit information in large
neuronal populations (Moreno-Bote et al., 2014; Kanitscheider
et al., 2015; Kohn et al., 2016)—those termed differential
correlations. Differential correlations limit the performance of
any linear estimator (but not that of estimators that can extract
information from the higher order statistics of the neuronal
responses Shamir and Sompolinsky, 2002, 2004) because they
introduce fluctuations in the same direction as the signal that is
being extracted.

Here we apply new methods—developed in previous
theoretical work (Shamir, 2014) but not previously applied to
physiological data—to analyse the structure of correlations in
populations of V1 neurons. All data analyzed here is courtesy
of the laboratory of Adam Kohn. Specifically, we conduct an
eigendecomposition of the correlation matrix. Consistent with
previous work, we find that much of the observed correlated
variability involves a uniform mode fluctuation mode, although
there is additional significant structure as well. We use the
eigendecomposition to clarify how two common decoders—
population vector and optimal linear estimator (OLE)—are
affected by structured variability. Both the population vector
and the OLE are linear readout mechanisms. The population
vector (Georgopoulos et al., 1982), does not take neuronal
noise correlations into account and modeling studies predicted
that its accuracy will be limited due to the correlated noise
(Sompolinsky et al., 2001). By construction, the accuracy of the
OLE is superior to that of the population vector, but the OLE
requires some degree of fine-tuning (Shamir and Sompolinsky,

2006). This has led people who believe in optimality principle
of computation in the brain to reject the population vector as a
valid hypothesis for the neural code. However, the question of
the neural code is a scientific question that should be addressed
experimentally and not based upon belief. For instance, the
reduction of correlations during attention (Cohen and Maunsell,
2009) is not easy to reconcile with the expected performance
of the OLE. Here, we show how the differences between the
performance of these decoders on raw and shuffled data can be
understood by examining the relationship between the decoder
weights and the eigenvectors of the correlation matrix.

MATERIALS AND METHODS

All measures of variability are±1 std, unless otherwise noted.

Experimental Procedures
All data analyzed here is courtesy of the laboratory of Adam
Kohn. Experimental procedures have already been reported
in the past and described in detail (Smith and Kohn, 2008).
Briefly, neural activity was recorded using the “Utah” Array
from the primary visual cortex of anesthetized monkeys (macaca
fascicularis) while the monkeys were presented with visual
stimuli. The array consists of a 10 × 10 grid of microelectrodes
spaced 400µm apart.

The visual stimuli were oriented drifting gratings presented
in a circular aperture surrounded by a gray field of average
luminance (8 orientations in 5 datasets and 36 orientations in
3 datasets). Stimuli were presented binocularly, for 300–400ms,
and separated by 500–800ms intervals during which we
presented an isoluminant gray screen. Each stimulus was
presented 200–400 times. For each experiment (data set) stimulus
presentation times, inter-stimulus duration and the number of
trials per stimulus were fixed.

Analysis
Let us denote the spike count of the i-th neuron in a population
of N neurons to the t-th presentation of a grating stimulus with
orientation θ during the entire duration of stimulus presentation,

by
{

ri,t
}N

i = 1
.

Rate Tuning
For the calculation of the tuning curves, E[ri|θ], the firing rate
in each trial was calculated using a time window from stimulus
onset to stimulus offset. The tuning curves were then fitted
using the Von-Mises function: Aie

ki cos[2(θ−ϕi)], where θ is the
stimulus orientation and ϕi is the preferred orientation of the
cell. As we are interested in the functional dependence of the
correlations, i.e., in the dependence on the preferred orientation,
and in comparing the population vector to the OLE, we discarded
from the analysis cells that did not show a good fit. This is
because the preferred orientation of a cell with poor tuning is
meaningless. The goodness of fit was defined as one minus the
mean square of the deviation of the tuning curve (i.e., mean
firing rate for a given stimulus) from the Von-Mises fit over the
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variance of the tuning curve, Goodness = 1 −
∑

θ
(E[ri|θ]−fi(θ))

2

∑

θ

(E[ri|θ]−E[ri])
2 ,

and a threshold of 0.5 was used except for Figure 3 where the
spatial and not the functional structure was of interest. In all,
there were 675 units out of which 457 met our goodness of fit
criterion. The exact value of threshold of 0.5 for the goodness
of fit did not change qualitatively our results. This should not
be taken to imply that cells with poor tuning cannot contribute
to the information content of the population response, see e.g.,
Zylberberg (in review).

Correlations
The trial-to-trial fluctuations of the neural response from its
conditional mean, given the stimulus, δri,t = ri,t − E[ri|θ] yield
the noise that limits the accuracy of a linear readout. Due to this
reason the correlation coefficients that are presented here are the
correlation coefficients of these deviations from the mean firing.

For shuffled data the distribution of correlation
coefficients was well fitted (not shown) by Gaussian
distribution with zero mean and variance of
1/

√

trials per stimulus × number of stimuli. Shuffling was
done by randomly permuting all trials for each neuron given a
specific stimulus.

The analysis of the correlation matrix structure (e.g.,
Figures 1–4) was done using correlation matrices that were
averaged over all stimulus conditions (i.e., grating orientation).
Consequently, the results we have shown are for “stimulus
independent” correlations. We confirmed that the correlation
structure was similar for each grating orientation separately
as well as for spontaneous activity measured during the
interstimulus interval, consistent with previous findings (Kohn
and Smith, 2005).

One dataset (dataset 2, shown in Figures 2E–H, 3, top row,
Figure 4) showed some measure of non-stationarity around
the start and the end of the experiment. To prevent the non-
stationarity from affecting our results we excluded the first 59
and last 6 trials from our analysis. Interestingly, restricting trials
did not change any qualitative result. Moreover, the structure of
the principle eigenvectors remained extremely stable (even when
including non-stationary trials) and the main quantitative effect
was in the eigenvalues themselves.

Significance of Eigenvalues
In the limit of large (number of trials/neuron) the eigenvalues in
the shuffled data will have a finite support (given by Marchenko-
Pastur distribution), and there will be zero probability of finding
eigenvalues beyond that specific interval around one. As the
number of trials in our dataset is considerable, the overwhelming
majority of eigenvalues of the shuffled data fall within the bounds
of the Marchenko-Pastur distribution, and those that fall beyond
are extremely close. To reflect the nature of the eigenvalue
distribution (of the shuffled data) we defined an eigenvalue to be
significant if it was larger than the maximal eigenvalue in 1,000
realizations of shuffled data.

Population Vector and Optimal Linear Readout
In all of our calculations of the population vector and optimal
linear estimator accuracy we have used half of the trials (chosen

FIGURE 1 | Noise correlations and eigenvalue spectrum. (A) The histogram of

correlation coefficients of the response fluctuations of pairs of 77

simultaneously recorded orientation tuned neurons (blue histogram). The black

line shows a Gaussian distribution with zero mean and standard deviation of

1/
√
trials per stimulus × number of stimuli that very well approximates the

distribution of correlation coefficients in shuffled data. (B) The functional

dependence of the correlations. The pair-wise correlation coefficients are

plotted as a function of the preferred orientation difference of each pair. The

green line depicts a linear fit of the functional dependence with a slope of

−4e-4 deg−1 with standard error of 5e-5 deg−1. (C) The correlation matrix

shown in color code as function of the neuron’s preferred orientation. (D) The

eigenvalues of the correlation matrix are shown by rank order (blue circles). For

comparison, the eigenvalues of a typical correlation matrix of shuffled data are

also shown (red circles). The gray region depicts the range between the

maximal eigenvalue obtained over 1,000 realizations of shuffled data and the

minimal one. In the limit of infinite number of trials all eigenvalues of shuffled

data will be one (black dotted line). The inset shows the number of significant

eigenvalues in the different datasets as function of the number of tuned units in

each dataset. The red asterisk shows the point of zero significant eigenvalues

for population of N = 1 neurons. The solid blue line shows a linear regression

fit through (1,0) with a slope of 10%, p < 0.001 t-test (n = 6).

randomly with equal probability without repetitions for each
stimulus condition) as training set to define the preferred
orientations of the neurons and the optimal linear readout
weights. The accuracy was then estimated using the rest of the
trials as generalization set. For every value of population size, n
(out of N in the dataset) readout accuracy (Figures 5I, 6E, 7E)
was averaged over 100 repetitions of randomly choosing the
training set and of choosing the subpopulation of n neurons out
of N (when applies). Note that the mean squared error of each
readout includes both a bias term and noise term (variance).
However, as the bias can be overcome by a simple deterministic
mapping and decays to zero rapidly with the population size, we
focused here on the noise term.

In Figures 5-7 we present the (squared) projection of the
readout weight vector on different directions. The projection of
a normalized vector x on a normalized eigenvector v is simply

x·v
‖x‖‖v‖ (which also defines the cosine of the angle between the two
vectors). The noise of a linear readout ẑ = w · r as displayed in
Figures 5–7D is given bywtCw, whereC is the correlationmatrix
and xt denotes the transpose of x. The weights of the OLE can
be written in a signal to noise like expression, wole = Q−1U,
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FIGURE 2 | Functional and spatial structure of the collective modes of fluctuation. (A–D) Present functional structure of modes in one dataset. (E–H) Show the spatial

structure of modes in another dataset. The eigenvectors corresponding to the first (A), second (B), third (C) eigenvalues and shuffled data (D) are shown in the

functional space representation, i.e., element k of the vector is shown as function of the preferred orientation of neuron k. The green line in (A) depicts the mean of the

eigenvector. The green line in (C) shows a cosine fit. The squared projection of the first eigenvector onto the uniform direction is (v(1) · u)2 = 0.56, whereas, for

comparison the projection of a random direction is expected to be zero on average with variance of 1/N = 1/36 = 0.028 in this example. (E–H) Show the first,

second, third eigenvectors of raw data, and the principle eigenvector of shuffled data (respectively) in their spatial representation. The matrices represent the location

of the electrode (ten by ten Utah array) and the color depicts the value of the eigenvector at that entry. In case several neurons were separated from the same

electrode we present their mean.

where the “noise” is embedded in the neuronal correlations,
Qij = E

[

rirj
]

. The signal for the optimal linear estimator is
given by the co-variation of the signal and the neuronal responses
ui = E[E[ri|θ]ei2θ ], where ei2θ is a unit vector (in the complex
plane) in the direction of the stimulus, θ (the factor 2 is due to the
fact that orientation has a 180◦ symmetry and not 360◦). Signal
distribution in Figures 6B, 7B shows the (squared) projection of
the signal onto the (rank ordered) eigenvalues of the correlation
matrix.

RESULTS

We analyzed 8 data sets recorded in V1 of 6 anesthetized
monkeys. The neuronal populations consisted of 23–129 putative
single units that we shall refer to as units or single units hereafter.
Neurons were driven by drifting sinusoidal gratings of 8–36
different orientations. One data set used random phases for the
stimulus. Consequently, all of its evoked data were excluded and
we only present its inter-stimulus data in Figure 3. As we were
interested in part in investigating the correlation structure with
respect to the preferred orientation space we excluded (except for
Figure 3) units that did not show a clear preferred orientation,
resulting in 7 data sets of 16–77 (51± 22) units.

Neuronal Noise Correlations Are Highly
Diverse
Consistent with many previous studies, trial-to-trial variability
was correlated between neurons (Cohen and Kohn, 2011). For
the dataset illustrated in Figure 1 the mean correlation was 0.07
with standard deviation of 0.07 (standard error of the mean
correlation was 0.001). Most pairs had positive correlations that
fell outside the distribution of correlations produced by the
same responses after shuffling (randomly permuting the trials
of each neuron, shown in the black line on Figure 1A). Across
datasets 78 ± 7% of the pairs exhibit correlations that deviate by
more than two standard deviations from the shuffled distribution
mean. Correlations were stronger between pairs of neurons
with similar orientation preferences than between neurons with
different preferences (Figure 1B), as shown in previous work
(Zohary et al., 1994; Lee et al., 1998; Smith and Kohn, 2008;
Cohen and Maunsell, 2009; Rothschild et al., 2010; Cohen and
Kohn, 2011; Smith and Sommer, 2013). This is demonstrated
by the linear regression, green line, with a slope of−4e-4 deg−1

with standard error of 5e-5 deg−1 (that yields a decrease of
about 40% of the mean correlations over 90◦ difference), which
is significantly different than zero, p < 10−3, t-test (n = 2,924).
However, correlations show considerable variability around the
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FIGURE 3 | Additional examples of spatial structure of eigenvectors. The first, second and third eigenvector are shown (by column) in their spatial representation, for

three simultaneously recorded data sets (rows). The matrices represent the location of the electrode (ten by ten Utah array) and the color depicts the value of the

eigenvector at that entry. In case several neurons were separated from the same electrode we present their mean. The eigenvectors were computed from the

correlation matrix of the inter-stimulus interval data, which provides a much clearer structure. Here, to obtain a less noisy display we used also units that showed poor

orientation tuning, as we are interested in the spatial structure and not the functional. To appreciate the stability of the eigenvector structure one may compare the first

row here (dataset 2 with all N = 129 single units) and Figures 2E-G that show the results for the same dataset but with all N = 71 tuned single units. The picture that

emerges from this figure is of a hierarchy of spatial structures. Starting with a uniform mode and showing increasingly finer structure for higher order modes.

systematic functional dependence. This variability is even more
apparent in viewing the correlation matrix (Figure 1C), in
which the neurons were ordered according to their preferred
orientation. This substantial diversity complicates the study of
correlation structure.

Eigendecomposition
To investigate the structure of the correlation matrix it is
useful to examine its eigenvalue spectrum and corresponding
eigenvectors. The utility of this approach is that, instead of
studying N(N-1)/2 pairs, the decomposition to the eigenvectors
of the correlation matrix allows us to represent the fluctuations
in the population response as sum of N modes of fluctuation
that are uncorrelated with each other, where N is the number

of neurons in the population. Each mode is characterized by its
eigenvalue and its corresponding eigenvector, v(n). The trial-to-
trial fluctuations can then be represented as a sum of uncorrelated
modes. Namely, the deviation of neuron i from itsmean response,
δri ≡ ri − E[ri|θ](see also section Materials and Methods) can be

written as δri =
∑N

n = 1 znv
(n)
i , where {zn} is a set of uncorrelated

trial-to-trial fluctuations with zero mean and variance cn–for the
raw responses these are the modes of the covariance matrix and
for normalized responses (divided by the standard deviation)
the correlation coefficients matrix. In addition, the eigenvalue
spectrum ranks the modes by the strength of their fluctuations
allowing us to focus on the most dominant modes. It is also
common to refer to the eigenvectors of the correlation matrix
with the largest eigenvalues as principal components.
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FIGURE 4 | The collective nature of eigenvalues. (A) The eigenvalue spectrum of the noise correlation matrix is shown as function of the population size (same data

set as in Figures 2E-G). The dashed line shows the spectrum for independent neural population, that is the shuffled data in the limit of infinitely many trials. (B) The

distribution of the slope of the linear scaling of the first, second and third eigenvalues with the population size across the different data sets. (C) The eigenvalue

spectrum as in (A) for shuffled data. Note the different scale of (A,C).

Figure 1D shows the eigenvalue spectrum of the correlation
matrix for one example data set (blue circles). For comparison,
the spectrum of the correlation matrix after shuffling is shown in
red circles. With unlimited data the correlation matrix of shuffled
data will be a unity matrix of size N, and its spectrum will be flat
with all eigenvalues equal to one (dashed black line). As data are
finite (we used the same number of trials in the shuffled data as
in the real data), the eigenvalues of the shuffled data correlation
matrix will be distributed around one. The gray region depicts the
eigenvalue range estimated by 1,000 realizations of the shuffled
data. We defined an eigenvalue of the correlation matrix to be
significant if it is larger than the maximal eigenvalue achieved
by 1,000 realizations of shuffled data (see section Materials and
Methods).

As can be seen from the figure, the eigenvalue distribution of
the real correlation matrix is composed of a few large, significant
eigenvalues and a semi-continuous tail of many eigenvalues
that are small and not significantly different from the shuffled
distribution. The number of significant eigenvalues varies across

datasets and roughly scales linearly with the number of neurons,
Figure 1D inset. On average across datasets the percentage of
significant eigenvalues was 12.5± 5% of the population size.

The Structure of the Collective Modes
The eigenvectors with largest eigenvalues represent sharedmodes
of fluctuations involving a finite fraction of the entire neural
population. Figures 2A-C show the eigenvectors of the three
most dominant modes in one dataset, i.e., with the largest
eigenvalues. The eigenvectors are represented here as a function
of the preferred orientation of each neuron. The first eigenvector
(Figure 2A) involves almost all neurons (except for a few with
values close to zero). A prominent feature of the first mode is
that almost all of its components are of the same sign, and those
with a different sign are small in absolute value. Consequently,
this mode reflects a uniform shared mode of fluctuation in which
most of the neurons increase or decrease their firing rate together.
The squared projection of the first eigenvector onto the uniform

direction is (v(1) · u)2 = 0.56, where u = (1, 1, 1 . . .)/
√
N is
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FIGURE 5 | Population vector accuracy in a correlated heterogeneous population, example 1. (A) Noise distribution. The eigenvalue spectrum of the noise-correlation

matrix is presented by rank order. Dashed line shows the spectrum in the uncorrelated case. (B) The squared overlap between the population vector weights

ff2= (ei2ϕ1 , ei2ϕ2 , . . . ei2ϕN )/
√
N and the eigenvectors of the correlation matrix, arranged by their eigenvalue rank order. (C) The squared overlap between the

population vector as function of the population size. The overlap with different eigenvectors is depicted by color. The black line shows for comparison the expected

overlap of two N-dimensional random vectors, which is 1/N. (D) Population vector noise. The total variability of the population vector subspace, which is the sum of

the noise distribution in (A) weighted by the projection in (B), is shown as function of the population size. (E-H) Same plots as in (A-D), respectively, for a single

iteration of shuffled data. (I) Population vector angular accuracy. One over the variance of the population vector angular estimation error is shown as function of the

population size for the actual and shuffled data in solid red and dashed magenta, respectively.

the uniform vector. The hallmark of this fluctuation can also be
seen in the distribution of correlation coefficient that is shifted
toward the positive side (see e.g., Figure 1B). We find that in all
datasets the first eigenvector has a considerable overlap with the
uniform direction (0.67± 0.15). In contrast, for shuffled data any
eigenvector will be a random direction, its scalar product with the
uniform direction (or any pre-determined direction) will be zero
on average with variance 1/N.

In this example dataset, the second eigenvector (Figure 2B)
also shows a significant projection on the uniform direction of

(v(1) · u)2 = 0.24, which is significantly different than zero,
p < 0.001 (compared with a random direction). However, on
average, the second eigenvector had almost no overlap with
the uniform direction (0.09 ± 0.13), and neither did the third
(0.035± 0.04).

The third collective mode shows a prominent functional
structure (Figure 2C). The elements of the eigenvector with
negative preferred orientation tended to be positive whereas
elements with negative preferred orientation negative. This

represents a mode of fluctuations in which neurons with
positive preferred orientations fluctuate in an opposite manner

to neurons with negative preferred orientations. Thus, neurons
with similar preferred orientations will tend to fluctuate together.

This mode gives rise to structure resembling a sine function.
To quantify the similarity of this eigenvector to sine and cosine

tuning we studied its squared projection onto the second Fourier
space |v(3) · ff2|2, where ff2 = (ei2ϕ1 , ei2ϕ2 , . . . ei2ϕN )/

√
N.

In the example of Figure 2C the squared projection of the

third eigenvector onto the second Fourier component was 0.12,
p< 0.05 (compare with the projection of a random direction that
is zero on average with variance of 1/N = 0.028). For this dataset
the squared projection of the second eigenvector onto the second
Fourier component was 0.006.

For comparison, we show in Figure 2D the first eigenvector
of the correlation matrix of shuffled data. In the shuffled case the
eigenvectors lack functional structure and their projections onto
the uniform direction and onto the second Fourier subspaces are
zero, on average, with variance of 1/N.
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FIGURE 6 | Optimal linear estimator accuracy in a correlated heterogeneous population, example 2. (A) Noise distribution. The eigenvalue spectrum of the

noise-correlation matrix is presented by rank order. Dashed line shows the spectrum in the uncorrelated case. (B) Signal distribution. The squared overlap between

the signal, in terms of the covariance between stimulus and neural responses (see section Materials and Methods) and the eigenvectors of the correlation matrix is

shown by the eigenvalue rank order. (C) The squared overlap between the optimal linear estimator weights and the eigenvectors of the correlation matrix, arranged by

their eigenvalue rank order. (D) Optimal linear estimator noise. The total variability of the optimal linear estimator, which is the sum of the noise distribution in

(A) weighted by the projection in (C), is shown as a function of the population size (blue). Cyan line shows the uncorrelated case, for comparison. (E) Optimal linear

estimator angular accuracy. One over the variance of the angular estimation error is shown as function of the population size for the raw and shuffled data in solid blue

and dashed cyan, respectively.

In some cases we found that the structure of the second and
third eigenvectors was spatial. As the neurons are recorded by an
array of electrodes arranged on a square lattice (400µm spacing),
we can represent the eigenvectors by the electrode location of
each neuron instead of its preferred orientation. In cases where
several neurons were isolated on the same electrode, we show
their average. Figures 2E-G show an example of eigenvectors
from a different dataset that exhibit spatial structure. The
eigenvector of the first mode, as above, represents the uniform
mode, Figure 2E. This is to be expected as the uniform vector
will remain uniform in any representation. Examining the second
eigenvector reveals a collective mode of fluctuations, in which
neurons in the upper right fluctuate in anti-phase to neurons
in the lower left, Figure 2F. The third mode demonstrates a
collective mode of fluctuation with a finer spatial structure,
Figure 2G. A clearer picture of the eigenvector structure emerges
when the inter-stimulus-interval correlation matrix is used,
Figure 3 (top row, note that here we used also untuned units).
For comparison, Figure 2H shows the spatial structure of the first

eigenvector of the correlation matrix of shuffled data. Additional
examples of spatial modes from additional datasets are shown in
the second and third rows of Figure 3. One possibility to test the
significance on the spatial structure of these eigenvectors is to
examine their overlap with another vector that has a clear spatial
structure compared with the distribution of overlaps (scalar
dot product) of random vectors (Gaussian with zero mean and
variance one over the vector length).We find a significant overlap
of the 2ndmode (middle column in Figure 3) with the first spatial
Fourier mode (planar wave) in the x direction, p < 0.01, for
each of the presented data sets. However, a stronger indication
for the non-randomness of the structure is its stability over
different conditions. Comparing Figure 2 and Figure 3 one can
see the great similarity in the structure of the eigenvectors—in
spite of the facts that (i) Neurons were added (Figure 3 includes
also neurons that did not show a clear preferred orientation),
(ii) Figure 2 uses stimulus evoked data, whereas Figure 3 uses
inter-stimulus-interval data, (iii) The second and third rows in
Figure 3 are from a different data set than Figure 2.
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FIGURE 7 | Optimal linear estimator accuracy in a correlated heterogeneous population, example 3. (A) Noise distribution. The eigenvalue spectrum of the

noise-correlation matrix is presented by rank order. Dashed line shows the spectrum in the uncorrelated case. (B) Signal distribution. The squared overlap between

the signal, in terms of the covariance between stimulus and neural responses (see section Materials and Methods) and the eigenvectors of the correlation matrix is

shown by the eigenvalue rank order. (C) The squared overlap between the optimal linear estimator weights and the eigenvectors of the correlation matrix, arranged by

their eigenvalue rank order. (D) Optimal linear estimator noise. The total variability of the optimal linear estimator, which is the sum of the noise distribution in

(A) Weighted by the projection in (C), is shown as a function of the population size (blue). Cyan line shows the uncorrelated case, for comparison. (E) Optimal linear

estimator angular accuracy. One over the variance of the angular estimation error is shown as function of the population size for the raw and shuffled data in solid blue

and dashed cyan, respectively.

We conclude that the correlation matrix reflects several
distinct sources: a uniform mode of fluctuation; and modes in
which shared fluctuations are stronger among subsets of neurons
that are nearby in functional or physical space.

The Effect of Collective Modes on Noise
Distribution
The eigenvalue of a correlation matrix can be thought of as the
variance of the fluctuations in the direction of the corresponding
eigenvector. The fluctuations in the responses of different
neurons in the direction of a collective mode are correlated and,
consequently, will not be averaged out by the summation; rather
they will add to yield an eigenvalue that scales linearly with
the number of neurons that participate in the mode. Thus, the
collective nature of these modes implies that the noise (i.e., the
variance or respective eigenvalue of the correlation matrix) in
each mode grows linearly with the population size N. This is in
contrast to shuffled data, in which noise in eachmode will remain
fixed due to the absence of correlations.

Figure 4 shows the eigenvalue spectrum of the correlation
matrix for an example data set, as a function of the population
size, N. For each value of N, we averaged the spectrum over 100
random choices of a population of N neurons out of Nmax = 71
in this example (except for populations of 1, 70, and 71 neurons).
Thus, the top blue line shows the averaged eigenvalue of the first
eigenvector, over 100 realizations of random subpopulation of N
neurons. Similarly the top green line depicts the average second
eigenvalue, and so on. The eigenvectors for smaller populations
do not, of course, need to be identical to those identified in the
full population; that is, the first eigenvalue may in principle
capture a different fluctuation mode for a small population
than a large one. However, we found the eigenvectors—
particularly the first eigenvector—were remarkably similar
across correlation matrices computed from different
subpopulations of neurons (see e.g., Figure 2 and first row of
Figure 3).

The linear scaling of the eigenvalues of the shared modes
implies that for large populations each collective mode accounts
for a finite fraction of the entire variability. As the total variability
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in the population (i.e., the normalized variability or trace of the
correlation matrix) equals the population size, N, this fraction
can be estimated by the slope of the linear fit for the scaling
of the eigenvalue with the population size. Figure 4B shows
the distribution of the fraction of the variance in each of the
first three shared modes across the different data sets. The first
mode accounts for 11 ± 4%, the second 4 ± 1.4%, and the
third 3 ± 1% of the entire variability. Figure 4C shows the
eigenvalue spectrum of the correlation matrix as function of the
population size for shuffled data for comparison (note the scale).
The maximal eigenvalue increases sub-linearly, as expected from
the Marcenko-Pasture distribution when the number of trials per
eigenvalue is decreased.

It is important to note that correlations do not increase noise
but rather re-distribute it. Thus, one can think of the spectrum of
the correlation matrix as the distribution of noise in the system.
As the sum of all eigenvalues is N (population size), the existence
of strong shared modes requires the existence of modes with
lower (than shuffled) noise levels.

The Effect of Collective Modes on
Population Codes
The utility of a population code is that, in principle, it allows for
the accumulation of signal from many neurons. Shared modes
of fluctuation can limit the information content of a population
code, as the noisemay increase as fast as the signal yielding a finite
signal to noise ratio. However, whether noise correlations actually
limit information depends also on the distribution of the signal
relative to the noise (Averbeck et al., 2006; Kohn et al., 2016).
Below we show three examples—applied to both raw and shuffled
data—to illustrate how the performance of the decoder can be
understood by its relation to the eigenvectors of the correlation
matrix.

Example 1: The population vector (Georgopoulos et al., 1982),
pv, is a linear weighted average of the neuronal responses with
a specific choice of weights: the response of each neuron is
weighted by a two dimensional vector pointing at its preferred
orientation, pv = r · ff2. Thus, the population vector can
only extract information from the second Fourier mode of the
neuronal responses, as a linear projection onto that mode. In
most situations, the pv is a suboptimal decoder—it extracts
less information than that extracted by the best linear decoder.
However, this decoder has been widely used in previous work
(Georgopoulos et al., 1986; Seung and Sompolinsky, 1993; Salinas
and Abbott, 1994; Groh et al., 1997; Sompolinsky et al., 2001;
Hohl et al., 2013).

The effect of noise correlations on the population vector is
demonstrated in Figure 5. Figure 5A shows the eigenvalue
spectrum for this example dataset, which reflects the
distribution of noise. The variance of the population vector
is determined by the overlap of the population vector weights,
ff2 = (ei2ϕ1 , ei2ϕ2 , . . . ei2ϕN )/

√
N , with these eigenvectors.

Figure 5B shows the (squared) projection of the population
vector weights on the different eigenvectors of the correlation
matrix, arranged according to their eigenvalue. The population
vector has a considerable projection on the several largest shared

modes of fluctuation, whereas its projection onto the higher
order modes that have less than average variance is rather low.
Furthermore, the projection of the population vector onto the
shared modes with large eigenvalue converges to a finite limit as
N grows (Figure 5C). In contrast, the projections onto higher
modes, which are added as the population size increases, are
decaying fast to zero. The black line shows for comparison the
expected overlap of two N-dimensional random vectors, which
is 1/N. Thus, the population vector has finite overlap with the
collective modes in which the noise grows linearly with N. As
a result, the total variability of the population vector, which is
given by the sum of the product of each eigenvalue (Figure 5A)
with its projection onto the population vector (Figure 5B),
grows linearly in N (Figure 5D). Note that the population vector
variability can also be computed directly from the correlation
matrix as a bi-linear form (ff2)tC(ff2). As the signal that the
population vector extracts grows linearly with N as well, the
signal to noise ratio should converge to a finite limit, resulting
in the saturation of the population vector accuracy at large N
(with the asymptotic accuracy depending on the relative rate of
increase of the signal and noise).

Figures 5E-H repeat the above exercise with shuffled data.
As the amount of data is finite the eigenvalue spectrum
and the noise distribution is not completely flat, Figure 5E.
However, shuffling removes the structure of the noise
resulting in a uniform distribution of signal across all
modes, Figures 5F,G. As a result, the total variability of the
population vector remains fixed as the population size grows,
Figure 5H.

The consequences of the different alignment of the noise with
the readout weights, for raw and shuffled data, can be compared
directly by looking at population vector accuracy (specifically,
the inverse of the population vector angular estimation error
variance) in the real and shuffled data (Figure 5I; solid red and
dashed magenta lines, respectively). It is important to note that
the difference of the population vector accuracy in raw verses
shuffled data does not result from the mere fact that largest
eigenvalue of the correlation matrix is big for the raw data
(c.f. 1st eigenvalue ∼8 in the raw data Figure 5A and ∼1.4 in
shuffled data Figure 5E). But rather from the fact that the largest
eigenvalues grow linearly with the population size, Figure 4.
Thus, a main distinguishing factor between the raw and shuffled
data is the rate in which noise is accumulated by the readout. This
can be quantified by the rate of increase of the readout noise with
the population size. Specifically, below we shall use the slope of a
linear regression to Figures 5D,H.

Example 2: Figure 6 presents the signal to noise analysis for
the optimal linear estimator (Salinas and Abbott, 1994). For the
optimal linear estimator the signal is the vector of co-variation
of the response of each neuron with the stimulus (Shamir,
2014). Figure 6B shows how the OLE signal is distributed across
the eigenvectors of the correlation matrix, i.e., the (squared)
projections of the OLE signal vector on the eigenvectors of
the correlation matrix. The signal has a high projection onto
the directions with the high eigenvalues; however, it is widely
distributed across many directions. Note this is the same data
set as in Figure 5. The optimal linear estimator weights take
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into account both signal (Figure 6B) and noise (Figure 6A for
comparison); thus, the optimal linear estimator gives low weights
to the two noisiest collective modes, Figure 6C, even though
they contain a considerable part of the signal. Consequently, the
optimal linear estimator noise is rather similar to the shuffled case
in this example, Figure 6D (as in the population vector the noise
can be given by wtCw, where w is the normalized weight vector
of the estimator, note the scale of the ordinate), and its accuracy
is also comparable (Figure 6E).

Example 3: Figure 7 shows a somewhat different scenario,
for a different data set. Here, the signal is more widely
distributed (compare Figures 6B, 7B). As a result, the optimal
linear estimator can give a larger weight to the less noisy
modes of the system (compare Figure 6C and Figure 7C). In
this case the noise of the optimal linear estimator is reduced
relative to the shuffled case, Figure 7D, and its accuracy is
higher in the presence of correlations, Figure 7E. Comparing
the rate in which the different readouts accumulate noise, we
find that for the population vector across datasets this rate
of noise accumulation is 0.02 ± 0.02, and always positive,
whereas for the optimal linear readout it is −0.0012 ± 0.0013,
Figure 8.

Stability of the Global Structure of the
Correlations
The results we have presented above regarding the correlation
structure, spectrum and eigenvectors were obtained for averaged
correlation matrix. Namely, first the (conditional) covariance
matrix of the neural responses was calculated for every given

FIGURE 8 | The rate of noise accumulation by different readout algorithms.

The cumulative distribution of noise accumulation rate for the population

vector (red) and the optimal linear readout (blue) across 7 datasets. The rate

was defined as the slope of a linear regression to the increase of the readout

noise with the population size, e.g., Figures 5D, 6D, 7D.

stimulus. Then, the covariance matrix was averaged over the
different stimuli, and finally normalized to yield correlation
coefficient matrix. Consequently, the results we have shown are
for “stimulus independent” correlations, as we averaged over all
stimulus conditions.

Figure 9 shows 8 correlation matrices for one data set, each
for a different stimulus orientation (out of 36 stimuli). The
mean correlation matrix is shown at the bottom right. The
estimated correlation matrices are similar to each other but
not identical. However, this is to be expected as each stimulus-
dependent correlation matrix has N(N − 1)/2 ≈ 2500 different
elements and only T = 135 trials per stimulus to estimate
them. One would expect fluctuations with standard deviation of
1/
√
T ≈0.086 (if there are no correlations). Consequently, the

main noticeable difference is that the (finite sample estimation)
noise in the averaged (or “stimulus independent”) correlation
matrix is smaller by a factor of

√
36 = 6 (see also [32]).

To study the similarity of the correlation matrices we
examined more global features. Figures 10,11 show the spectra
and first eigenvector for the eight conditional (or “stimulus
dependent”) correlation matrices in blue and of the average
correlation matrix in red (bottom right). The eigenvalue
spectrum shows a distinct qualitative similarity: two relatively
well separated principle eigenvalues followed by a semi-
continuous tail of smaller eigenvalues. The different eigenvectors
also seem to share qualitatively similar features. To quantify
their similarity we computed the cosine of the angle between
each eigenvector for a given stimulus and the corresponding
eigenvector of the averaged correlation matrix. We find that for
the first eigenvalue the cosine is 0.93 ± 0.02 (mean± std across
the 36 different orientations) and for the second eigenvector
0.83 ± 0.05. Across datasets the mean cosine for the first
eigenvector is 0.88± 0.12, for the second eigenvector 0.63± 0.21,
and for typical eigenvector 0.15 ± 0.08. In addition, we find
similar correlation structure during the inter-stimulus-interval.
For the specific example of Figure 11 the cosine between the
first eigenvector of the average correlation matrix and the inter-
stimulus-interval is 0.8 and for the second eigenvector 0.6. Across
datasets the cosine between of the angle the first eigenvector of
the average correlation matrix and of the inter-stimulus-interval
correlation matrix is 0.87 ± 0.1, and for the second eigenvector
0.57± 0.32.

DISCUSSION

We find that neuronal noise correlations have a non-trivial
structure. Trial-to-trial fluctuations are composed of a few
large collective modes of fluctuations and a semi-continuous
tail of small eigenvalues (Figure 1D). The magnitude of the
fluctuations in the collective modes grows linearly with the
population size with a ratio that decreases with the order of the
mode (Figure 4B). Consequently, as the population size grows,
more eigenvectors become significant (Figure 4A). We find that
about 10% of the eigenvalues are collective modes (Figure 1D,
inset).

The structure of the collective modes is extended, involving
most of the neurons in the population (Figure 2). The largest
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FIGURE 9 | Stimulus dependent correlation matrices. Nine correlation matrices from the same data set are shown in color code as function of the neuron’s preferred

orientation: (A-H) Show the correlation matrices for a given stimulus orientation (out of 36 stimuli). (I) Shows the mean correlation matrix.

FIGURE 10 | Eigenvalue distribution for stimulus dependent correlation. The distribution of eigenvalues for the 9 matrices in this figure is shown by rank order (open

circles). The gray region depicts the range between the maximal eigenvalue obtained over 1,000 realizations of shuffled data and the minimal one for each case.

(A–H) Show the distribution for a given stimulus orientation (out of 36 stimuli). (I) Shows the distribution for the mean correlation matrix.

collective mode represents a “uniform” mode of fluctuations,
as observed in both awake (Arieli et al., 1996; Yu et al., 2011;
Rabinowitz et al., 2015; Engel et al., 2016) and anesthetized (Ecker
et al., 2014; Lin et al., 2015; Schölvinck et al., 2015) animals. The
second and thirdmodes often have spatial or functional structure.

It is important to note that the ability to detect additional
structure requires sufficient data, both sufficient trial number to
accurately estimate the correlation matrix and sufficient neurons
to see more distributed patterns of activity. It is easy to miss
non-uniform modes with less data (see e.g., Figure 10).
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FIGURE 11 | The principal eigenvector for stimulus dependent correlation. The eigenvector corresponding to the largest eigenvalue for the 9 matrices in Figure 10

and this figure is shown by neuron number. (A–H) Show the principal eigenvector for a given stimulus orientation (out of 36 stimuli). (I) Shows the principal eigenvector

for the mean correlation matrix.

Our analysis of the structure of neuronal noise correlations
was based on studying the correlation coefficients matrix, as is
customary in the field. However, when studying the accuracy
of linear population codes the covariance matrix is the more
natural quantity. The use of correlation coefficient matrix
facilitates the comparisonwith other studies. In addition, it assists
the investigation of the underlying structure by removing the
considerable variability on the diagonal of the covariance matrix,
namely the distribution of variances. Nevertheless, qualitatively
similar findings arise from the investigation of the covariance
matrix, Figure 12.

The magnitude of the collective modes is relatively small.
The relative strength of the mode, in terms of the eigenvalue
divided by N, is typically about 10% for the “uniform mode”
and less than 5% for other modes. However, their potential
effect on information coding results not from their relative
size, but from the fact that their variance grows with the
population size, causing decoding accuracy to asymptote to a
finite value as population size increases, at least for the population
vector, Figure 12C. Thus, we emphasize, that these results are
fundamentally different than the common example of how the
accuracy of a suboptimal readout is less than that of the optimal.
The difference in the population vector and the optimal linear
readout performances is not quantitative, but qualitative. The
saturation of the population vector accuracy is evident from
the linear scaling of its noise (Figure 12B), which allows us to
compute its asymptotic accuracy (Figure 12C).

On the other hand, the performance of the optimal linear
estimator does not appear to show any sign of correlations
limiting information–at least for populations of about 100

neurons. The main difference for the different behavior of
the population vector and the optimal linear readout is that
the population vector defines its weights based only on the
signal, whereas the optimal linear readout takes into account
the noise distribution as well. Why do we fail to observe
saturating performance, as predicted by finite psychophysical
accuracy (Moreno-Bote et al., 2014)? Recent work estimated the
required number of simultaneously recorded neurons to observe
the saturating effect to be on the order of several thousands
(Kanitscheider et al., 2015), whereas in our datasets we have
less than 100 neurons. As we find that about 10% of the modes
are collective modes of fluctuations, it is reasonable to assume
that for a population of several thousands of neurons additional
modes will manifest possibly including information limiting
modes. Note, however, that such population size may also require
collecting an order of magnitude more trials in order to obtain a
fair estimate of the correlation matrix.

In some cases the accuracy of the optimal linear readout is
better in the presence of correlations than in shuffled data. This
finding has been presented recently in some studies as beneficial
correlations (Lin et al., 2015; Franke et al., 2016; Zylberberg et al.,
2016). Alternatively, one may argue that the comparison with
shuffled data is unclear. Shuffling does remove correlated noise,
rather it re-distributes it (Shamir, 2014).

Recently, it was suggested that stimulus dependent
correlations improve coding accuracy of linear readouts
and that stimulus independent correlations that are obtained by
averaging the correlations over different stimulus conditions are
harmful. Could this be the reason for the information limiting
effect of the population vector accuracy? No – the error of the
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FIGURE 12 | Structure of the covariance matrix. (A) The eigenvalue spectrum of the response covariance matrix is shown as function of the population size (same

data set as in Figures 1, 5, 6). For every population size, n, the eigenvalue spectrum was averaged over 1,000 (compare with 100 for the correlation matrix spectrum

in Figure 4) random choices of subpopulations of n neurons out of N = 77 (except for n = 1, N−1, and N). The dashed line shows the mean variance in the

population. (B) The population vector noise is plotted as function of the population size. We separated the noise into two contributions. The first contribution is to

fluctuations in the magnitude of the population vector, i.e., projection on PVc= (cos2ϕ1, cos 2ϕ2, . . . cos 2ϕN )
√

2/N (blue), where we measure the preferred

orientations of the neurons relative to stimulus orientation. These fluctuations do not affect the angular estimation of the population vector (that we focused on here).

However, one may consider scenarios in which the magnitude of the population vector carries relevant information e.g., stimulus contrast or degree of confidence in

the estimation. Thus, fluctuations in the magnitude of the population vector may affect the estimation of contrast or the confidence in the angular estimate, but will not

affect the angular estimation of the orientation. The second, contribution is to fluctuations in the tangential direction of the population vector, i.e., projection on

PVs= (sin2ϕ1, sin 2ϕ2, . . . sin2ϕN )
√

2/N (blue). Fluctuations in this direction will affect the angular estimation of the orientation. (C) Assuming the variability in the

direction of PVs will continue to scale linearly with the population size one can compute the asymptotic accuracy of the population vector as (square root of) the ratio

of linear slopes of noise and signal (where the signal is the projection of the population tuning curve on the direction of PVc) in the limit of large N. Note that the

difference in the rate of noise growth in the radial and tangential directions (slope of blue vs. red curves in B) reflects stimulus dependence of the correlations.

population vector estimation was not computed on averaged
data. Care was also taken to separate the data to training set
and generalization set. The training set was used to define
the preferred orientations of the neurons for the population
vector. The generalization set was used to estimate the error.
Furthermore, we find high similarity in the global features of
the noise structure between the stimulus dependent correlation
matrices, the average stimulus independent matrix and the inter-
stimulus interval correlation structure. Nevertheless, this should
not be taken to imply that the correlations are independent
of the stimulus or that this dependence has no computational
implications. The difference in the rate of noise growth in the
radial and tangential directions of the population vector (slope of
blue vs. red curves in Figure 12B) reflects stimulus dependence
of the correlations.

Ecker et al. (2014) used Gaussian process factor analysis
to investigate the correlations structure. They find that most
of the correlated variability can be accounted for by a single
global parameter that modulates the activity of the entire
population, which they link to the “brain state transitions
under anesthesia.” Schölvinck et al. (2015) reported that a

single uniform mode of fluctuations accounts for most of the
correlated variability in their measured responses. Similarly,
we also find that the most prominent collective mode of
fluctuations is the uniform mode. It is important to note that
such common modes are likely prominent in the awake state
(Arieli et al., 1996; Yu et al., 2011; Rabinowitz et al., 2015; Engel
et al., 2016), although they may be enhanced under anesthesia.
However, in addition to the uniform mode we find additional
collective modes of fluctuation that exhibit a clear meaning.
Although these additional modes are considerably weaker than
the uniform mode their effect on population codes may be
dramatic and highly dependent upon the readout algorithm
used to extract the information from the neuronal population
response.
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