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Bioinspired Immobilization of 
Glycerol Dehydrogenase by Metal 
Ion-Chelated Polyethyleneimines 
as Artificial Polypeptides
Yonghui Zhang1, Hong Ren1, Yali Wang1, Kainan Chen1, Baishan Fang1,2 & Shizhen Wang1,2

In this study, a novel, simple and generally applicable strategy for multimeric oxidoreductase 
immobilization with multi-levels interactions was developed and involved activity and stability 
enhancements. Linear polyethyleneimines (PEIs) are flexible cationic polymers with molecular weights 
that span a wide range and are suitable biomimic polypeptides for biocompatible frameworks for 
enzyme immobilization. Metal ion-chelated linear PEIs were applied as a heterofunctional framework 
for glycerol dehydrogenase (GDH) immobilization by hydrogen bonds, electrostatic forces and 
coordination bonds interactions. Nanoparticles with diameters from 250–650 nm were prepared that 
exhibited a 1.4-fold enhancement catalytic efficiency. Importantly, the half-life of the immobilized 
GDH was enhanced by 5.6-folds in aqueous phase at 85 °C. A mechanistic illustration of the formation 
of multi-level interactions in the PEI-metal-GDH complex was proposed based on morphological and 
functional studies of the immobilized enzyme. This generally applicable strategy offers a potential 
technique for multimeric enzyme immobilization with the advantages of low cost, easy operation, high 
activity reservation and high stability.

Natural multi-enzyme complexes are biomolecular machines that are assemblies of several enzymes and have 
been perfected over millions of years of evolution. Various synergistic interactions induce the formation of precise 
quaternary structures that guarantees high catalytic efficiency and stability1. The high affinities of metal ions for 
protein side chain provide considerable interactions and folding energies compared with weak interactions, i.e., 
hydrophobic interaction and hydrogen bonds. The metal ions that are in natural protein-protein interfaces stabi-
lize quaternary or even the supramolecular protein structures and mediate transient protein-protein interactions. 
Additionally, both the structural and functional contributions of a metal ion are responses to the factors that 
affect the coordination of the metal ion, e.g., the presence of the metal ion itself, external chelators and pH value2. 
Inspired by their natural functions in coordination, metal ions are increasingly being applied to the assembly of 
protein architecture3.

Linear polyethyleneimines (PEIs) are flexible cationic polymers with molecular weights that vary over a 
wide range and are suitable for mimicking polypeptides. Linear PEIs contain uniform secondary amino groups 
that simplify the mechanistic study of the interactions between PEIs and enzymes, whereas branched PEIs con-
tain primary, secondary and tertiary amino groups. Specifically, PEIs are biocompatible and are widely used as 
efficient gene carriers4. A previous study indicated that coating surfaces with hydrophobic polycations such as 
N,N-dodecyl, methyl-PEI kill viruses on-contact in vitro while being physically safe for human beings5. The use 
of PEIs has been reported in enzyme immobilization, for example, in the coating of enzyme surfaces6–8, PEI-based 
cross-linking to form PEI-CLEAs9 and as promoters for enzyme immobilization10. However, the majority of 
reports have used branched PEIs and merely regarded them as modifiers of solid carriers.

Oxidoreductases are playing an increasingly important role in the diverse productions of fine, special, and 
bulk chemicals due to their exceptional selectivity11. Most oxidoreductases are multimeric enzymes that are more 
fragile than hydrolases and do not survive the challenges of extreme temperature, pH, co-solvent, and shear and 
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surface forces when applied in industrial biocatalysis processes. The stabilities of oxidoreductases are frequently 
fundamental limitations of their applications. Inactivation typically begins with the loss of the integrity of the 
quaternary structure of the multimeric oxidoreductases followed by the loss of the tertiary structure (for the sub-
units of enzymes) and then an irreversible denaturation step12,13. The stability of oxidoreductases can be improved 
by immobilization14, medium engineering15 or protein engineering16,17. Typical immobilization strategies include 
covalent immobilization, entrapment and adsorption18,19. However, due to distortion of the tertiary structure, 
blockage of the active site, and diffusion limitions20, approaches that can both maintain high enzyme activity and 
systematically improve enzyme stability are lacking.

In this paper, the potential of metal ion-chelated linear PEIs applied as artificial polypeptides for bioinspired 
immobilization of multimeric oxidoreductases was studied. Glycerol dehydrogenase (GDH) from Klebsiella 
pneumonia was selected as a model of multimeric dehydrogenases. The heterofunctional interactions of metal 
ion-chelated linear PEIs with amino acid residues, including hydrogen bonds, electrostatic forces and coor-
dination bonds, were considered. Morphological and functional studies of the enzyme immobilization by the 
metal-ion coordinated PEIs were performed to verify the mechanism of the improvements in enzyme activity 
and stability.

Results
Effect of Metal ion and PEI on enzyme activity.  To obtain immobilized enzymes with preferable activ-
ities, it was necessary to evaluate the effects of the metal ions on the GDH activity according to the selected 
metal ion. Metal ions not only act as coordination cross-linkers between linear PEIs and enzymes but can also be 
activators or inhibitors of enzymes in the immobilization process due to metal-ion coordinated PEIs. Structure 
study of GDH from Bacillus stearothermophilus demonstrated that divalent metal ion, Zn2+ was required for the 
multimer formation and enzymatic catalysis of GDH21. The natural GDH-bound Zn2+ were substituted with sev-
eral divalent metal ions and the enzyme activity was significantly altered22,23. Therefore we selected six divalent 
metal ions (Cu2+, Ni2+, Zn2+, Mn2+, Mg2+ and Ca2+) to investigate the effects of metal ions on GDH activity. The 
GDH activities were assayed after incubating GDH with metal ions for 1 h at 4 °C. Figure 1 demonstrates that 
Mn2+ improved the GDH activity by 1.1-fold, whereas the other five metal ions inhibited the enzyme to varying 
degrees at high concentrations. Therefore, these properties made Mn2+ an outstanding metal ion for coordinated 
immobilization.

The effects of PEI concentration on GDH activity were tested by assaying the relative activities after the incu-
bation of GDH (0.5 mM) with linear PEI at concentrations ranging from 0 to 500 μM for 1 h. As shown in Fig. 2, 
increasing the PEI concentration led to increases in the immobilized GDH activity. At the final PEI concentra-
tions of 100 μM and 500 μM, the GDH activities were increased by 58.8% and 90.6%, respectively.

Coordination immobilization of GDH.  Linear PEIs acted as framework for GDH immobilization and 
provided the multi-amine group for coordination with the metal ion. Scanning electron microscopy (SEM) 
images of GDH immobilized with manganese-chelated PEIs are presented in Fig. 3. The PEI-Mn2+-GDH formed 
a branched feather-like structure (Fig. 3A). Dynamic light scattering analysis of the PEI-Mn2+-GDH (Fig. S1) 
indicated that the diameters of the immobilized enzymes were in the range of 100 to 1000 nm, and the majority 
of the enzymes had diameters of 250–650 nm. The process of the promotion of GDH immobilization by the 
metal-ion coordinated PEI is illustrated in Fig. 3(Top). First, linear PEIs attached together to form a large web 
structure through metal coordination binding. As shown in Fig. 3A, the obtained PEI web formed a long PEI 
string with a length over 200 μm, suggesting that linear PEIs was able to sufficiently expand probably due to 
the internal electrostatic repulsions between the amine groups of the PEIs at neutral pH24. After the PEI frame-
work was formed, GDH was added and linked to the manganese-chelated PEIs. Meanwhile, the GDH monomers 
were able to couple with other GDH monomers25. Homologous oligomerization of GDH resulted in an octamer 

Figure 1.  The effect of metal ions on GDH activity. Reaction conditions: glycerol, 0.2 M; NAD+, 2 mM; 
enzyme, 0.25 μM; pH, 10.0; temperature, 30 °C. The relative activity is expressed as a percentage of the original 
activity assayed without the metal ions. The activity was assayed as described in the Methods section after 
incubating GDH with the various metal ions for 30 min.
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(50–100 nm in edge length, Fig. 3C) that could be further assembled into a larger inerratic enzyme-metal slice 
(250–650 nm in edge length, Fig. 3B) via the metal coordination interaction. Additionally, the oligomeric GDH 
assemblies were coated and stabilized by the excessive manganese-chelated PEIs, which further prevented the 
disassociation of the GDH subunits. Metal-mediated oligomeric assemblies of enzymes have been reported to 
improve the crystallizability of proteins and promote protein crystallization by enhancing the interactions of the 
subunits of the enzyme26–29, which may explain the formation of the inerratic enzyme-metal slice.

Figure 2.  The effect of PEI concentration on GDH activity. The GDH activity was assayed as described in 
the Methods section after incubating GDH with linear PEI at concentrations ranging from 0 to 500 μM for 1 h. 
Reaction conditions: glycerol, 0.2 M; NAD+, 2 mM; enzyme, 0.25 μM; pH, 10.0; temperature, 30 °C. The relative 
activity was calculated as the percentage of the original activity assayed before incubation with linear PEI.

Figure 3.  (Top) Illustration of the formation of the PEI-metal-GDH by multi-level. (Bottom) SEM image of 
(A) Overall pattern of PEI-Mn2+-GDH. (B) The GDH-metal assemblies via metal coordination interaction slice 
(C) Free GDH octamer. The PEI-Mn2+-GDH complex was prepared as descripted in Method section.



www.nature.com/scientificreports/

4Scientific Reports | 6:24163 | DOI: 10.1038/srep24163

Analysis of the interaction of PEI-Mn2+ and GDH.  The interaction of PEI-Mn2+ and GDH was ana-
lyzed with differential scanning calorimetry (DSC). To characterize the denaturation behavior of GDH and 
PEI-Mn2+-GDH, the temperature dependence of the differential heat was measured. Moreover, the thermosta-
bility of PEI-Mn2+-GDH compared with that of free GDH was studied with an assay that measures the changes in 
the heat capacity of a given protein in solution during the thermal unfolding process. The heat capacity changes 
(ΔCp) of free GDH (Fig. 4a) and PEI-Mn2+-GDH (Fig. 4b) were tested. The ΔCp typically ascribed to a hydropho-
bic effect is negative, which indicates that when the ordered waters from a hydrophobic surface move to the bulk 
solution, additional energy must be absorbed. The ΔCp of PEI-Mn2+-GDH was one order of magnitude higher 
than that of free GDH, indicating that the immobilization greatly improved stability.

Improvement of pH adaptability by coordination immobilization.  The optimal reaction pH for 
free GDH and PEI-Mn2+-GDH were determined. As shown in Fig. 5, the immobilized GDH changed the optimal 
pH from 11 to 10 and exhibited high activity in a relatively wide range of pH from 7 to 12, while free GDH only 
achieved high activity at pH 11. PEI-Mn2+-GDH exhibited a 2.9-fold increase in activity compared with free 
GDH. Immobilization greatly broadened the pH adaptability of GDH from strong alkaline into alkalescence, 
which will promote the application of GDH, particularly for coupling with other dehydrogenases for cofactor 
regeneration.

Improvement of thermostability by coordination immobilization.  The thermostabilities of 
PEI-Mn2+-GDH and free GDH were studied at 70 °C and 85 °C. As shown in Fig. 6, PEI-Mn2+-GDH exhib-
ited greater heat resistance than free GDH. After incubation for 90 min at 70 °C, PEI-Mn2+-GDH still presented 
nearly 50% of its initial activity, while free GDH was almost totally inactivated. Significant improvements in 

Figure 4.  Differential scanning calorimetric curves of free GDH (a) and immobilized GDH (b).

Figure 5.  The effect of pH on the activities of free GDH and PEI-Mn2+-GDH (▪: free GDH; ◻: PEI-Mn2+-
GDH). 100 mM sodium phosphate buffer (pH 6–8) and 1 M NH4Cl-NH3• H2O buffer (pH 9–12) were used to 
determine the optimal pH range. Reaction conditions: glycerol, 0.2 M; NAD+, 2 mM; enzyme, 0.25 μM; pH, 
6–12; temperature, 30 °C. The relative activity at the optimum pH for free GDH were taken as 100%.
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thermostability were also demonstrated at 85 °C; after incubation at this temperature for 30 min, free GDH was 
completely deactivated, but PEI-Mn2+-GDH only lost 35% of its initial activity.

The thermal deactivation kinetics of free and immobilized GDH were investigated and found to be first-order 
processes (Fig. 6). Therefore, the thermal deactivation kinetics were studied according to Eq.(1), where Kd and E0 
are the deactivation rate constant and initial enzyme activity (E0 =  100%), respectively30,31.

= ⋅ −E E e (1)K t
0

d

The deactivation rate constants and half-lives were calculated based on a first-order deactivation process (Table 1). 
The deactivation energies of free GDH and PEI-Mn2+-GDH were calculated according to Eq. 2.
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ΔΔG was defined as the deactivation energies of PEI-Mn2+-GDH minus the deactivation energies of free GDH. 
The ΔΔG values shown in Table 2 indicate that the immobilization increased the deactivation energy and 
improved the thermostability, especially at the high temperature.

Kinetic study of the immobilized enzyme.  The kinetic parameters of the free GDH and PEI-Mn2+-GDH 
in glycerol oxidation were determined using the Lineweaver-Burke method (Fig. S2). The Michaelis-Menten 
constant Km increased slightly by 20%, which might have been due to the increased mass-transfer limitation32,33. 
Moreover, the catalytic number (kcat) and the catalytic efficiency (kcat/Km) of PEI-Mn2+-GDH were 1.7- and 
1.4-fold those of the free enzyme (Table 3).

Figure 6.  Thermostabilities of free GDH and immobilized GDH (a: free GDH at 70 °C; b: PEI-Mn2+-GDH 
at 70 °C; c: free GDH at 85 °C; d: PEI-Mn2+-GDH at 85 °C). The relative activity is expressed as a percentage 
of the original activity as assayed before incubation at the different temperature. Reaction conditions: glycerol, 
0.2 M; NAD+, 2 mM; enzyme, 0.25 μM; pH, 10.0; temperature, 30 °C.

Temperature (oC)

GDH PEI-Mn2+-GDH

Kd (min−1) t1/2 (min) Kd (min−1) t1/2(min)

70 0.014 ±  0.001 49.5 0.008 ±  0.001 86.6

85 0.127 ±  0.009 5.5 0.019 ±  0.002 36.5

Table 1.   Deactivation rate constants and half-lives of free GDH and immobilized GDH.
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Reusability of PEI-Mn2+-GDH nanoparticles.  The reusability of PEI-Mn2+-GDH nanoparticles was 
investigated. Fig. S3 shows that the activity of PEI-Mn2+-GDH gradually decreased over 5 cycles. PEI-Mn2+-GDH 
retained 71% and 53% of its initial activity after cycling through 3 and 5 successive reactions, respectively. The 
decrease in the activity of the recycled catalyst may be due to the leakage of GDH. The coordination interac-
tion between the enzyme and the PEI carrier that was cross-linked by metal ions was influenced by pH and ion 
strength and was a relatively weak bond compared with a covalent bond. The flexibility of the nanoparticles pro-
vides the possibilities of reversible immobilization and the enhancement of immobilization strength by condition 
optimization and process operations.

Discussion
The majority of oxidoreductases denature quickly at high temperatures, which greatly limits their applications. 
There has been reports on thermophilic dehydrogenase in the aqueous phase or specific dehydrogenases in 
organic phase catalysis34,35. However, those thermostable dehydrogenases require an intrinsically thermophilic 
nature or organic solvent tolerance, which are usually largely dependent on enzyme molecular modification or 
the discovery of extremozymes. To engineer oxidase-reductase from biological entities into industrial applicable 
catalyst, some old immobilization techniques based on covalent bonding or absorption have been widely used to 
improve enzyme catalytic properties like activity and stability and permit catalyst reuse. However, it often resulted 
in generating steric hindrances, making serious impairment to enzyme activity.

Recent studies about GDH immobilization have demonstrated that traditional immobilization approaches via 
absorption and covalent bonds could cause severely enzyme activity lose. Kumar et al. reported that GDH only 
retained 20% specific activity when the enzyme was absorbed with magnetically-separable mesoporous silica, 
and retained 27% specific activity when further crosslinking with glutaraldehyde treatment was implemented36. 
Agarose beads activated with different reactive groups including CNBr group, glyoxyl group and amine groups 
were used to covalently immobilize GDH and only retained 40–50% of enzyme activity in the present of polyeth-
ylene glycol (PEG)37. Activated silica coated magnetic Fe3O4 nanoparticles was used for the immobxilization of 
GDH via a glutaraldehyde linkage and resulted in 31% decrease of kcat compared with that of free enzyme38. In our 
study, via noncovalent immobilization, PEI-Mn2+-GDH immobilization system was constructed and exhibited 
excellent activity and stability enhancement.

As the support and cross linker of the immobilized structure, PEI and Mn2+ manifested positive effect on 
GDH activity. Positive effects of Mn2+ ions on GDH activity have been reported39,40. Mn2+ is a Lewis acid and an 
electrostatic stabilizer with intermediate properties relative to these other ions, including its radius length and 
borderline hard-soft character. Mn2+ ions exhibit good electron delocalization and a high chelating ability41, 
which aid the formation of flexible coordination bonds42. Furthermore, affinity binding and the formation of 
manganese clusters have been reported to be responsible for coupling protons and transferring electrons in oxi-
dation reactions43. Manganese can be replaced with other metals, i.e., magnesium and zinc44. Mn2+ has also been 
reported to be the activator of several oxidoreductases, including laccase, peroxidase, formate dehydrogenase and 
carbonyl reductase45–48. As the natural enzyme-bound metal ion, the increase of Zn2+ ion seem to had positive 
effect which was similar to Mn2+ and different from Cu2+, Ni2+, Mg2+ and Ca2+. The tendency difference between 
Zn2+ and other metal ion may be due to the different structural compatibility of metal ion to bind with GDH. 
6×  His tag was usually applied for recombinant protein purification by metal affinity chromatography. GDH 
was expressed with 6×  His tag tail which could provide stable binding force with Mn2+ ion in our immobiliza-
tion system. For enzyme without 6× His tag, there is still great chance to successfully immobilized using metal 
coordinated PEI if there are amide or imidazole ligands on the solvent accessible area49. For example, several 
enzyme-metal nanoflowers was successfully constructed without 6×  His tag including albumin from bovine 
serum (BSA), α -lactalbumin, bovine milk, laccase, Glucose oxidase (GOx), horseradish peroxidase (HRP), and 
β -glucose25,30. Noteworthy, the utilization of this strategy in specific enzyme immobilization required careful 
studies and the obtained results could be varied case by case due to the difference in enzyme feature.

Temperature (oC)

ΔG of free GDH ΔG of PEI-Mn-GDH ΔΔG

(KJ/mol) (KJ/mol) (KJ/mol)

70 47.18 48.87 1.69

85 42.07 48.05 5.98

Table 2.   Thermodynamic parameters of deactivation for the free and immobilized GDH. Reaction 
conditions: glycerol, 0.2 M; NAD+, 2.0 mM; enzyme, 0.25 μM; pH, 10.0; temperature 70 °C.

GDH Km (mM) Vm (U/mg) kcat (s−1) kcat/Km (×103M−1s−1)

Free 21.6 ±  2.2 2.26 ±  0.04 2.03 ±  0.03 0.094 ±  0.004

PEI-Mn2+-GDH 26.0 ±  1.4 3.73 ±  0.04 3.36 ±  0.03 0.129 ±  0.002

Table 3.   Kinetic parameters of free GDH and immobilized GDH. The GDH activity was determined by the 
oxidation of glycerol (25–200 mM) in 1 M NH4Cl-NH3 H2O (pH 10.0) at 30 °C using 0.25 μM GDH and 2 mM 
NAD+.
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PEI is a strong polycation with a high proportion of amine protonation, which results in electrostatic attrac-
tions between the enzyme and PEI. Branched PEI has been reported to improve the activities of glucose dehydro-
genase and lecitase50,51. The multimer form of GDH was well stabilized by the hydrogen bonds between PEI and 
the amino acid residues on the enzyme surface, which formed a very efficient macromolecular cage around the 
enzymes. The macromolecular cage prevents the dissociation of the subunits of multimeric enzymes which would 
cause enzyme inactivation, and results in better enzymatic performance10. Furthermore, repulsive forces between 
neighboring PEI chains on the surface were formed by the protonation of a high proportion of the amino groups, 
which resulted in an extended conformation that maximized the interaction with the enzymes.

Changes in pH affect the multiple interactions between GDH subunits, including hydrogen bonds, electro-
static interactions and salt bridges, which sustain the multimeric form of GDH and may lead to the dissociation 
of subunits and inactivation52. The metal ions formed coordination bonds with both PEI and the enzyme that 
acted as a gentle cross-linker that greatly inhibited the dissociation of the subunits. Additionally, the distinctive 
buffering capacity of linear PEI due to the large amount of secondary amine groups enhanced the resistance of the 
immobilized enzyme to pH variations.

Investigation of thermodynamic parameters such as changes in the Gibbs free energy (∆ G) is good way for 
understanding the thermostability of biomolecules, providing further proof of thermostability enhancement by 
immobilization treatment. The increase of ΔG indicated that the metal-coordinated interaction of the subunits 
and the interaction between PEI and the enzyme reinforced the stability of the multimeric structure and pre-
vented subunit dissociation and thus improved the thermostability. These properties could greatly expand the 
applications of GDH in multi-enzyme catalysis and biosensors53.

The kinetic study showed an enhancement in kcat and kcat/Km, which can be primarily attributed to the sta-
bilization of the multimeric structure and the activation effect of the metal ions on the enzyme activity. It has 
been reported that metal ions in immobilized nanostructures can act as activation factors as free metal ions in 
solution25. The immobilization of dehydrogenases typically decreases enzyme activity due to distortions of the 
tertiary structure, blocking of the active site, diffusion limitations caused by support and unsatisfactory enzyme 
aggregation11. Generally speaking, the loss of activity tends to be “compensated” for with other enzyme proper-
ties, such as thermostability35, operational stability, tolerance to organic solvents and reusability. Surprisingly, 
both activity enhancement and stability improvement were achieved by metal ion-coordinated PEI immobili-
zation. First, the coordinate bonds formed by metal ion coordination between the imine group of the linear PEI 
and the enzyme amino acid residues were weaker than covalent bonds, which provided excellent flexibility to 
prevent the distortion of the enzyme structure relative to the use of chemical cross-linkers, i.e., glutaraldehyde. 
Reversible immobilization can be achieved to remove metal ions by chelation with chelating agents, such as 
EDTA. Second, for those enzymes that can be greatly activated by specific metal ions, the utilization of this spe-
cific metal ion as a cross-linker benefits the maintenance or even enhances enzyme activity. Third, immobilization 
using the metal-coordinated PEI enzyme generated nanoparticles with relatively small sizes of approximately 
250–650 nm (Fig. 3B) and well-distributed metal-chelated PEI skeletons. The formation of nanoparticles was 
anticipated to reduce the negative effect of immobilization on the substrate/product diffusion. In contrast, the 
traditional CLEAs generated a massive enzyme aggregation at the micrometer or millimeter scale, which caused 
severe diffusion limitations54.

To sum up, a generally applicable method for the noncovalently immobilization of enzymes using 
metal-chelated linear PEI as a flexible framework was developed. This method greatly improved dehydrogenase 
stability. Linear polyethyleneimines are flexible cationic polymers with molecular weights that vary over a wide 
range that are suitable as biomimic polypeptides for the formation of biocompatible frameworks for enzyme 
immobilization. Metal ion-chelated linear PEIs exhibit heterofunctional interactions with amino acid residues 
that include hydrogen bonds, electrostatic forces and coordination bonds. Coordination bonds induced by metal 
ions endow structure, chemical reactivity and stimuli-responsiveness to enzymes and can also tune enzyme activ-
ity55. The results indicated that the proposed bioinspired immobilization strategy provided a novel technique for 
multimeric enzyme immobilization for biocatalysis. Additionally, due to the biocompatibility, oxidoreductases 
immobilized by metal ion-chelated linear PEIs have great potential applications as biosensors and in vitro diag-
nostic reagents56–58.

Methods
Materials.  Glycerol, NAD+, poly (2-ethyl-2-oxazoline) (500kDa), CuSO4, NiSO4, ZnSO4, MnSO4, MgSO4 
and CaCl2 were purchased from Sigma-Aldrich (Tianjin, China). Ampicillin and isopropyl-β -d-thiogalactoside 
(IPTG) were purchased from TransGen Biotech (Beijing, China). All other chemicals were of analytical grade and 
were purchased from Sangon Biotech (Shanghai, China). E. coli BL21(DE3) pET-32a-GDH was constructed in 
our laboratory (not published, detailed information was listed in Supplementary information).

Expression and preparation of GDH.  E. coli BL21(DE3) pET-32a-GDH was grown at 37 °C in 1 L shaking 
flasks containing 200 mL of LB (Miller) media with 100 mg/L ampicillin. The expression of recombinant GDH 
was induced by the addition of 1 mM IPTG at an optical density (OD600) of approximately 0.5 for 6 h at 30 °C. The 
cells were harvested by centrifugation at 10000 ×  g for 10 min at 4 °C and disrupted by ultrasonication. The cell 
debris was removed by 20 min centrifugation at 12000 ×  g at 4 °C.

Crude cell extract was then applied to a Histrap column (5 mL, (GE Healthcare Corp., Piscataway, NJ, USA)) 
equilibrated with bind buffer (20 mM sodium phosphate, 0.5 M NaCl, 20 mM imidazole, pH 7.4). The column was 
equilibrated with binding buffer and eluted with elution buffer (20 mM sodium phosphate, 0.5 M NaCl, 500 mM 
imidazole, pH 7.4) at a gradient concentration. The fractions with the desire activity were desalted and concen-
trated using a Macrosep Advance Centrifugal Device (cut-off 10 kDa, Pall, East Hills, NY, USA).
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GDH activity assay.  The measurements of GDH activity were performed with testing of NADH (ε  =  6.22/
mM/cm) concentrations of 340 nm at 30 °C using a Thermo Scientific Multiskan Ascent Microplate Reader 
(Theromo Labsystems, Helsinki, Finland). The assay mixture contained 0.2 M glycerol, 2 mM NAD+, 1 M 
NH4Cl-NH3 H2O (pH 10.0) and 20 μL of enzyme solution. The volume of the reaction mixture was 200 μL in all 
cases. The reactions were initiated by the addition of the enzyme solutions. The enzyme activities were deter-
mined in triplicate. One unit of GDH activity was defined as the amount of enzyme required to catalyze the 
reduction of 1 μM NAD+ per minute.

Preparation of linear PEI.  Linear PEI was prepared using the protocol reported previously59. A mixture of 
10 g (500 kDa) poly (2-ethyl-2-oxazoline) and 500 mL (24%) HCl in pear-shaped flask was refluxed for 108 h with 
vigorous stirring. Using an ice water bath, KOH was slowly added in portions to neutralize the acid and attain a 
pH between 8 and 9. The produced linear PEI (217 kDa) was filtered and dried under vacuum at − 48 °C.

Formation of the PEI-metal-GDH complex.  Enzyme immobilization with metal-ion coordinated PEI 
was developed using metal ions as cross-linkers between the amine group of the PEI and the amino acid residues 
on the enzyme surface. A typical PEI-metal-GDH complex preparation was performed as follows.

Metal ion solution (0.2 mL, 1 M, final concentration =  9.9 mM) was added to 10 mL of linear PEI (1 mM, 
dissolved in distilled water, final concentration =  495 μM), vortexed for 30 s, and incubated for 10 min at 4 °C to 
obtain metal-chelated PEI. 10 mL of free GDH (50 μM, dissolved in 100 mM sodium phosphate buffer, pH 7.4, 
final concentration =  24.75 μM) was then mixed with metal-chelated PEI, vortexed for 30 s, and incubated at 4 °C 
for 30 min. The immobilized GDH was collected by centrifugation (1000 ×  g for 5 min at 4 °C). The precipitate 
was then washed three times with sodium phosphate buffer (100 mM, pH 7.4) to remove the unbound compo-
nents and stored at 4 °C. The morphology of the immobilized enzyme was characterized by scanning electron 
microscopy (SEM) and dynamic light scattering (DLS). For the SEM, 2 μl of immobilized enzyme was dropped on 
a silicon grid and allowed to evaporate overnight, and the sample was then coated with platinum (2-nm thickness 
using a JEOL JFC 1600 (JEOL, Tokyo, Japan) with an electric current of 10 mA for 30 s before imaging with a Zeiss 
Sigma SEM (Carl-Zeiss AG, Germany). For the DLS, the measurements were performed on a Malvern Nano ZS 
(Malvern Instruments, Worcestershire, UK).

The reuse of the PEI-Mn2+-GDH.  The reusability of the PEI-Mn2+-GDH was studied by recycling the 
immobilized enzyme through centrifugation (1000 ×  g for 5 min at 4 °C) after the first GDH activity assay fol-
lowed by three washes with sodium phosphate buffer (100 mM, pH 7.4). The activity of the recycled biocatalyst 
was tested. The activity during the first run was defined as 100%, and those during the successive runs are pre-
sented as relative activities.

Differential scanning calorimetry measurements.  The differential scanning calorimetry meas-
urements were performed on a MicroCal VP-DSC system (GE Healthcare, Northampton, Massachusetts). All 
samples with enzyme concentrations of 25 μM were degassed and measured at a scan rate of 60 °C/h with scan 
temperatures from 10 °C to 90 °C. Data analysis was performed using Origin (version 7.0) software provided by 
MicroCal.
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