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Abstract Models of systemic drug absorption after oral administration are fre-
quently based on a direct or a delayed first-order rate process. In practice, the
use of the first-order approach to predict drug concentrations in blood plasma fre-
quently yields a considerable mismatch between predicted and measured concen-
tration profiles. This is particularly true for the upswing of the plasma concentra-
tion after oral administration. The current investigation explores an alternative
model to describe the absorption rate based on the convection—dispersion equa-
tion describing the transport of chemicals through the GI tract. This equation is
governed by two parameters, transport velocity and dispersion coefficient. One so-
lution of this equation for a specific set of initial and boundary conditions was used
to model absorption of paracetamol in a 22-year-old man after oral administra-
tion. The GI-tract passage rate in this subject was influenced by co-administration
of drugs that stimulate or delay gastric emptying. The transport-limited absorp-
tion function is more accurate in describing the plasma concentration versus time
curve after oral administration than the first-order model. Additionally, it pro-
vides a mechanistic explanation for the observed curve through the differences in
GlI-tract passage rate.

Keywords NONMEM - Pharmacokinetics - Inverse Gaussian distribution -
Paracetamol - Gastric emptying
1. Introduction

Absorption of orally administered drugs from the GI tract is an important deter-
minant of the onset of the drug effect. Not surprisingly, the function describing
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absorption is a key component of a pharmacokinetic (PK) model. Models of
systemic drug absorption are frequently based on a first-order rate process. Closed-
form solutions have been derived for the simultaneous differential equations
describing first-order absorption and one and two compartmental disposition
(Shargel and Yu, 1999; Gabrielson and Weiner, 2000). The first-order absorp-
tion model assumes instantaneous presence of the drug in the gut compartment
and subsequently an exponential decrease of the absorption rate with time as dic-
tated by the absorption rate constant, K,. The introduction of a lag time between
oral administration and the onset of absorption accounts for delays due to passage
through the GI tract. A limitation of this model is that it predicts an unrealistically
sharp entrance front of the drug at the site of absorption.

In practice, the use of the first-order approach to predict plasma concentrations
frequently yields a mismatch between predicted and measured plasma concentra-
tion versus time profiles (Weiss, 1996; Higaki et al., 2001; Ring, 2001). The first-
order absorption model cannot describe sigmoid shapes in the upswing of the
plasma concentration—time curve. This is related to its exponential decrease of
the absorption rate with time, not allowing the presence of an inflection point (See
Fig. 1, left panel). Fitting PK models with first-order absorption to data may thus
hamper a sound interpretation of estimated absorption and disposition parame-
ters. Various alternatives have been discussed for the first-order absorption model.
A very extensive overview of different strategies to characterise drug absorption
profiles is provided by Zhou (2003), discussing an array of different absorption
models. One of these models is the Weibull distribution, which was suggested by
Piotrovskii (1987) as an empirical absorption kinetics model in order to improve
the description of the concentration—-time curve. Recently, Higaki et al. (2001) de-
veloped a set of six different time-dependent absorption models as alternatives
for the conventional first-order absorption model. These models, which include a

(1) First-order (2) Inverse Gaussian
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Fig.1 Shape of the absorption rate-time relationship and the corresponding concentration—time
curve in a 1-compartment model for (1) the first-order absorption model and (2) the inverse
Gaussian density function.
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time dependency in the absorption rate constant, are superior to the conventional
first-order model with a lag time in predicting plasma concentration curves. How-
ever, all of the proposed models contain at least one additional parameter than the
two parameters needed in the first-order absorption model.

Weiss (1996) has proposed to use the Inverse Gaussian Density (IG)-input
function as an alternative to the first-order absorption model to describe the
absorption—time curve. Modelling exercises have shown that this type of ab-
sorption model can adequately describe an inflection point (Fig. 1, right panel)
in the concentration-time curve when combined with a 1-compartment phar-
macokinetic model (Weiss, 1996; Weiss et al., 1997; Ring, 2001). The appeal-
ing aspect of this input function is that it contains just two parameters. These
parameters have a clear meaning in terms of the progress of the absorption
process.

A possible mechanism that can explain the IG shape of the absorption—time
curve is convective—dispersive transport from the site of administration to the gut.
The drug has to pass the oesophagus, the stomach, and the duodenum, before
arriving in the gut, which modulates the original input pulse. It is the purpose of
this paper to clarify the theoretical background and rationale of the convective—
dispersive transport equations in calculating absorption profiles. The application
of the absorption model is illustrated by an example from the literature (Nimmo
et al., 1973).

2. Theory
2.1. Mass balance

In pharmacokinetic models the mass balance at the absorption site, i.e. the gut
compartment, is considered as the result of an incoming transport flux, Nj,, loss
via excretion, Ny, and loss via absorption, Nyps:

dAg

dr = in(t) - Nout(t) - Nabs(t) (1)
where Ag is the amount of delivered drug at the site of absorption. The above mass
balance equation thus considers a point mass balance at the absorption site, with-
out specifying the local conditions that determine the terms on the right-hand side
of the equation. A common assumption is that a constant fraction is unavailable
for absorption and is consequently excreted:

Nout = (1 - F)]Vm (2)

where F is the bioavailability fraction. Assuming first-order absorption, this leads
to the following equation (Shargel and Yu, 1999):

3 PN~ Kao @)
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where K, is a rate constant, and Ni,(¢) is considered as a series of instantaneous
pulses, representing the dosages. Alternatively, it can be assumed that the absorp-
tion rate is not the limiting factor, but transport to the gut (N, ), which leads to the
following approximate equation:

Nabs = F]Vm (4)

In order to model the absorption process according to Eq. (4), the transport term
Nj, needs to be described as a function of time.

The theory for transport of tracer compounds, such as drugs, in bulk fluids that
move along a transport direction to a certain site is based on two physical concepts:

1. The concept of mass balance of drug along the one-dimensional transport axis:

oC oJ
P )
at 0z

where C is concentration, J is the mass flux, ¢ is time and z is transport distance.
whereby both C and J may vary with time and distance.

2. The assumption of a convective and a dispersive transport term to express the
mass flux along the transport direction:

J=vC— DE (6)
0z

with the mass exchange rate, N
N=aJ (7

where v is the transport velocity and D is the dispersion coefficient and « is
the cross-sectional area of the flow field, i.e. the mean cross-sectional area of
the GI tract. The convective term, vC, expresses the transport of drug with the
movement of food and liquid suspensions through the GI tract to the gut. The
dispersive term, DdC/dz, accounts for the dispersion in the transport pulse. The
dispersion coefficient joins together variations in velocity and tortuous transport
path within the GI tract, i.e. the flow lines are assumed to diverge and rejoin.

If no drug is eliminated during transport and if the dispersion coefficient and the
transport velocity are adopted as constants, combination of Egs. (5) and (6) yields:

aC 92C aC
—=D— —v— )
at 072 9z

which is known as the convection—dispersion equation (Carslaw and Jaeger, 1959;
Kreft and Zuber, 1978). The above partial differential equation can be used to
model the transport of drugs to the absorption site, by finding an expression for
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the flux, J, as a function of time at a certain distance from the entrance point (Egs.
(6) and (7)).

2.2. Initial and boundary conditions

To obtain the expression that gives the mass flux as a function of time and distance,
Eq. (8) must be solved for the appropriate initial and boundary conditions.
If no drugs are present in the GI tract, the valid initial condition is:

C=01=02>0. 9)

When drugs are taken orally in the form of soluble tablets or a solution, this can be
considered as an instantaneous injection into the GI tract. Therefore, the following
upper-boundary condition is pertinent:

DAC _Apsiy 150,220 (10)
v 0z va
where Ap is the dose and §(¢) is the Dirac delta distribution. Eq. (10) incorporates
continuity of flux at the upper boundary. This requirement for the mass balance
in organs has been discussed previously in the case of liver distribution kinetics
(Hisaka and Sugiyama, 1999; Roberts et al., 2000).

The lower-boundary condition concerns an assumption about the concentration
and/or the concentration gradient at the outlet. The mass balance discussed in
Egs. (1)-(4) is of little use in formulating the lower-boundary conditions, since
it represents a total mass balance without specifying the local condition needed to
solve Eq. (8). The nature of the lower-boundary condition has been discussed in
some detail (Parlange et al., 1992; Freijer et al., 1998; Hisaka and Sugiyama, 1999;
Roberts et al., 2000). In the derivation of the IG-input function it is assumed that
there is a negligible change of dispersion (mixing) when the food/liquid suspen-
sion leaves the duodenum and enters the gut, and the following lower-boundary
condition is pertinent:

aC

—=0,t>0,z= 11
9z =heEe (D)

2.3. Solution
The solution of differential equation (Eq. (8)) with the initial condition (Eq. (9))

and the boundary conditions (Egs. (10) and (11)) is provided in Kreft and Zuber
(1978). The following relationships and definitions are used:

DoC
Cpr=C— —— (12)
v 0z

where Cp the “flux-averaged” concentration, which relates to J by

J =vCr (13)
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The following dimensionless variables are used:

¢=vz/D (14)

T =v/D (15)

where ¢ and 7 are dimensionless distance and time, respectively.
Then, the solution for the concentration is (Kreft and Zuber, 1978; Veling, 1993):

C= IjaD;)z (\/% exp (— ¢ 4—Tr)2) ! —exp(¢)erfc <§ e >) (16)

where the complementary error function is defined as:

erfe(x) = % / exp(—u?)du. (17)

See for an overview of approximations of the complementary error function
Abramowitz and Stegun (1966). The solution for the flux-averaged concentration
is (Kreft and Zuber, 1978; Veling, 1993)

o3 (e[ en(57)

Equation (18) is used to express the absorption rate, and not Eq. (16), as the
latter expresses the resident concentration, and omits the concentration gradi-
ent required to calculate the total (convective and dispersive) flux (Hisaka and
Sugiyama, 1999; Roberts et al., 2000).

Additionally, the following integral, giving the total mass that has passed dis-
tance z at time ¢ is of interest (Veling, 1993):

_a/Cdu_AD <2erfc((i/ﬂ)> %exp(;)erfc(gf >> (19)

Methods to arrive at these solutions are extensively discussed in Carslaw and
Jaeger (1959).

2.4. Derivation of the Inverse Gaussian density function

The IG function, as proposed by Weiss (1996) utilises a statistical concept of ab-
sorption, where the probability of absorption changes with time. Weiss et al. (1997)
point at the relationship of the density function with the solution presented above
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(Eq. (18)). In order to derive the IG function from Eq. (18), we have to rewrite
Eq. (7). Using Egs. (13)-(15), and (18) we can rewrite Eq. (7) as:

e (e[ e (452)

where the cross-sectional area, o, cancels from the equation. If we look at unity
transport distance, i.e. velocity expressed in terms of the mean distance between
the site of administration and the site of absorption, vz — v, then:

1 7 A/v—1)?
]Vin = AD |:477;[3D:| exXp (—W> : (21)

Now define the following two parameters:

1

MAT =~ (22)
2D

cv? === (23)

where MAT is the mean absorption time, and CV? the term expressing the varia-
tion in absorption time. Substitution in Eq. (22) gives:
MAT 1'? t — MAT)?
2rCV3 2CV°MAT!?
The above-derived equation is similar to the IG function and corresponds to
Eq. (3) in Weiss (1996). Further, mathematical properties of Eq. (24) are discussed
by Weiss (1996), Ring (2001), and Ring et al. (2000).

2.5. Absorption percentiles

Using Eq. (19), it is possible to calculate the time at which a certain fraction of
drug has been absorbed. This can be achieved by iteratively solving Eq. (19) for a
desired value of M for repeated estimates of time. Bisection methods are generally
efficient enough to obtain rapid convergence.

3. Example

To illustrate the use of the convection—dispersion equation for oral absorption,
we applied the IG-input function (Eq. (21)) to describe the absorption of parac-
etamol in a 22-year-old man (Nimmo et al., 1973). Data were taken from liter-
ature by digital processing of Fig. 2 in Nimmo et al. (1973) using the WinDIG
program (Lovy, 1996). Dosage includes three consecutive single administrations
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Fig. 2 Model fit for paracetamol absorption in a 22-year-old man using a 1-compartment model
with first-order elimination and first-order absorption without lag time. Corresponding parameter
estimates and —2LL value are provided in Table 1.

of paracetamol (1500 mg) in the same individual, with enough washout in between
administrations. This example covers a transport-related pharmacokinetic prob-
lem: paracetamol was administered alone, with metoclopramide, and with propan-
theline. Metaclopramide stimulates gastric emptying, while propantheline delays
gastric emptying, thus influencing the mean-passage rate of the drug through the
GI tract. This specific case therefore represents an example from literature where
the feasibility of the transport-related absorption model can be verified. The model
should be able to describe the concentration versus time curves, by using different
transport velocities.

The PK model that was used to describe the data is a 1-compartment mass-
balance model with first-order elimination:

dA
5 = Naw(0) — kA (25)

With the definition of plasma concentration and volumetric clearance as
C=A/V (26)
CL =kV. (27)

Time series of plasma concentration after oral administration alone allows opti-
mization of all the parameters in the absorption function, and of V/F and CL/F.
The choice of a 1-compartment model was suggested by the fact that the concen-
tration versus time data show only one exponential phase during washout.

The models’ differential equation for the mass balance of the plasma compart-
ment and the three different functions describing the absorption rate were im-
plemented in NONMEM V, a computer program for optimisation of non-linear
mixed effects models (Boeckmann et al., 1994). This computer program estimates
the model parameters by the maximum likelihood criterion. The model fits were
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compared using the minimum of —2 xlog likelihood (—2LL). Model fits were diag-
nosed by plots of the residuals (the normalised difference between observed and
predicted concentrations). A numerical solution method was selected for solving
the differential equation and the absorption function simultaneously.

Absorption was described in four different ways: (1) Using a common first-order
absorption function. This function contains one absorption parameter, K,, which
was allowed to vary between the three absorption cases (Eq. (3)). (2) Using a first-
order absorption function with a lag time. This function contains two absorption
parameters, K, and a lag time (#,5). Only K, was allowed to vary between the
three absorption cases. (3) Absorption according to the IG function (Egs. (4) and
(21)). This function also contains two absorption parameters, v and D. Only v was
allowed to vary between the three absorption cases. (4) Similar to case 3, but with
D/v optimised instead of D. Alternative models, with inter-occasion differences
also identified on lag time or dispersion coefficient did not result in a satisfactory
—2LL minimisation. Neither could the model with a constant K, and #,¢ varied
between the three absorption cases converge to a successful minimisation.

Results of the above-described exercise are provided in Figs. 2-6 and Tables 1
and 2. Figures 2-5 show the fits using the four different absorption models. All four
models can describe differences in PK relating to the acceleration and delay of ab-
sorption when metoclopramide and propantheline are co-administrated. However,
there are clear differences between the models for the fits of the concentration—
time curves and the interpretation of the fitted parameters.

The first-order model (Fig. 2) shows a strong mismatch between the model
predictions and the observations. The model cannot describe the maximum con-
centration, while the concentration upswing is overestimated. This also becomes
clear in the plot of the residuals against time (Fig. 6, panel 1): The residuals
are not evenly distributed along the origin. If a lag time is added to the first-
order absorption model (Fig. 3) the model fit improves. Closer inspection of the
residuals against time (Fig. 6, panel 2) however, indicates that some bias remains.
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Fig. 3 Model fit for paracetamol absorption in a 22-year-old man using a 1-compartment model
with first-order elimination and first-order absorption with lag time. Corresponding parameter
estimates and —2LL value are provided in Table 1.
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Fig. 4 Model fit for paracetamol absorption in a 22-year-old man using a 1-compartment model
with first-order elimination and IG-input function with D optimised. Corresponding parameter
estimates and —2LL value are provided in Table 1.

The fit of the models that employ the IG function are displayed in Figs. 4 and
5. Both models describe the data better than the first-order models. Remarkably,
the fit where bias in the residuals is absent is when D/v is optimised and not D
(Compare Fig. 6, panel 3 and 4). Optimisation of the dispersion coefficient scaled
to the velocity suggests an increase of the dispersion coefficient with velocity. This
correlation has also been observed in other disciplines that study transport pro-
cesses, such as hydrology (Biggar and Nielsen, 1976), and indicates that variability
in the transport velocity increases with velocity. This approach is in accordance
with the reparameterisation that is used in the derivation of the IG function from
the solution of the convection—dispersion equation (Egs. (22)—(24)), and its origi-
nal presentation as a statistical absorption function (Weiss, 1996).
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Fig. 5 Model fit for paracetamol absorption in a 22-year-old man using a 1-compartment model
with first-order elimination and IG-input function with D/v optimised. Corresponding parameter
estimates and —2LL value are provided in Table 1.
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Table 1 Parameter estimates and likelihood (—2xlog likelihood) in the four different models
for paracetamol absorption in a 22-year-old man.

Model

1st-order absorption

1G absorption

Characteristic Without lag With lag D optimised D/v optimised
—2LL 59.3 29.2 255 19.6
Variance of residual error 33(32) 1.1 (26) 0.95 (29) 0.76 (27)
No. of parameters 5 6 6 6
Absorption

K, (Normal) 0.58 (16) 1.1 (17) — —

K, (Accelerated) 0.98 (20) 2.4 (25) — —

K, (Delayed) 0.17 (22) 0.26 (18) — —

Hag — 0.30 (15) — —

— — 0.17 (20) —

Dlv — — — 0.32 (47)
v (Normal) — — 0.91 (9.3) 0.62 (34)
v (Accelerated) — — 1.6 (17) 0.98 (40)
v (Delayed) — — 0.22 (27) 0.27 (32)
Disposition

CL/F 33 (6.8) 37 (4.5) 37(5.4) 41 (4.3)

V/F 61 (6.2) 74 (6.3) 80 (7.1) 52 (35)

Note. Values in parentheses refer to the coefficient of variation, (the standard error of the esti-
mate divided by the estimate x100%).

Table 2 Derived absorption percentiles, following four different models for paracetamol ab-

sorption in a 22-year-old man.

Time after administration (h)

1st-order absorption 1G absorption
% Absorbed Without lag With lag D optimised D/v optimised
Normal absorption
10 0.18 0.40 0.45 0.50
20 0.38 0.50 0.57 0.68
50 1.2 0.93 0.93 1.2
80 2.8 1.8 1.5 2.3
90 4.0 2.4 2.0 32
Accelerated
10 0.11 0.34 0.32 0.32
20 0.23 0.39 0.40 0.43
50 0.71 0.59 0.57 0.78
80 1.6 0.97 0.83 1.5
90 2.4 1.3 1.0 2.0
Delayed
10 0.62 0.71 0.80 1.2
20 1.3 1.2 1.2 1.6
50 4.1 3.0 2.6 2.8
80 9.5 6.5 6.5 5.3
90 13 9.1 10 7.3
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Fig. 6 Residuals of the models fits for paracetamol absorption in a 22-year-old man using (1)
1-compartment model with first-order absorption (2) 1-compartment model with first-order ab-
sorption and an absorption lag time. (3) 1-compartment model with IG-absorption function (D
optimised). (4) 1-compartment model with IG-absorption function (D/v optimised).

Parametric results of the model fits are provided in Table 1. A comparison of the
likelihood values and the residual error between the different models confirms that
the IG function is superior to the first-order absorption models in describing the
data (Table 1). The estimated clearance and distribution volumes are comparable
for the various models. This suggests that the type of absorption model has no ma-
jor impact on the estimates of the disposition parameters. The estimated absorp-
tion parameters all reflect the influence of co-administration of metoclopramide
and propantheline, but quite differently. The first-order model explains the influ-
ence by different estimates of the absorption parameter, K,, which would suggest
that metoclopramide and propantheline influence the actual uptake rate from the
gut compartment. Identification of a variable lag time to explain the effect of these
drugs was not successful for the first-order model. The transport-limited absorp-
tion model explains the influence of metoclopramide and propantheline through
the transport velocity, which corresponds to the expected effect of these drugs on
gastric emptying.

The uncertainty of the parameter estimates is low (coefficient of variation
mostly less than 25%). For the model that fits the data best (IG absorption with
D/v optimised) the coefficients of variation of all parameters, except CL/F are
somewhat higher than for the other models (about 40%). This is accompanied
by a strong correlation between these estimates (>0.95) that was not found for
the other models. This is presumably caused by the scaling of the dispersion
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coefficient D to the transport velocity, v. While providing a better simultaneous
description of the three PK curves, scaling results in an intrinsic correlation be-
tween the parameters.

The differences in the estimated absorption parameters (Table 1) have a dis-
tinct effect on the derived cumulative absorption profiles. Table 2 shows the times
of the absorption percentiles for the four different models. There is a consider-
able difference in the computed moments in time at which a certain fraction was
absorbed. In general, the first-order model without lag time shows a very early
onset of the absorption, which is in correspondence with the observation that
the model overestimates the concentrations before the maximum concentration is
reached (Fig. 2). Additionally, for this model the 90 absorption percentile occurs
much later than for the other three models: for the delayed absorption it occurs
at an unrealistically long time of 13 h. The absorption percentile times of the first-
order model with lag time and the two 1G-absorption models correspond quite
good for the upswing. However, for the first-order model with lag time, there is
the limitation of the sudden start of absorption at the lag time (0.3 h), whereas
for the IG-absorption model, cumulative absorption rises continuously from the
time of administration, therefore providing a much more realistic estimate for the
lower-absorption percentiles. The IG-absorption model with D/v optimised is the
only model that predicts a relatively short absorption tail for the delayed absorp-
tion case (90 percentile at 7.3 h).

4. Discussion and conclusions

There has been considerable debate on the derivation of the IG function from
the underlying partial differential equation, the convection—dispersion equation
(Hisaka and Sugiyama, 1999; Roberts et al., 2000). Hisaka and Sugiyama (1999)
have pointed out the importance of the proper initial and boundary conditions.
A concentration upper-boundary condition is incorrect, since it cannot adequately
control the mass-exchange at the boundary. Instead, the proper upper-boundary
condition should preserve continuity of mass. The lower-boundary condition re-
lates to the local conditions at the receiving site. The total mass balance that is
commonly used at the absorption site in PK models is, however, not very in-
formative for specifying this lower-boundary condition. The commonly used 1G
function relates to the solution of the flux-averaged concentration with an in-
stantaneous injection as the upper-boundary condition and the lower-boundary
condition specified in Eq. (11). The upper-boundary condition therefore preserves
continuity of mass (Weiss et al., 1997). The lower-boundary condition that relates
to the IG function assumes that the resident concentration gradient is zero at infi-
nite distance.

The application of the IG function to the paracetamol data show that the IG
function can adequately describe the upswing of the concentration versus time
curve. This confirms results obtained in earlier studies (Weiss, 1996; Weiss et al.,
1997). The function is particularly interesting when abundant data is available be-
fore the occurrence of the inflection point in the measurements. In such cases the
use of the first-order model frequently yields a mismatch between the model-fit
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and the observations. In drug development, the property of the IG-input func-
tion to describe an inflection point may be of crucial importance when quantifying
and comparing moments of absorbed amount of drug derived from the concen-
tration data. When deriving the absorption rate from concentration data, using
the first-order model, the bias of the model fit inevitably propagates to the calcu-
lated fraction of absorption. This is particularly important for the development of
drugs where the time of the intended effect is crucial, such as for analgesics, sleep-
inducing drugs and drugs used in the management of migraine attacks. In these
cases one of the aims may be to optimise the onset of the effect by controlling
the oral absorption rate. An accurate assessment of the absorption rate is then re-
quired to compare clinical trial results of new drugs with existing reference drugs.

Several alternative approaches for describing the absorption rate have been pro-
posed (Piotrovskii, 1987; Tatsunami et al., 1998; Higaki et al., 2001; Lansky and
Weiss, 2003; Zhou, 2003). In comparison with the other approaches, the IG func-
tion is of interest when transport through the GI tract limits the absorption rate.
We have shown that the influence of metoclopramide and propantheline on parac-
etamol absorption could be modelled with the IG function by varying the transport
velocity. This directly reflects the effect of metoclopramide and propantheline on
gastric emptying. The convection—dispersion equation that forms the basis for the
IG function has many other solutions for different types of boundary conditions
and coordinate systems (Carslaw and Jaeger, 1959; Crank, 1975) that may be of
future use in pharmacokinetic research.
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