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Abstract: The development of quantitative lateral flow immunoassay test strips involves a lot of
research from kit manufacturers’ standpoint. Kit providers need to evaluate multiple parameters,
including the location of test regions, sample flow speed, required sample volumes, reaction stability
time, etc. A practical visualization tool assisting manufacturers in this process is very much required
for the design of more sensitive and reliable quantitative LFIA test strips. In this paper, we present
an image-based quantitative evaluation tool determining the practical functionality of fluorescence-
labelled LFIA test cartridges. Image processing-based algorithms developed and presented in this
paper provide a practical analysis of sample flow rates, reaction stability times of samples under
test, and detect any abnormalities in test strips. Evaluation of the algorithm is done with Glycated
Hemoglobin (HbA1C) and Vitamin D test cartridges. Practical sample flow progress for HbA1C test
cartridges is demonstrated. The reaction stability time of HbA1C test samples is measured to be
12 min, while that of Vitamin D test samples is 24 min. Experimental evaluation of the abnormality
detection algorithm is carried out, and sample flow abnormalities are detected with 100% accuracy
while membrane irregularities are detected with 96% accuracy.

Keywords: fluorescence imaging; image quant; IQVision; medical diagnostics; point-of-care technol-
ogy; quantitative lateral flow assays

1. Introduction

Lateral flow immunoassays (LFIA) form the most widely used point-of-care (PoC) di-
agnostic tools. The prefabricated LFIA test strips can be employed for qualitative as well as
quantitative study of the target analytes [1]. Infectious diseases like Malaria, HIV, Dengue,
and non-communicable diseases, including Cardiac issues and Diabetes, etc., can be de-
tected with these portable, one-time-use devices. In addition, LFIA technology can help in
providing a quantitative estimate of haptens, proteins, vitamin and hormone levels, etc.,
in serum/blood samples [1,2]. Traditional diagnostic procedures like high-performance
liquid chromatography (HPLC), mass spectroscopy, etc., demand expensive laboratory
setups and are time-consuming. These devices also involve extensive cleaning procedures
and require skilled professionals for performing the tests [3]. Contrarily, the quantitative
LFIA are simple-to-use detection tools providing efficient results quickly. Moreover, LFIA
test cartridges are disposed of once the testing is done and thereby prevent the risk of
cross-contamination between bio-samples. Hence, they find potential applications in the
field of medical diagnosis, notably in low-resource settings [2,4].

The main parameters affecting the performance of lateral flow immunoassays are
good reproducibility, accuracy, and sensitivity [1,2,5]. Manufacturers need to take care of
multiple factors to meet these requirements. As the LFIA test cartridges are one-time-use
devices, strip-to-strip reproducibility plays a very critical role. Kit providers must evaluate
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and fix the LFIA test cartridge properties, including the appropriate reaction stability time,
location of the test regions, sample test volumes required, etc. In addition, the capillary
flow rate of the sample through the membrane forms an important parameter for test strip
design. The ultimate sensitivity of an assay depends on the amount of target analyte bound
with the prefabricated antigens/antibodies at the test regions. This further depends on the
rate of flow of the sample, which on the other hand, impacts the reaction time as well [2,5,6].
Theoretical models that aid the manufacturers in setting the parameters mentioned above
have been presented in the past [6–8]. These parameters, once determined, must be
constant for all the test strips manufactured for a particular target analyte. However,
the manufacturing tools and processes could account for a reduction in strip-to-strip
reproducibility. Furthermore, improvement in the orders of the sensitivity of assays
involves a lot of research and development from a manufacturing perspective [1]. Hence,
there is a necessity for practical LFIA kit evaluation tools that assist the manufacturers to
empirically determine the performance of fabricated test strips [1]. Especially in the R&D
of fluorescence labelled quantitative test cartridges, there is a requirement for practical
visualization of design parameters, including the ideal test line location, reaction stability
time, quantitative measurement metrics, etc., as fluorescence quantification is not possible
by directly looking at the emissions.

This paper presents an image-based visualization tool assisting the quantitative LFIA
kit manufacturers towards the development of high-performance test cartridges. The
developed tool is compatible with fluorescence labelled LFIA cartridges. It provides
a practical analysis of sample flow properties, including capillary flow rate, practical
location of the test, and control lines. The tool continuously monitors the reaction of
the sample analyte at the test and control lines and updates the operator on the reaction
progress. It can hence be employed to practically evaluate the optimum reaction time,
the feasibility of which is discussed in [9]. There could be sample flow-related issues
like the actual flow rate not being the same as per the design, or any skew in the flow
arising due to obstruction, foreign particles on the membrane, flow occurring due to
gravity instead of capillary action, etc. The current tool helps in practically examining
these issues in the cartridges. Any irregularities present in the membrane, or the test
and control lines, are also detected. This provides feedback to the operator for quality
assessment of their production lot and prevents abnormal cartridges from being considered
for calibration, thereby preventing faulty diagnostic measurements. The LFIA reader
instruments available in the market include laser and photo-diode-based systems. However,
it would be practically difficult to employ these devices for monitoring the reaction progress
of the LFIA samples under test, as these involve moving mechanical components and can
suffer from positioning and repeatability errors [10,11]. The hardware setup of a camera
sensor-based fluorescence reader developed by our group and presented in [12] is used
for the current application. The current image-based acquisition system employed does
not include any moving components. With a fixed sensing and excitation mechanism,
this system aids in studying the reaction progress of the sample under test, right from
the time the sample is dispensed onto the test cartridge. The Cytiva Biacore systems
currently available in the market help in a label-free study of biomolecule interactions,
operating on the principle of Surface Plasmon Resonance (SPR). These systems mainly
provide an analysis of reaction kinetics, including the association and dissociation rates
of antibodies, facilitating the selection of test-specific antibodies [13–15]. The proposed
image-based evaluation tool assists in practically determining various test membrane
properties as discussed and is compatible with fluorescence-labelled quantitative lateral
flow assays. Image processing-based algorithms were developed to track the sample’s
reaction progress, assessing the practical sample flow through the test membrane and
detecting membrane-related abnormalities. The designed tool aids the manufacturers in
the development phase of quantitative LFIA test cartridges, practically examining the
performance of manufactured test strips. The hardware setup, as well as the algorithms
designed, are explained in further sections.
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The architecture of a typical LFIA test strip is indicated in Figure 1. The sample
under test is dispensed onto the sample pad of the cartridge. It then migrates onto the
conjugate pad, wherein particulate conjugates are immobilized, which can be fluorescent or
colloidal gold or paramagnetic monodispersed latex particles [16,17]. The sample analyte
remobilizes the dried conjugate, and then both migrate through the nitrocellulose (NC)
membrane. The sample flows through the membrane due to the capillary action of the
strip material [2]. The sample reacts with test-specific antigens/antibodies immobilized
at test and control lines within the NC membrane. The sink pad/wick provides a dry
region to maintain the capillary flow of the sample through the membrane as long as the
liquid is present in the sample pad and prevents backflow of the sample [16]. Fluorescence-
conjugated particles are advantageous over other optical labels with respect to the improved
orders of sensitivity and dynamic range [18]. With fluorescence labels, it is feasible to
provide a quantitative estimate of target analytes [10,19]. For this, the sample reaction,
which is a function of emitted light intensity at the test and control lines, has to be measured
and analyzed, which demands a reliable reader instrument. Quantitative measurements
are made once the sample reaction becomes stable.

Figure 1. Typical configuration of a lateral flow immunoassay test strip.

2. Materials and Methods
2.1. IQVISION Hardware Architecture

The hardware architecture of the designed LFIA reader is as indicated in Figure 2. The
main components of the system design include the excitation source, the confocal optical
arrangement, and the sensing module. A high-power red LED source R42180-06 (Seoul
Semiconductor, Ansan-si, Korea) with a 127◦ view angle emitting 630 nm wavelengths
is used for excitation. To filter the narrowband excitation from LED, a passband filter is
used on the source side (Omega Optical Inc., Brattleboro, VT, USA), passing wavelengths
below 640 nm. The LFIA cartridge under test is placed at the bottom side of the optical
reader, as shown in Figure 2a. The camera captures corresponding fluorescence emitted
from the cartridge, which has a wavelength of around 665 nm. For facilitating this, the
excitation source and the sensing modules are fixed in a confocal arrangement, as shown
in Figure 2b. It primarily involves a dichroic mirror (Omega Optical Inc., USA), which
reflects wavelengths below 650 nm and passes wavelengths greater than 650 nm. It is
placed at a 45◦ angle between the source and sensing element. The dichroic mirror reflects
the excitation beam incident at 45◦ to its surface onto the cartridge. Similarly, the emitted
fluorescence incident at a 135◦ angle to the mirror can pass through it. A sharp, custom-
made bandpass filter (Omega Optical Inc., USA), which passes wavelengths between
655 nm to 721 nm, is placed on the camera side. When a cartridge is inserted into the reader,
the LED excitation source is turned on. The camera side filter, along with the dichroic
mirror, helps in capturing only the emitted fluorescence, eliminating the background.
The above-mentioned light excitation source and the filter cut-offs are selected based on
the Alexa Fluor 647 dye used in our LFIA cartridges. Different manufacturers can use a
different dye for fluorescence. Based on the dye chosen, the light source and filter cut-offs
can be changed. The overall system arrangement remains the same.
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Figure 2. (a) Hardware setup of the fluorescence reader indicating different components of the system and the confocal
arrangement. (b) Principle of operation of the designed system.

A complementary-metal-oxide type machine-vision camera sensor (Imaging Develop-
ment Systems, Obersulm, Germany) with a resolution of 6.4 MPixel was used for capturing
the fluorescence. It has a dynamic range greater than 75 dB and is well suited for low-
contrast applications. The camera sensor module has an on-chip 12-bit analog-to-digital
converter to convert the analogous light intensities to digital images. The captured images
are then transferred to a personal computer/tablet through a USB interface. An acqui-
sition system and graphical user interface (GUI) was developed in LabVIEW (National
Instruments Corporation, Austin, TX, USA) to access the camera module. The designed
GUI provides the user with the controls of exposure time, gain, and frames to be captured.
Materials used for the study include HbA1C and Vitamin D LFIA cartridges (J Mitra & Co.
Pvt. Ltd., Delhi, India), test-specific buffer and conjugate solutions (J Mitra & Co. Pvt. Ltd.,
India), micropipette (Thermo Fisher Scientific, Waltham, MA, USA), and micro tips.

2.2. IQVISION Algorithm Development

The flow chart of the designed algorithm is depicted in Figure 3. This algorithm
monitors the reaction progress of the sample under test right from the time it is dispensed
onto the cartridge, including the tracking of sample flow through the membrane. A detailed
explanation of various blocks involved in the algorithm is as follows.

2.2.1. Image Data Acquisition and Noise Removal

Image data are acquired starting from time t = 0 min to a time ‘T’ minutes as specified
by the user. Images are acquired for every 20 s time interval. In low-contrast applications,
there is a substantial amount of shot noise present. The current setup involves imaging of
static objects alone, and in such applications, we can eliminate the shot noise by averaging
over multiple frames, typically greater than two [20]. Hence, at each test instance, i.e., for
every 20 s time interval, images are acquired in burst mode to capture five frames of data,
with a frame rate of 10 Hz. The five image frames captured are averaged to a single image
I(t) and then fed to further blocks.

2.2.2. Tracking of Flow Progress

Once the sample is dispensed onto the sample pad of the test cartridge, it passes
through the NC membrane due to the capillary action. Within the initial few minutes of the
test, sample flow through the membrane is analyzed. The flow of sample analyte through
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the membrane is detected through the designed algorithm and verified for any abnormal
flow conditions.

Figure 3. Flowchart of the designed algorithm indicating the steps involved in the algorithm execution.

Flow progress within the NC membrane is determined by segmenting out the flow
region of the captured image. Here, the concept of global thresholding is adapted, wherein
pixel values of the input image I(t) greater than the set threshold intensity (T) are assigned
a binary ‘1’ value, and the rest are mapped to binary ‘0’ as indicated [21].

FM(t)(x,y) = 1, if I(t)(x,y) > T
= 0, elsewhere

(1)

where FM(t) is the binary flow map obtained and (x,y) indicates the pixel location in the
2D image. Threshold values for segmentation are determined dynamically based on the
corresponding histogram. Figure 4b depicts the histogram plot for a sample input frame.
The largest valley after the first dominant peak is considered for determining the sensitivity
for thresholding.

From the obtained binary map for the input image, pixels are verified for 8-neighbourhood
connectivity. Pixels are grouped into individual segments if they are connected horizontally,
vertically, or diagonally. Hence, all the pixels corresponding to the flow are grouped into a
single segment. There could be few undesired random dot-sized pixels that are segmented
as binary ‘1’. To eliminate these pixels and segment out only the flow area of interest,
we apply an area filter to consider only the components with an area size greater than
0.003 mm2. This is evaluated for each of the averaged image frames captured for every
20 s, and the track of the sample flow through the NC membrane is observed. Figure 5
indicates the flow progress as captured for HbA1C test cartridges.
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Figure 4. (a) Sample image frame captured during the flow process. (b) Corresponding histogram plot indicating the valley
considered for thresholding. (c) The resulting binary map obtained from the global thresholding process.

Figure 5. Binary maps obtained with time as the sample flow progresses through the NC membrane.

The properties, including width, length, and area of the segments, are evaluated as the
sample flow progresses and verified for any irregularities. Flow length (FL) is evaluated by
determining the number of pixels in the mid-row of the extracted flow segment as indicated
in Figure 6. Similarly, flow width (FW) is the number of pixels in the mid column of the
segment, while the flow area (FA) is the total number of pixels in the segment. Ideally, as
the sample flows through the membrane, the flow length and flow area start increasing and
stabilize after a few frames. Flow width should remain constant throughout and should
be the same as the width of the NC membrane. The speed of the sample flow within the
membrane also impacts the reaction at test and control lines. The frame-to-frame flow
speed (FS) between the test instances is measured by determining the change in flow length
(FL) within the time interval as indicated in (2).

FS(k) =
FL(k)− FL(k− 1)

T(k)− T(k− 1)
(2)

where k indicates the current frame and T(k) is the time at the kth frame.
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Figure 6. The flow properties–length and width as obtained from the binary map.

2.2.3. NC Membrane Segmentation

We track the sample reaction progress at the test and control lines once the sample
flow front reaches the sink pad. However, as the sink pad is not within the visible window
of the cartridge, the time when the sample reaches the end of the NC membrane is taken
as the reference. This is where the sink pad starts, as depicted in Figure 1. Hereon in this
paper, we will be referring to this as ‘flow reached’ as a flag to start the tracking of reaction
progress. For this, the NC membrane is segmented from the input image frames, within
which the test and control areas are identified. Once the flow is reached, the corresponding
binary flow map obtained is used for the NC membrane segmentation. The bounding
box of this final flow map is determined and mapped onto the input image frames for
extracting the NC membrane, as indicated in Figure 7.

Figure 7. Segmentation of the NC membrane. (a) Obtaining the bounding box from the final flow map. (b) Mapping the
obtained bounding box onto the input image frame. (c) Segmented out NC membrane.

2.2.4. Segmentation of Test and Control Regions

For the detection of test and control areas within the segmented NC membrane, the
algorithm presented in [9] is adopted. It works on the concept of binary thresholding. An
experimentally determined threshold value (RT) is set, and the corresponding binary map
is obtained.

B(t)(x, y)= 1, if NCM(t)(x, y) > RT = 0, else (3)

Here, NCM (t)(x,y) and B(t)(x,y) indicate the fed NC membrane and the corresponding
binary map obtained at a time ‘t’, and (x,y) indicates the pixel location and the reaction
threshold value set is indicated as RT. The binary map B(t) obtained has to be further
processed to appropriately extract the individual test and control area components by
verifying the pixel connectivity. Each of the components is labelled and can be indepen-
dently accessed. To eliminate the dot-pixels segmented as indicated in Figure 8, an area
filter is applied. The resulting area-filtered binary map AFB (t)(x,y) should ideally consist
of two components corresponding to the test and control regions, which are classified,
respectively, by determining the center locations of the components. The test and control
regions’ segmented image (SI (t)(x,y)) is derived by multiplying the binary map with the
input frame I(t)(x,y) as indicated in (4)

SI(t)(x, y)= I(t)(x, y) ∗ AFB(t)(x, y) (4)

From the segmented image, as shown in Figure 9, the test and control region properties
are measured and tracked to indicate the reaction progress of the sample under test. The
total number of pixels within each of the test and control regions is determined and
referred to as the test area (AT) and control area (AC), respectively. Similarly, test and
control volumes VT and VC, respectively, are calculated as well by summing the pixel
intensities in the test and control areas as indicated in (5) and (6).
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Figure 8. The dot-pixels obtained from the image thresholding. These are removed by applying an
area filter over the acquired map.

VT =
Ai

∑
i=1

TC(i) (5)

VC =
Ac

∑
i=1

CC(i) (6)

where TC (i) is the intensity value of the individual pixels in the test region component.
Similarly, CC(i) is the intensity value of the individual pixels in the control region compo-
nent. Figure 10 depicts the intermediate segmented images obtained for an HbA1C test
sample, indicating how the test and control regions grow with time. For a quantitative
estimate of the samples, the ratio of test and control areas as well as the test and control
volumes referred to as area ratio (AR) and volume ratio (VR), respectively, are evaluated as
indicated.

Figure 9. (a) The test (T) and control (C) lines indicated for a sample image captured. (b) Correspond-
ing binary maps obtained. (c) Test and Control regions segmented out.

AR =
AT

AC
(7)

VR =
VT

VC
(8)

For each input image frame fed every 20 s, the test and control regions are segmented
once the sample flow through the membrane is reached. Corresponding AR and VR values
are measured for tracking the reaction progress. During the time of the sample flow, the
AR and VR values are zero. Later, the AR and VR values initially increase at faster rates, as
indicated in Figure 11, and after a specific amount of time, the values vary at reduced slopes.
The quantitative measurements are to be made once the reaction becomes stable when the
change in AR and VR values with time is almost constant. The designed algorithm aids in
the development of LFIA test kits, wherein the manufacturers can experimentally evaluate
the reaction stability time.
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Figure 10. The intermediate segmented test and control regions obtained for tracking the reaction
progress of sample under test once the sample flow is complete, from time t = 3 min to t = 20 min.

Figure 11. The trend of area ratio (AR) and volume ratio (VR) values measured with increasing time
for a sample HbA1C test cartridge.

2.2.5. Detection of Abnormalities

For an accurate quantitative analysis of the samples, the LFIA test strip must be free
from any irregularities, which could be flow-related issues or some undesirable bright/dark
regions in the test and control regions or any constrictions within the NC membrane, etc.
The bright/dark regions are observed in the captured image frames due to improperly
manufactured test strips or damaged membranes, which could lead to incorrect results.
The algorithm was designed to detect and notify the operator of any such irregularities in
the test cartridge, providing a qualitative check for cartridge manufacturing.
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1. Abnormalities in Sample Flow

As mentioned earlier, sample flow through the NC membrane is due to the capillary
effect, which contributes to the uniform flow of sample across the test and control lines,
where the antigen–antibody binding occurs. Therefore, the capillary flow plays a critical
role in determining the sensitivity. Any obstruction ceasing the flow can be detected by
continuously monitoring the flow parameters—flow length, area, and width mentioned in
Section 2.2.2.

Apart from this, skewing of the sample flow through the membrane, as indicated in
Figure 12, is another undesired outcome of irregularly manufactured strips. For detecting
this, the concept of adaptive thresholding is adopted [22,23]. Unlike global thresholding,
where a single fixed threshold is applied across the image, adaptive thresholding involves
different threshold values set locally for each pixel of the image. The values for the threshold
at each pixel location depend on the neighboring pixels and thus can be employed to detect
randomly occurring irregularities. The threshold at each pixel of the image is computed
by determining the local mean intensity within the pixel’s neighborhood over a preset
window size (w × w). The local neighborhood mean (µ) in a w × w neighborhood region
R, centered at the location (x,y), is calculated as

µ(x, y) =
1
N ∑

(x,y) ∈R
I(x, y) (9)

where I is the input image frame and N is the number of pixels in the neighborhood, N = w
× w. If a pixel value is less than its corresponding local mean value by ‘t’ percentage, it is
mapped to binary ‘0’, otherwise to ‘1’ as indicated in Figure 12b. The value of ‘t’ is preset.
The binary map obtained is inverted, i.e., subtracted from 1, making the skewed flow
foreground, as shown in Figure 12c. The dot-pixels and the corner segments are trimmed
as in Figure 12d. The final flow segmented map area is calculated, and if it is greater than
5% of the map size, the irregularity is detected, and the user is alerted.

Figure 12. The step-by-step binary maps obtained for the detection of flow skewing with a faulty
sample cartridge. (a) The captured image of the faulty cartridge. (b) Obtained binary map. (c)
Inverted binary map making the skewed flow foreground. (d) Final processed flow segmented map
obtained, the area of which is calculated to verify for abnormalities.
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2. Irregularities in Test Cartridge

One of the typical irregularities can be any bright spots present on the NC membrane,
apart from the test and control regions, as indicated in Figure 13a. The global thresholding
algorithm mentioned before for segmenting the test and control lines can be used to
detect these irregularities. Once the algorithm is run, it verifies the number of segmented
components and their corresponding centroids. Ideally, there should be a maximum of two
components pertaining to the test and control lines. However, if any additional component
is identified, it indicates the presence of some bright regions. Additionally, verifying the
centroid of each component distinguishes the irregularities from the test and control lines.

Figure 13. (a) Image frame captured for the detection of bright spots within NC membrane.
(b) Corresponding binary map obtained. (c) Anomalies detected with the algorithm.

3. Presence of Bright/Dark Regions within Test and Control Lines

Once the test and control regions are segmented, the designed algorithm also checks
for any undesired bright or dark regions present within these regions, as indicated in
Figure 14. Here as well, the detection is done through adaptive thresholding mentioned
earlier. The binary map indicated in Figure 14 is obtained by mapping the pixels to binary ‘0’
and ‘1’ values to identify bright regions. Similarly, the obtained binary map is inverted for
detecting dark regions, making the dark pixels the foreground. The number of connected
components is determined from these final binary maps, as explained in Section 2.2.2. In
the ideal case, where there are irregularities within the test and control lines, the number of
components would be 0. If any segmented components are identified, the user is alerted
and indicated, as shown in Figure 14.
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Figure 14. (a) Image frames obtained for detecting the irregularities within the test and control
regions. (b) Final binary maps obtained. (c) User alerted of the detected abnormalities.

3. Results and Discussion

Evaluation of the designed algorithm is carried out with LFIA cartridges from our
industrial partner J Mitra & Co. Pvt. Ltd., India. The test cartridge is inserted into the
fluorescence-based LFIA reader described in Section 2. Images are acquired for every 20 s
time interval for a time fixed by the user. At each image capture instance, five frames of
image data are acquired in burst mode. This is to perform averaging over multiple frames
as explained in Section 2.2.1 to eliminate shot noise. The tests are conducted in compliance
with the WMA Declaration of Helsinki.

3.1. Evaluation of Sample Flow through the Membrane

The algorithm initially monitors the flow of the sample through the NC membrane
and verifies any abnormalities. Experimental evaluation was carried out for HbA1C test
cartridges using whole blood samples. The trend of flow properties, including the flow
length, area, and width with increasing time observed for a single test sample for the current
set of cartridges employed, is indicated in Figure 15. The resolution of the images captured
in terms of pixels/mm is 140. Based on this, the obtained flow properties are converted
into physical dimensions (mm). It can be observed that the flow length and area values
gradually increase as the flow progresses and are stabilized after a few minutes once the
sample reaches the end of the membrane. The width of the sample flow remains constant
throughout the span as indicated, signifying a properly manufactured NC membrane strip.

The algorithm also provides the manufacturer with information on the flow speed of
the sample—this aids in the practical evaluation of the capillary flow of the NC membrane
material. Figure 16a indicates the frame-to-frame change in the flow speed for a particular
cartridge under test. It can be observed that flow speed decreases linearly and becomes zero
at around time t = 2 min. This provides the manufacturer with a track of how the sample
flow rate is practically occurring. Any deviation from this trend, including the time taken
for the flow to reach, can be observed during the test cartridge design and development
phase. The flow speed measurements done for five different test samples are indicated in
Figure 16b. We can notice that the sample flow is reached for all the test cartridges within a
time interval of 1.5–2 min. Based on these measurements, the manufacturer can make a
relevant decision on whether any modifications in the design are required.
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Figure 15. The measured flow length, width, and area for a sample HbA1C cartridge with respect to
time using blood samples.

Figure 16. (a) The frame-to-frame variation in flow rate as captured for a single HbA1C test cartridge. (b) The trend of the
frame-to-frame flow rates observed for different HbA1C test cartridges of varying concentrations.

3.2. Segmentation of Test and Control Lines
3.2.1. Analysis of HbA1C Test Samples

Once the sample flow is reached, the algorithm performs NC membrane segmentation
with the bounding box obtained from the flow measurements as a reference, as mentioned
in Section 2.2.3. The reaction progress of the sample is then illustrated to the operator
by segmenting out the test and control regions within the extracted NC membrane and
measuring the corresponding volume ratio (VR) values. The initial evaluation was done
with HbA1C test samples. For each test, a 5 µL of blood sample is mixed with test specific
buffer and dispensed on the cartridge, and the algorithm is run. Images are acquired
continuously for 20 min, with a capture interval of 20 s. Hence, for a single test, 60 image
sets with 5 image frames each are captured, meaning a total of 300 images are processed
for every run. Ten different whole blood samples were used for experimentation, with
varying HbA1C concentrations ranging from 5–14%. This involves a total sample data of
3000 images.

The NC membrane and the test and control regions were observed to be properly
segmented out for all the test samples through the algorithm explained in Section 2.2.4.
The trend of measured volume ratios of the samples is depicted in Figure 17a. Initially,
the values vary at higher rates and slowly tend to change at decreased slopes. The rate
of change of VR values with respect to time is also observed, as indicated in Figure 17b.
For defining the stability time of the test, we verify for the time when the rate of change
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of VR values with time is almost zero. Since this may not be practically feasible, the time
instant when the VR slopes for 95% samples fall within ±0.5 span is considered for further
examination. For the current lot of test cartridges, this is found to occur at around 12 min.
This is the time where the quantitative measurements are to be made.

Figure 17. (a) The volume ratio values measured for 10 HbA1C test cartridges of different concentrations. The inset image
depicts the graph zoomed-in from time t = 4 min to t = 20 min. (b) The corresponding trend of change in VR slopes with
time, the zoomed-in graph from time t = 6 min to t = 20 min indicated as well.

3.2.2. Analysis of Vitamin D Test Samples

A similar analysis was done for Vitamin D using serum samples to demonstrate the
evaluation for the reaction time algorithm. Image samples were acquired for 30 min. The
trend of the VR values and the corresponding slope plots obtained with respect to time is
indicated in Figure 18. It can be noted that the VR slopes are zero for the initial few frames.
This duration includes the time for the sample front to reach the end of the membrane as
well as the time before the test line forms, thus making the volume ratios zero. Once the
test and control regions are detected, the reaction progress is observed, and the slopes can
be seen to be changing rapidly. The VR rate for 95% of the samples falls within the ±0.05
band at around 24 min. This is the reaction stability time for Vitamin D samples of the
current set of cartridges used. Quantitative measurements for clinical diagnostics must be
made at this time.

3.2.3. Calibration of Sample Cartridges and Performance Analysis

Once the stability time is determined, calibration of the test concentrations is per-
formed by the kit manufacturers. The VR values measured for the samples under test
at the reaction stability time are used to establish the calibration of sample cartridges.
Figure 19a shows the calibration curve attained for the HbA1C test samples with varying
concentrations in the range of 4–14%. As the stability time was determined to be 12 min,
the volume ratio values measured at this time instant are used for calibration. Similarly, the
calibration curve is obtained for Vitamin D test samples with the VR values measured at
time t = 24 min. Five different Vitamin D samples of 8.1–30 ng/mL concentrations are used
for setting the calibration curve for demonstration purposes, as indicated in Figure 19b. In
practice, the kit manufacturer could use an increased number of samples to improve the
calibration accuracy.
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Figure 19. The calibration curve obtained for (a) HbA1C test samples with the VR values measured at time t = 12 min (b)
Vitamin D test samples with the VR values measured at time t = 24 min.

The performed calibration is verified by measuring the concentrations of reference
HbA1C and Vitamin D samples. The measured VR values are fed to the calibration
equations, and corresponding concentrations are determined and compared with the
expected values. The experimental study is performed with six HbA1C and three Vitamin
D samples. The results obtained for error analysis are indicated in Tables 1 and 2. The
measured concentrations fall within a ±8% error band.

Table 1. Measured HbA1C concentrations (%) from the calibration equation.

Expected HbA1C
Concentrations (%) Measured VR Values Measured HbA1C

Concentrations (%) Relative Error (%)

4.5 1.1099 4.7210 4.91

4.7 1.1316 4.7454 0.97
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Table 1. Cont.

Expected HbA1C
Concentrations (%) Measured VR Values Measured HbA1C

Concentrations (%) Relative Error (%)

5 1.2559 4.8860 −2.28

5.7 1.5899 5.2657 −7.62

6.2 2.7497 6.6069 6.56

9 4.3867 8.5598 −4.89

Table 2. Measured vitamin D concentrations (ng/mL) from the calibration equation.

Expected Vitamin D
Concentrations (%) Measured VR Values Measured Vitamin D

Concentrations (%) Relative Error (%)

15.71 1.0655 16.6800 6.16

17.13 1.0501 17.0624 −0.39

29.9 0.6209 31.0314 3.78

3.2.4. Validation for Abnormality Detection in Test Cartridges

As mentioned in Section 2.2.5, the developed algorithm can detect any irregularities
in the test strip. During the development phase, this helps the manufacturer discard the
improper test strips from being used for the calibration. To evaluate this, the algorithm
is fed with image frames captured for different abnormalities and the proper images.
Finally, the algorithm gives output on the condition of the test strip. The metrics sensitivity,
specificity, and accuracy of the algorithm are determined as indicated.

%Sensitivity =
TP

TP + FN
× 100 (10)

%Specificity =
TN

TN + FP
× 100 (11)

%Accuracy =
TP + TN

Total
× 100 (12)

where True Positive (TP) is the number of test strips without any irregularities classified
as ‘proper’, False positive (FP) is the number of abnormal strips identified as ‘proper’
strips. Similarly, True Negative (TN) is the number of abnormal strips correctly identified
as ‘improper’, and False Negative (FN) is the number of proper strips wrongly identified as
‘improper’. These metrics are evaluated separately for flow-related abnormalities and NC
membrane irregularities. For detecting abnormalities in sample flow, a total of 16 image
samples were fed, with 10 proper cartridges and 6 samples with the skewed flow as
mentioned in Section 2.2.5. The corresponding results obtained are indicated in Table 3.

Table 3. Flow abnormality detection.

No. of Samples for Flow
Abnormality Detection

Expected Outcome

Proper Improper

Test Outcome
Proper 10 (TP) 0 (FP)

Improper 0 (FN) 6 (TN)

% Flow Sensitivity 100

% Flow Specificity 100

% Flow Accuracy 100
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A similar analysis for detecting irreguarities in the NC membrane is done by feeding
120 image frames of proper test strips and 10 frames with bright/dark regions in the NC
membrane. The corresponding results are as discussed in Table 4. We can observe that the
current algorithm can detect abnormalities with reliable orders of accuracy.

Table 4. Detection of abnormalities in NC Membrane.

No. of Samples for Detection of
Irregularities in NC Membrane

Expected Outcome

Proper Improper

Test Outcome
Proper 116 (TP) 1 (FP)

Improper 4 (FN) 9 (TN)

% Irregularity Detection Sensitivity 96

% Irregularity Detection Specificity 90

% Irregularity Detection Accuracy 96

4. Conclusions

The developed algorithm, along with the mentioned hardware setup, forms a portable,
simple-to-use evaluation tool, facilitating the research involved in the design and manufac-
turing of fluorescence-labelled quantitative lateral flow immunoassay test cartridges. The
presented algorithm practically analyzes the sample flow rates through the test membrane.
The algorithm automatically locates the test and control reaction regions within the cap-
tured image frames. The tool efficiently detects the presence of any abnormalities, which
could be flow-related or irregularities in the manufactured test membranes. It also helps
to determine the reaction time required for the sample reaction, providing a visualization
of the reaction progress at the test and control lines. Further experimental evaluation of
the algorithm is to be carried out with different sample analytes. During the production
run as well, this tool can be used to verify the quality of cartridges. The designed tool
can also be adopted in an LFIA fluorescence reader for diagnostic measurements, which
determines the quantitative estimate of the samples and detects the presence of any ab-
normalities in the LFIA test cartridges. This brings down the level of human intervention
and thereby provides a reliable, practical solution for increased automation in the field of
medical diagnostics.
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