
RESEARCH ARTICLE

Genomic mating as sustainable breeding for

Chinese indigenous Ningxiang pigs

Jun HeID
1, Xiao-Lin Wu2,3*, Qinghua Zeng1,4, Hao Li2, Haiming Ma1, Juan Jiang1,

Guilherme J. M. Rosa3, Daniel Gianola3, Richard G. Tait Jr.2, Stewart Bauck2

1 College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China,

2 Biostatistics and Bioinformatics, Neogen GeneSeek, Lincoln, NE, United States of America, 3 Department

of Animal Sciences, University of Wisconsin, Madison, WI, United States of America, 4 Ningxiang Pig Farm of

Dalong Livestock Technology Co., Ltd., Ningxiang, Hunan, China

* xwu8@wisc.edu

Abstract

An important economic reason for the loss of local breeds is that they tend to be less produc-

tive, and hence having less market value than commercial breeds. Nevertheless, local

breeds often have irreplaceable values, genetically and sociologically. In the breeding pro-

grams with local breeds, it is crucial to balance the selection for genetic gain and the main-

taining of genetic diversity. These two objectives are often conflicting, and finding the

optimal point of the trade-off has been a challenge for breeders. Genomic selection (GS)

provides a revolutionary tool for the genetic improvement of farm animals. At the same time,

it can increase inbreeding and produce a more rapid depletion of genetic variability of the

selected traits in future generations. Optimum-contribution selection (OCS) represents an

approach to maximize genetic gain while constraining inbreeding within a targeted range. In

the present study, 515 Ningxiang pigs were genotyped with the Illumina Porcine SNP60

array or the GeneSeek Genomic Profiler Porcine 50K array. The Ningxiang pigs were found

to be highly inbred at the genomic level. Average locus-wise inbreeding coefficients were

0.41 and 0.37 for the two SNP arrays used, whereas genomic inbreeding coefficients based

on runs of homozygosity were 0.24 and 0.25, respectively. Simulated phenotypic data were

used to assess the utility of genomic OCS (GOCS) in comparison with GS without inbreed-

ing control. GOCS was conducted under two scenarios, selecting sires only (GOCS_S) or

selecting sires and dams (GOCS_SD), while kinships were constrained on selected parents.

The genetic gain for average daily body weight gain (ADG) per generation was between

18.99 and 20.55 g with GOCS_S, and between 23.20 and 28.92 with GOCS_SD, and it var-

ied from 25.38 to 48.38 g under GS without controlling inbreeding. While the rate of genetic

gain per generation obtained using GS was substantially larger than that obtained by the

two scenarios of genomic OCS in the beginning generations of selection, the difference in

the genetic gain of ADG between GS and GOCS reduced quickly in latter generations. At

generation ten, the difference in the realized rates of genetic gain between GS and

GOCS_SD diminished and ended up with even a slightly higher genetic gain with

GOCS_SD, due to the rapid loss of genetic variance with GS and fixation of causative

genes. The rate of inbreeding was mostly maintained below 5% per generation with geno-

mic OCS, whereas it increased to between 10.5% and 15.3% per generation with GS.
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Therefore, genomic OCS appears to be a sustainable strategy for the genetic improvement

of local breeds such as Ningxiang pigs, but keeping mind that a variety of GOCS methods

exist and the optimal forms remain to be exploited further.

Introduction

The past century has witnessed the development of a few intensively selected commercial

breeds (and lines) in farm animals and the challenge that many more local breeds had been

lost or are endangered [1,2]. The latter situation imposes a high risk to the world’s animal pro-

duction if these commercial breeds run into genetic problems due to inbreeding or correlated

selection responses, or if changes in the production section require traits that are poorly devel-

oped in the commercial breeds because there will be no alternatives [1]. Economics is a signifi-

cant driver for the loss of local breeds, as they tend to be less productive, and hence having less

market value than commercial breeds [2]. Nevertheless, local breeds are irreplaceable, both

genetically and sociologically. For example, local breeds often are better adapted to the local

environment, and therefore they tend to be more resistant to high temperatures or diseases

than commercial breeds. Maximizing genetic gain and maintaining genetic diversity are con-

flict objectives in breeding programs [3], and finding the optimal level of trade-off has been a

challenge for breeders. This is especially so with a local breed of small population size, which

has a higher probability for loss of genetic variability and appearance of inbreeding depression

than commercial breeds of large populations. In reality, crossing breeding has been used as an

alternative strategy for improving the productivity of local breeds, but it, at the same time,

accelerates the risk of losing or endangering local breeds [3,4]. For a sustainable selection that

aims at achieving long-term genetic gain, it is crucial to have balanced goals that can control

inbreeding by increasing heterozygosity and meanwhile keep genetic diversity of a population.

Genomic selection (GS) has been a revolutionary method for the genetic improvement of

farm animals [5,6]. GS can accelerate breeding by shortening generation intervals, and to

higher selection accuracy, especially for traits of low heritability or difficult to observe. How-

ever, GS can elevate the inbreeding rate (ΔF) rapidly, and high-production animals tend to

have high kinship coefficients between them. The loss of diversity limits long-term gain for the

trait under selection, and it also jeopardizes future breeding for other traits. In contrast, opti-

mum-contribution selection (OCS) provides a strategy that balances genetic gain and diversity.

OCS allows obtaining desirable genetic gain while constraining the rate of inbreeding in the

progeny by restricting relationships between selected parents. Thus, it can maintain sustain-

able, long-term genetic gains [7–9]. OCS operates on the theory of genetic contributions [10],

which states that the maximum rate of genetic gain, given a constraint on parental relation-

ships, is realized when an exact threshold-linear relationship exists between the Mendelian-

sampling of ancestral animals and their genetic contributions to the descendants of a popula-

tion. Initially developed with a pedigree-based relationship matrix, OCS can align ancestors to

the threshold-linear relationship only approximately [9,11]. This is because the true Mende-

lian-sampling terms of the ancestors are unknown, and they are estimated from pedigree

information based on expectations but not realizations [9,12,13]. For example, the expected

relationship between two full-sibs is 0.5, but the realized relationship can deviate considerably

from 0.5, depending on the segregation of the parental chromosomes. With the availability of

informative SNPs covering the whole genome, one can trace the inheritance of chromosomal

segments and estimate relationships between selection candidates more accurately. Therefore,
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genomic OCS (GOCS, or OCS with genomic information) can increase the accuracy of assess-

ment of Mendelian-sampling terms by aligning ancestors closer to the exact threshold–linear

relationships than OCS based on pedigree information only [14].

Optimum contribution selection consists of a variety of algorithms and methods. Generally

speaking, OCS maximizes genetic gain under a predefined genomic inbreeding rate by calcu-

lating the optimal contribution of all selected candidates to the next generation through a con-

strained optimization. Like pedigree OCS, genomic OCS has been refined considerably to

accommodate operational breeding constraints, such as restricting the number of individuals

contributing to the next generation and imposing upper or lower limits on how much an indi-

vidual contributes. Some other forms of genomic mating and relevant computation strategies

are also worth mentioning hereafter. Meuwissen [15] proposed to manage these additional

constraints with an iterative heuristic wrapped around the original solution that removes indi-

viduals with too low contribution and truncates contributions exceeding the maximum then

repeatedly reoptimizing the remaining contributions [16]. Alternatively, the operational con-

straints can be modeled directly using semidefinite programming, which may provide slightly

higher gains at the cost of a more complex problem formulation [17,18]. A different strategy is

to maximize a weighted index that balances genetic gain and inbreeding [19,20]. Optimizing

this simple index with general-purpose metaheuristics, such as a differential evolution algo-

rithm [21], allows one to comfortably accommodate alternative or additional objectives, thus

trading optimality of solutions for flexibility. For example, this allowed Kinghorn [22] to move

from assigning individual contributions to identifying optimal mating pairs. More recently,

Gebregiwergis et al. compared alternative forms of genomic-relationship matrices to control-

ling coancestry and thereby future inbreeding by optimum contribution selection [23]. Their

results highlight the importance of using genomic-relationship matrices that focus on QTL

regions for GEBV estimation when the number of QTL is small in GOCS.

In pig breeding, there were a limited number of simulation studies that applied traditional

OCS, such as Gourdine et al. [24] and Dagnachew and Meuwissen [25]. Genomic OCS applied

to local pig breeds remains to addressed adequately. For example, the Ningxiang pig breed is

one of the four most famous Chinese indigenous swine breeds in China, which was domesti-

cated more than 5,000 years ago. Ningxiang pigs are well known for their meat flavor as they

have over 5% intramuscular fat, compared to approximately 2% of imported commercial pigs

[26,27]. Furthermore, they have adapted well to roughage utilization and local environments,

and have high resistance to diseases. However, the market value of Ningxiang pigs is relatively

low because their growth rate and feed efficiency are low. Thus, the selection of Ningxiang pigs

is expected to increase the growth rate by some extend while at the same time, maintain its

genetic diversity and control the inbreeding risk within an acceptable range. Nevertheless, the

current breeding programs in Ningxiang pigs have been heavily targeted on the conversation

without much investment in genetic gain. The purposes of the present study were: (1) to esti-

mate the inbreeding level of Ningxiang pigs based on genomic information, and (2) to evaluate

the effectiveness of genomic OCS as a sustainable selection strategy for the genetic improve-

ment of Ningxiang pigs as compared to GS without inbreeding control.

Materials and methods

Animals and genotypes

DNA was isolated from ear or hair samples, collected from two sets of Ningxiang pigs. The

NXP set 1 consisted of 212 pigs, which were raised in the conservation region of Ningxiang

pigs and genotyped with an Illumina Porcine SNP60 Version 2 array (68,528 SNPs). The NXP

set 2 has 303 pigs, which were raised in Ningxiang Pig Farm of Dalong Livestock Technology
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Co., Ltd. and genotyped with a GeneSeek Genomic Profiler (GGP) Porcine 50K Version 1

array (50,915 SNPs). These two populations were historically genetically correlated but have

diverged from each other in the past decades due to closed breeding within each population.

The number of genotyped SNPs and their minor allele frequencies by chromosome (chromo-

somes 1–18 and X) based on the Sscrofa10.2 assembly for the two sets of pigs are listed in

Table 1. During the data cleaning, unmapped SNPs and those on mitochondrial and Y chro-

mosomes were excluded. Genotypes were phased, and missing genotypes imputed using the

FImpute software [28]. All animal procedures were carried out in accordance with the guide-

lines established by the China Council on Animal Care and were performed at Ningxiang Pig

Farm of Dalong Livestock Technology Co., Ltd. The protocols were approved by the Experi-

mental Animal Manage Committee of Ningxiang Pig Farm of Dalong Livestock Technology

Co., Ltd. The data in this manuscript was provided by Ningxiang Pig Farm of Dalong Live-

stock Technology Co., Ltd., and was analyzed by Hunan Agricultural University.

The kinship between two individuals i and j, denoted by fij, is the probability that two alleles

randomly chosen from both individuals were IBD. The inbreeding of an individual, say i, is

the probability that two alleles carried by this individual at a given locus are IBD. Kinship coef-

ficients were calculated with two methods: 1) locus-wise (LW-kinship) or 2) as the proportion

of the genome included in runs of homozygosity (ROH-kinship), which are contiguous

regions of the genome where an individual is homozygous across all sites. ROH arises when

two copies of an ancestral haplotype are brought together in an individual. Hence, that haplo-

type would be autozygous, i.e., homozygous by descent. In the present study, ROH is defined

Table 1. Number of SNPs and minor allele frequencies of SNPs by chromosome in 515 Ningxiang pigs after data edits, each genotyped with either an Illumina Por-

cine SNP60 array or GeneSeek Genomic Profiler (GGP) Porcine 50K arraya,b.

Set I (212 pigs); Illumina Porcine SNP60 Set II (303 pigs); GGP Porcine 50K

Chromosome N MAF (SD) Chromosome N MAF (SD)

1 5,927 0.118 (0.156) 1 3,782 0.132 (0.155)

2 4,140 0.122 (0.159) 2 2,679 0.136 (0.155)

3 3,574 0.113 (0.153) 3 2,366 0.127 (0.153)

4 3,803 0.118 (0.156) 4 2,451 0.122 (0.155)

5 3,009 0.108 (0.151) 5 1,956 0.119 (0.153)

6 4,357 0.128 (0.157) 6 2,779 0.131 (0.153)

7 3,942 0.127 (0.156) 7 2,364 0.143 (0.157)

8 3,532 0.126 (0.159) 8 2,357 0.134 (0.158)

9 3,852 0.119 (0.156) 9 2,562 0.129 (0.154)

10 2,873 0.119 (0.155) 10 1,358 0.136 (0.157)

11 2,344 0.125 (0.160) 11 1,505 0.139 (0.162)

12 2,511 0.128 (0.159) 12 1110 0.140 (0.158)

13 4,432 0.121 (0.157) 13 2,839 0.130 (0.154)

14 4,086 0.129 (0.159) 14 2,672 0.141 (0.159)

15 3,605 0.118 (0.155) 15 2,336 0.125 (0.155)

16 2,386 0.132 (0.159) 16 1,484 0.133 (0.155)

17 2,176 0.121 (0.154) 17 1,178 0.140 (0.159)

18 1,756 0.102 (0.150) 18 1,040 0.113 (0.149)

X 3,304 0.058 (0.124) X 2,455 0.070 (0.133)

Total 65,609 0.117 (0.155) Total 41,273 0.128 (0.154)

a N = Number of SNPs by chromosomes;
b MAF (SD) = Mean (Standard deviation) of minor allele frequencies of SNPs by chromosomes.

https://doi.org/10.1371/journal.pone.0236629.t001
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through a genomic scan for a minimum of 20 SNPs with zero heterozygous genotypes and

zero missing genotypes, also subject to a maximum marker spacing of 100Kb between two

neighboring SNPs within ROH.

Following Toro et al. [29], we computed the LW-kinship coefficients as follows:

fijðLWÞ ¼
1

M
PM

k¼1

fIISijk � p2
k � q2

k

2pkqk

" #

ð1Þ

where M is the number of SNPs on the GGP 50K SNP array, pk and qk are the frequencies of

the two alleles at locus k at the current generation, and fIISijk is the probability that the two

alleles are identical-in-state (IIS). Exactly, the allele frequencies need to be estimated from the

base population. The latter, however, is unknown, and the population at generation 0 in the

present study was not truly the base population.

ROH-kinship coefficients were computed based on segments of identity-by-status shared

between pairs of individuals. These segments are potentially ROHs in the offspring of each

mating pair [30]. That is,

fijðROHÞ ¼
1

4T
PM

k¼1

P2

ai¼1

P2

bj¼1
Lkðai; bjÞ ð2Þ

where Lk(ai,bj) is the length of the k-th shared IBD segment measured over homologous a of

individual i and homologous b of individual j, and T is the total length of the genome.

Similar to the computing of kinship coefficients, the inbreeding coefficients were also com-

puted locus-wise and based on ROH, respectively. The inbreeding coefficient of an individual

can be viewed as the self ancestry with itself, which equal to 1

2
1þ fiið Þ. Precisely speaking,

inbreeding is not directly the self coancestry, but it can be calculated from it as shown above.

Then, the rate of inbreeding per generation was calculated in retrospect from the average

inbreeding in the current generation (Ft+1) deviated from that in the previous generation (Ft),
expressed relative to what remained to be non-inbred at generation t [31]:

DF ¼
Ftþ1 � Ft

ð1 � FtÞ
ð3Þ

Simulation of phenotypes

Phenotypes of average daily body weight gain (ADG) were simulated for the 303 Ningxiang

pigs (48 males and 255 females) with the GGP 50K SNP genotypes. Briefly, 2,000 SNPs, each

with MAF > 0.10 were randomly assigned to be QTLs affecting ADG. The QTL additive

genetic effects were simulated following a Gamma distribution, where the shape parameter

was 0.4 and the scale parameter was 1.66 [32], and then re-centered at zero. The distribution of

simulated QTL effects is shown in Fig 1A. Under the assumption of additive genetic inheri-

tance, the phenotype of ADG for an animal, say animal j of sex i, was simulated as follows:

yij ¼ mþ sexi þ aj þ eij ð4Þ

where aj was the animal’s true additive genetic value, sexi was the sex effect, and eij was the

residual term. The true breeding value of an individual was computed to be the sum of the sim-

ulated QTL effects for that animal. The distribution of true breeding values for the 303 Ning-

xiang pigs is shown in Fig 1B. The heritability of ADG was h2 = 0.28, mimicking the

heritability estimate from a previous study [33]. The sex effects on ADG were 50 g for boars

and 0 g for gilts, and the generation interval was set to be two years. For simplicity, the additive

QTL variance explained all additive genetic variance, and the residual term was sampled from
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the distribution N (0; s2
e ¼ 3461:7). Then, breeding values of the 303 animals were estimated

by BLUP using the same model as (4), where ai � Nð0; s2
a ¼ 1421:3Þ with cov(ai,aj) = 2kij, and

kij was the estimated genomic kinship coefficient between animals i and j.

Fig 1. Distributions of simulated QTL effects (A) and true breeding values (B) of average daily body weight gain for 303 Ningxiang pigs.

https://doi.org/10.1371/journal.pone.0236629.g001

PLOS ONE Genomic mating in Ningxiang pigs

PLOS ONE | https://doi.org/10.1371/journal.pone.0236629 August 14, 2020 6 / 14

https://doi.org/10.1371/journal.pone.0236629.g001
https://doi.org/10.1371/journal.pone.0236629


Before the implementation of genomic OCS and genomic selection, SNP effects on EBV of

ADG were estimated using ridge-regression BLUP [34] based on the following linear model:

ui ¼
PM

j¼1
xijbj þ �j ð5Þ

where ui was the EBV of ADG of i-th individual, which was estimated using the model (4), xij
was the genotype of the j-th SNP for the i-th individual, which was coded numerically as 0

(AA), 1 (AB), and 2 (BB) respectively, bj was the association effects for the j-th SNP, and �j was

an error term. Then, the genomic-estimated breeding value (GEBV) of each animal was taken

to be the sum of estimated SNP effects corresponding to all the SNP genotypes that this animal

had.

Genomic OCS and genomic selection

In the present study, the 303 animals were treated as founders. Let G ¼

XX0=f2
PK

j¼1
pjð1 � pjÞg be the matrix of realized genomic relationships, where X is the cen-

tered SNP genotype matrix for all breeding candidates and 2
PK

j¼1
pjð1 � pjÞ is twice the sum of

heterozygosities of the SNP markers [35], and c be a vector of proportional contribution of

individuals to the next generation. Then, the inbreeding and coancestry for a given choice of c
is defined as:

K c;GjXð Þ ¼
1

2
c0Gc ð6Þ

Further, let â be the vector of GEBV for the trait. The genetic gain was taken to be the

weighted average of expected breeding value of the progeny:

Gðc; bÞ ¼ c0â ð7Þ

In the above, the restrictions on the weights were ci�0 for candidate i and
PN

i¼1
ci ¼ 1, and

N was the total number of candidates. For each sex, we had
PNs

i¼1
ci ¼ 0:5, and Ns was the num-

ber of animals of a specific sex. The objective was to maximize genetic gain, subject to the

restriction that the maximum kinship was no greater than an upper bound of kinship, set up

as follows:

Kub ¼
�K þ ð1 � �KÞ=ð2NeLÞ ð8Þ

where �K was the average kinship, Ne was the effective population size, and L was the genera-

tion interval. The optimal c that maximized (7) was obtained by maximizing the following

Lagrangian objective function [25]:

H ¼ c0b � l0ð2K � c0GcÞ � lðc0Q � rÞ ð9Þ

where λ0 and λ were the Lagrangian multipliers (λ was a vector of length 2), Q was a known

incidence matrix for the sex of candidates, and r was a vector of 0.5’s of length 2. This problem

can be solved either using Lagrangian multipliers [25] or using semidefinite programming

[17]. Thus, genomic OCS can be viewed as a form of genomic selection with constraints on the

rate of inbreeding. In contrast, the truncate genomic selection maximizes genetic gain without

posing restrictions on inbreeding.

Long-term selection on simulated average daily gain was conducted for ten generations

using genomic OCS and genomic selection, respectively, with the set of 303 Ningxiang pigs

used as the base population. The purpose was to evaluate the utility of using genomic OCS as a
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sustainable selection strategy for Ningxiang pigs. For genomic selection, ten sires and 50 dams

with the largest GEBV of ADG were selected and mated randomly in each generation. Geno-

mic OCS was conducted under two scenarios. In the first scenario (denoted by GOCS_S), the

top 10 sires with the largest contribution rates were selected, and each chosen sire was mated

to 5 dams, which had the smallest kinships with this sire. This was to mimic the real situations

in which the highly-intensive selection is not desirable, but minimizing kinships in parents

(and hence inbreeding in progenies) is of more relevance. Thus, we limited selection for

genetic gain on sires only. However, OCS requires constraining the average coancestry of

selected parents, which otherwise is not met if each sire is randomly mated with equal proba-

bility to each unselected dam. Hence, minimizing kinships between selected parents in the

present study was achieved by mating each chosen sire to five dams, which had the smallest

kinships with this sire. In the second scenario (denoted by GOCS_SD), GOCS was imple-

mented more closely following Sonesson et al. [14], in which sires and dams were selected with

the constraint of inbreeding among selected parents. Then, each chosen sire was randomly

mated to five chosen dams.

Progeny genotypes were simulated using a stochastic procedure, given the parental haplo-

types. The SNP map was derived from the porcine genomic assembly 10.2 (Sscrofa10.2), and

the gametes with recombination were produced by drawing a number of crossovers from a

Poisson distribution with the mean being 1 per Morgan. The position of crossovers was taken

at random without inference. A mutation rate of 1 × 10−8 per nucleotide was simulated for all

chromosomes, regardless of if the locus is causative or non-causative. For each type of mating

and selection, long term selection on simulated phenotypes was duplicated stochastically 100

times. Simulation and genomic OCS were conducted using an internal R package called GMT,

developed at Neogen GeneSeek.

Results and discussion

Genomic inbreeding of Ningxiang pigs

Average LW-inbreeding coefficients were 0.41 and 0.37 for the two sets of Ningxiang pigs gen-

otyped with the Illumina PorcineSNP60 or the GGP Porcine 50K, respectively. The corre-

sponding 95% confidence intervals were between 0.32 and 0.51 in NXP set 1, and between 0.25

and 0.46 in NXP set 2. The average LW-inbreeding coefficient in NXP set 1 was slightly larger

than that in NXP set 2. There was evidence that, based on genomic-estimated kinship coeffi-

cients, animals in the first set were more closely related to each other than those in the second

set (Fig 2). This difference could be due to actual differences in genetic diversity levels between

groups, or sampling bias, or using different SNP arrays (Illumina Porcine60K for NXP set 1 vs.

GGP Porcine 50K SNP for NXP set 2).

Average LW-inbreeding in these Ningxiang pigs was roughly comparable to the genetic

diversity of two closed Iberian pig lines [36] but considerably smaller than inbreeding of Gui-

zhou miniature pigs and Mam miniature pigs (0.59 and 0.48, respectively) [37]. It has been

previously reported that animals in geographically isolated areas tend to have higher inbreed-

ing due to the mating of closely related individuals [38,39].

Average ROH-inbreeding coefficients were estimated to be 0.24 and 0.25, respectively, in

the two sets of Ningxiang pigs. The 95% confidence intervals of ROH-inbreeding were approx-

imately between 0.16 and 0.35 in both datasets. Overall, ROH-inbreeding coefficients were

smaller and more consistent between datasets than LW-inbreeding coefficients. It is generally

acknowledged that ROH-inbreeding provides a more accurate measure of IBD than LW-

inbreeding [40,41] because two alleles carried by an individual at a locus can be identical-by-

state (IBS), inherited from two different ancestors, instead of being IBD from the same
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ancestor. Furthermore, as the length of ROH increases, the chance of being IBS for a chromo-

somal region drastically decreases. Thus, ROH-inbreeding coefficients vary with the length of

ROH utilized. In the present study, ROH was defined for a minimum of 20 SNPs long.

Fig 2. Correlation plots of genomic-estimated kinship coefficients between individual animals within each of two Ningxiang pig populations.

https://doi.org/10.1371/journal.pone.0236629.g002
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Inbreeding is associated with a wide range of genetic phenomena, which include a decrease

in genetic diversity of finite populations, a decrease in effective population size, genetic drift,

changes in population structure, deviations from Hardy-Weinberg equilibrium, and decreases

in population means [42]. Often, inbreeding leads to inbreeding depression. For marker loci

to indicate inbreeding depression, their heterozygosity should be correlated with the heterozy-

gosity of functional genes affecting fitness [43]. There are two hypotheses under the broad cat-

egory of heterozygosity-fitness correlation (HFC) theory for the explanation of inbreeding

depression. Firstly, the “general effect hypothesis” assumes that multilocus heterozygosity

(MLH) reflects genomic heterozygosity, and the association emerges because variation in

inbreeding causes heterozygosity to be correlated across loci. This phenomenon was termed

identity disequilibrium by Weir & Cockerham [44]. Secondly, the “local effect hypothesis”

states that one or a few of the markers are in linkage disequilibrium (LD) with a trait locus

under balancing selection, creating a pattern whereby heterozygosity at the gene and marker

are correlated [43,45]. Both mechanisms can, therefore, be united under an inbreeding or gen-

eral effect model [43]. In the present study, Ningxiang pigs showed considerably increased

inbreeding, as compared to developed pig breeds or lines. Thus, our results emphasize that it is

highly important to control the rate of inbreeding in the preservation and genetic improve-

ment programs of Ningxiang pigs. An evaluation of possible inbreeding depression in Ning-

xiang pigs was not conducted in the present study, but it remains a subject of interest for

future studies.

Comparison of GOCS and GS

In the NXP set 2, genomic selection led to a high rate of genetic gain in ADG in the first two

generations (Fig 3A). Conversely, the rate of ROH-inbreeding dropped in the second genera-

tion and then steadily increased through the tenth generation. The average rate of ROH-

inbreeding was larger than 10% at each of the ten generations of selection (Fig 3B). The rate of

inbreeding was slightly higher at generation one than the remaining generations because there

was a small number of candidate sires (i.e., 48 sires) to select. The genetic gain was maximum

in the second generation, and it began to decrease after that (Fig 3A). In general, genetic gain

tended to decrease from generation 2 to 10. The genetic gain in generation one was not the

largest because the “founder” population size was small. The decrease of population means in

Fig 3. Comparison of simulated genetic gain on average daily body weight gain (A) and average inbreeding based on runs of

homozygosity (B), which were obtained under two scenarios of genomic OCS (GOCS_S and GOCS_SD) and genomic selection

(GS) without inbreeding control, respectively.

https://doi.org/10.1371/journal.pone.0236629.g003
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the truncated genomic selection is a consequence of drastically reduced genetic variance due

to inbreeding. In reality, this can worsen by inbreeding depression, due to the presence of

dominance and overdominance inheritance, in which certain recessive alleles have negative

effects or are associated with reduced fitness. The inbreeding depression effect is not the same

for fitness-related traits and production traits, but the reduction in the performance of the

population can follow the same principle. The present study, however, did not consider domi-

nant and over-dominant effects.

In the two scenarios of genomic OCS, the rate of inbreeding per generation was controlled

to be less than 5% for each of the ten generations of selection under scenario 1 (Fig 3B), and

mostly less than 5% for all the generations except for the first and last generations under sce-

nario 2 (Fig 3B). The rate of inbreeding was similar between the two scenarios of GOCS, yet

selecting on both sires and dams led to a considerably larger genetic gain and a slightly larger

rate of inbreeding than selecting on sires only. While the rate of genetic gain per generation

obtained using GS was substantially larger than those obtained by the two scenarios of geno-

mic OCS in the beginning generations of selection, the difference in genetic gain between GS

and Genomic OCS reduced quickly at latter generations (Fig 3A). At generation ten, the differ-

ence in the realized rates of genetic gain between GS and GOCS_SD diminished and ended up

with even a slightly higher genetic gain with GOCS_SD (Fig 3A). This could be due to the

greater loss of genetic variance with GS as inbreeding accumulated and changes in linkage dis-

equilibrium occurred between QTL and linked markers. Also, some QTLs were fixed at gener-

ation ten. Therefore, Genomic OCS had at least a comparable genetic gain yet had a much

lower risk of increasing breeding (and reducing genetic diversity) than GS without controlling

inbreeding.

Arguably, genomic OCS is becoming a well-established method that can be used in many

practical animal breeding applications. Nevertheless, improvements are also emerging. In

genomic OCS, a measure of genetic gain is often taken to be the total expected breeding value

of the progeny. Still, it carries no information about the variability of breeding values among

full-sibs. Akdemir and Sanchez [46] introduced a measure called the risk of a mating plan,

such that the expected merit of the progeny was increased by a small amount proportional to

their expected variance (standard deviation) computed under the assumption of infinitesimal

genetic effects, with the extent of increment controlled by a scalar parameter. Likewise, avoid-

ing the loss of rare favorable alleles has also received attention when increasing long-term

selection gain. Thus, Jannink [47] proposed a weighted strategy of genomic selection (WGS),

in which the effect of rare favorable alleles is amplified following theory by Goddard [48]. Like-

wise, De Beukelaer et al. [49] proposed two new sets of selection methods that maximize a

weighted index balancing genetic gain with controlling expected heterozygosity or maintain-

ing rare alleles, which can have added value to GOCS.

Conclusion

Genomic OCS provides a well-established approach to balancing genetic gain and the loss of

genetic diversity. The present results investigated the performance of GOCS in Ningxiang pigs

with observed genotypes and simulated phenotypes of average daily body weight gain. Two

scenarios of genomic OCS were examined, in comparison with GS without controlling

inbreeding. Scenario No. 1 (GOCS_S) presented a modified version of genomic OCS for indig-

enous breeds such as Ningxiang pigs, in which selection for genetic gain operated on sires only

but constraining kinships on both sires and dams. This type of non-random mating arrange-

ment was a necessary step with scenario No. 1. In genomic OCS under scenario No. 2

(GOCS_SD), both sires and dams with the largest contribution rates were selected, and the
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kinships between selected parents were constrained. The present results supported the utility

of genomic OCS for the breeding of Ningxiang pigs because it can maintain a sustainable

long-term genetic gain while controlling the rate of inbreeding within a desirable range for

most of the generations of selection. The present study involved only a single trait, namely,

average daily gain. In a real situation, multiple traits of economic importance will need to be

considered, which could include, for example, growth rate, intramuscular fat, and reproductive

performance. Meanwhile, future considerations may also include investigating alternative,

more cost-effective forms of genomic mating or genomic OCS for sustainable genetic

improvement of local breeds [46].
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