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Abstract
Chronic	kidney	disease	(CKD)	 is	a	progressive	disease	 that	evades	early	detec-
tion	and	is	associated	with	various	comorbidities.	Although	clinical	comprehen-
sion	and	control	of	these	comorbidities	is	crucial	for	CKD	management,	complex	
pathophysiological	interactions	and	feedback	loops	make	this	a	formidable	task.	
We	have	developed	a	hybrid	semimechanistic	modeling	methodology	to	investi-
gate	CKD	progression.	The	model	is	represented	as	a	system	of	ordinary	differen-
tial	equations	with	embedded	neural	networks	and	takes	into	account	complex	
disease	progression	pathways,	 feedback	 loops,	and	effects	of	53	medications	 to	
generate	time	trajectories	of	eight	clinical	biomarkers	that	capture	CKD	progres-
sion	due	to	various	risk	factors.	The	model	was	applied	to	real	world	data	of	US	
patients	with	CKD	to	map	the	available	 longitudinal	 information	onto	a	set	of	
time-	invariant	patient-	specific	parameters	with	a	clear	biological	interpretation.	
These	parameters	describing	individual	patients	were	used	to	segment	the	cohort	
using	a	clustering	approach.	Model-	based	simulations	were	conducted	to	inves-
tigate	cluster-	specific	treatment	strategies.	The	model	was	able	to	reliably	repro-
duce	 the	 variability	 in	 biomarkers	across	 the	 cohort.	 The	 clustering	procedure	
segmented	the	cohort	into	five	subpopulations	–		four	with	enhanced	sensitivity	to	
a	specific	risk	factor	(hypertension,	hyperlipidemia,	hyperglycemia,	or	impaired	
kidney)	and	one	that	is	largely	insensitive	to	any	of	the	risk	factors.	Simulation	
studies	were	used	to	identify	patient-	specific	strategies	to	restrain	or	prevent	CKD	
progression	through	management	of	specific	risk	factors.	The	semimechanistic	
model	enables	identification	of	disease	progression	phenotypes	using	longitudi-
nal	data	that	aid	in	prioritizing	treatment	strategies	at	individual	patient	level.

Study Highlights
WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
Chronic	kidney	disease	(CKD)	progression	involves	complex	biological	pathways	
resulting	in	a	large	variability	in	progression	characteristics.	Although	deep	learn-
ing	models	can	capture	complex	associations,	they	lack	clear	interpretability,	and	
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INTRODUCTION

Chronic	kidney	disease	(CKD)	is	a	growing	cause	of	global	
concern	affecting	~ 753 million	patients1	globally	in	2016	
and	accounting	 for	~ 1.2 million	deaths2	 in	2017	world-
wide.	 CKD	 seldomly	 occurs	 in	 isolation	 and	 is	 almost	
always	associated	with	various	cardiovascular	and	meta-
bolic	comorbidities,	like	hypertension,3	hyperlipidaemia,4	
and	 hyperglycemia.5,6	 Clinical	 management	 is	 challeng-
ing	 as	 CKD	 gradually	 progresses	 almost	 imperceptibly	
over	 years	 and	 is	 usually	 diagnosed	 in	 advanced	 stages	
when	 kidney	 function	 is	 already	 irreversibly	 impaired.7	
Although	the	management	of	progression	involves	treat-
ing	 the	 associated	 comorbidities,	 CKD	 in	 turn	 increases	
the	 risks	 of	 exacerbation	 of	 the	 comorbidities	 through	
feedback	 loops	 that	 pervade	 biological	 and	 physiologi-
cal	 systems.8–	11	 This	 makes	 the	 analysis	 of	 longitudinal	
data	 on	 CKD	 progression	 difficult	 using	 regular	 statisti-
cal	 methods;	 any	 analytical	 model	 for	 CKD	 progression	
should	incorporate	effects	of	these	physiological	feedback	
loops.

In	 most	 cases,	 the	 individual	 risk	 factors	 for	 CKD	
work	through	multiple	mechanisms.6,12,13	The	risk	factors	
themselves	 evolve	 with	 time	 and	 so	 does	 their	 effect	 on	
the	kidneys.14	The	management	of	risk	factors	varies	sig-
nificantly	across	patients	due	to	various	factors,	including	
differences	in	care	delivered.	Consequently,	across	a	large	
cohort	of	patients	with	CKD,	a	wide	variability	in	progres-
sion	 rates	 is	 observed.15,16	 Due	 to	 large	 variations	 in	 the	
risk	factors	themselves,	it	is	difficult	to	gauge	whether	the	
variability	in	CKD	progression	rates	arises	due	to	variabil-
ity	in	risk	factors	or	are	there	any	patient-	specific	aspects,	
which	further	affect	the	CKD	progression	rates.	Planning	

interventions	 and	 treatment	 strategies	 for	 CKD	 thus	 re-
quires	a	better	understanding	of	disease	progression	and	
contribution	of	different	comorbidities;	hence,	a	method-
ology	 that	 takes	 into	account	 the	 time	varying	effects	of	
risk	factors	along	with	their	inter-	relationships	and	feed-
backs	simultaneously	is	desired	for	generating	insights	for	
better	patient	management.

In	literature,	prior	studies	have	developed	risk	predic-
tion	 models17–	20	 (primarily	 based	 on	 Cox	 regression)	 for	
onset	 and	 progression	 for	 CKD.	 There	 are	 also	 animal	
models21	 to	 understand	 CKD	 pathophysiology,	 which	
come	 with	 their	 own	 class	 of	 problems22	 in	 translation	
to	 humans.	 Alternatively,	 there	 are	 pure	 mechanistic	
models23–	25	based	on	quantitative	systems	pharmacology	
(QSP)	 that	 incorporate	 physiological	 inter-	relationships	
and	 feedbacks	 and	 have	 been	 primarily	 applied	 to	 drug	
development.	 In	 this	 paper,	 we	 present	 a	 novel	 hybrid	
semimechanistic	 modeling	 approach	 that	 combines	 dif-
ferential	 equations-	based	 mechanistic	 QSP	 modeling	
with	modern	machine	learning	techniques	to	investigate	
CKD	 subpopulations	 in	 real-	world	 data.	 Unlike	 pure	
deep	learning-	based	black-	box	models,	a	large	part	of	our	
model	is	built	upon	mechanistic	QSP	modeling	to	explic-
itly	 represent	 established	 causal	 inter-	dependencies	 and	
feedback	 loops	 for	 the	 simulation	 of	 time	 trajectories	 of	
clinical	biomarkers	and	risk	factors	associated	with	CKD.	
Machine	learning	components,	such	as	neural	networks,	
were	 used	 to	 complement	 the	 mechanistic	 equations	 in	
parts	 where	 the	 exact	 functional	 form	 for	 the	 biological	
interactions	 are	 intractable.	 Using	 this	 semimechanistic	
modeling	methodology,	we	have	mapped	longitudinal	pa-
tient	 data	 from	 electronic	 health	 records	 (EHRs)	 onto	 a	
set	of	time-	invariant	patient-	specific	parameters	that	have	

do	not	account	for	causal	biological	relationships,	thus	offering	insights	that	are	
not	clinically	actionable.
WHAT QUESTION DID THIS STUDY ADDRESS?
This	study	presents	a	semimechanistic	modeling	methodology	and	applies	it	to	
multidimensional	 longitudinal	 real-	world	 electronic	 health	 record	 (EHR)	 data	
to	 segment	 patients	 into	 subpopulations	 based	 on	 dominant	 drivers	 of	 CKD	
progression.
WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
The	model	mapped	the	longitudinal	EHR	data	onto	time	invariant	patient-	specific	
parameters	and	clustering	on	these	parameters	yield	five	CKD	subpopulations:	
four	with	enhanced	sensitivity	to	a	specific	risk	factor	and	one	that	is	largely	in-
sensitive	to	any	risk	factor.
HOW MIGHT THIS CHANGE DRUG DISCOVERY, DEVELOPMENT 

AND/OR THERAPEUTICS?
Assignment	of	patients	with	CKD	to	clusters	based	on	driving	risk	factor	will	aid	
in	designing	patient-	specific	treatment	strategies.
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a	 clear	 biological	 interpretation	 (i.e.,	 sensitivity	 of	 renal	
damage	 to	 different	 risk	 factors).	These	 mechanistic	 pa-
rameters	describing	individual	patients	were	subsequently	
utilized	to	understand	the	dominant	drivers	of	CKD	pro-
gression	in	different	patient	subpopulations.

METHODS

Analysis cohort definition

For	this	study,	longitudinal	EHR	data	of	patients	diag-
nosed	with	CKD	within	 the	period	of	data	availability	
(January	 2014–	December	 2017:	 4  years)	 was	 utilized.	
The	data	were	collected	from	468,998	different	hospitals	
in	the	United	States	with	~ 1.6 million	unique	patients	
with	CKD.	As	illustrated	in	Figure 1,	the	analysis	cohort	
was	defined	by	a	stepwise	application	of	 the	 following	
exclusion	 criteria:	 (1)	 patients	 with	 no	 laboratory/vi-
tals	measurements,	 (2)	patients	who	suffer	 from	acute	
kidney	 injuries	 (AKIs)	 or	 have	 undergone	 surgical	 in-
terventions	since	the	study’s	focus	is	gradual	long-	term	
progression	 of	 CKD	 and	 not	 acute	 renal	 events	 that	
can	 cause	 abrupt	 changes	 in	 kidney	 functioning;	 also	
in	addition,	the	mechanism	of	CKD	progression	would	
be	 different	 between	 patients	 with	 and	 without	 AKI,	

hence	 modeling	 AKI-	CKD	 interaction	 would	 involve	
developing	a	largely	different	model	structure	given	the	
complex	etiology	of	AKI	and	may	also	potential	require	
additional	 biomarkers26,27	 not	 frequently	 captured	 in	
our	EHR	data,	(3)	patients	who	did	not	have	sufficient	
amount	 of	 longitudinal	 data	 for	 biomarkers	 captured	
by	the	model	(see	Supplementary	Material,	Section	S1).	
These	criteria	also	ensure	 that	patients	 in	 the	analysis	
dataset	satisfy	a	minimal	set	of	data	quality	and	quan-
tity	 requirements.	 We	 checked	 for	 potential	 biases	 in-
troduced	 by	 our	 selection	 process	 by	 a	 comparison	 of	
descriptive	 statistics	 between	 the	 complete	 and	 the	
analysis	datasets	(see	Results).

Model structure

Figure  2a	 shows	 a	 schematic	 of	 our	 semimechanistic	
model	 with	 its	 different	 components	 and	 their	 inter-	
relationships.	 A	 large	 part	 of	 the	 model	 is	 developed	
mechanistically	 considering	 the	 underlying	 biological	
causality	 driven	 by	 physiological	 interactions	 and	 feed-
back	 loops.	 Black-	box	 machine	 learning	 components	
complement	 the	 above	 approach	 in	 sections	 where	 the	
exact	 functional	 form	 representing	 the	 interaction	 of	
biological	mechanisms	is	 intractable,	 for	example,	blood	

F I G U R E  1  Cohort	selection	process.	Flowchart	of	cohort	selection	process	showing	exclusion	criteria	applied	on	the	population	of	
patients	diagnosed	with	chronic	kidney	disease	from	2014	to	2017.	EHR,	electronic	health	record
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pressure	 trajectories.	 The	 model	 components	 can	 be	
grouped	 into	 subsystems	 (Figure  2a)	 representing	 body	
weight,	 glucose	 metabolism,	 lipid	 metabolism,	 blood	
pressure,	 and	 kidney	 function	 itself.	 Table  1	 lists	 down	
each	 subsystem	 and	 their	 main	 state	 variables	 (formal	

descriptions	 in	 Supplementary	 Material,	 Section	 S3).	
Within	each	subsystem,	the	effects	of	individual	medica-
tions	 were	 incorporated	 as	 Hill	 functions	 at	 appropriate	
physiological	 pathways	 based	 on	 mechanism	 of	 action	
(Supplementary	 Material	 S3).	 The	 constants	 within	 the	

F I G U R E  2  Illustration	of	model.	(a)	Schematic	flow-	diagram	of	semimechanistic	model	showing	the	inter-	relationship	between	
the	different	components.	The	rounded	rectangles	represent	the	biomarkers	that	are	captured	in	the	electronic	health	record	(her)	data;	
ordinary	rectangles	represent	the	internal	state	variables	and	components	with	physiological	meaning	but	are	not	captured	in	the	EHR	
data;	the	hexagons	in	dark	grey	background	represent	the	abstract	systems,	like	the	liver,	etc.	The	model	components	are	grouped	into	
different	subsystems,	based	on	the	underlying	physiology,	which	are	visually	distinguished	through	different	colors	–		body	weight	(blue),	
glucose-	insulin-	HbA1c	(yellow),	lipids	(purple),	blood	pressure	(orange),	and	renal	functioning	(green).	(b)	Architecture	of	neural	network	
representing	the	time	evolution	of	blood	pressure.	The	neural	network	used	a	single	hidden	layer	with	four	neurons	with	sigmoid	activation	
and	an	output	layer	with	two	neurons	with	ReLU	activation.	(c)	(i)	Schematic	illustrating	the	inputs	and	outputs	of	the	semimechanistic	
model.	The	patient-	specific	parameters	of	the	semimechanistic	model	are	estimated	using	the	inputs	-		time-	invariant	patient	data	
(demographics)	as	well	as	longitudinal	patient	data	(Biomarkers	and	Medications)	from	the	EHR.	(c)	(ii)	Schematic	illustrating	the	
clustering	procedure.	The	patient-	specific	parameters	representing	sensitivities	of	chronic	kidney	disease	(CKD)	to	different	risk	factors	were	
analyzed	using	clustering	algorithms	to	divide	the	patient	cohort	into	CKD	subpopulations
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Hill	 function	(maximal	response,	half	maximal	response	
dosage,	 and	 Hill	 exponent)	 for	 each	 medication	 is	 esti-
mated	from	dose-	response	curves	from	literature	(details	
and	references	in	Supplementary	Section	S6).

A	brief	description	of	each	subsystem	is	 furnished	as	
follows.

Body	weight

The	 time	 evolution	 of	 body	 weight	 (equations	 in	
Supplementary	 Material,	 Section	 S3B)	 is	 modeled	 as	 a	
function	 of	 net	 daily	 caloric	 intake28	 and	 was	 decom-
posed	into	two	parts:(a)	lean	body	weight	(LBW)	and	(b)	

adipose	 tissue	 weight	 (ATW).	 The	 model	 captures	 the	
rate	of	change	of	ATW	while	assuming	that	LBW	remains	
constant	over	time.29	When	excess	net	caloric	intake	(ca-
loric	intake	in	excess	of	the	person’s	total	daily	energy	ex-
penditure)	increases,	the	ATW	increases;	whereas	in	the	
absence	of	additional	net	caloric	intake,	the	body	weight	
converges	to	LBW.	Increase	in	ATW	triggers	the	develop-
ment	of	insulin	resistance	as	described	below.

Glucose-	insulin-	HbA1c

The	 evolution	 of	 serum	 glucose	 levels	 (equations	 in	
Supplementary	 Material,	 Section	 S3C–	E)	 takes	 into	

T A B L E  1 	 Subsystems	of	the	semi-	mechanistic	model	and	their	main	state	variables

Subsystem State variable Meaning Physiological processes

Body	weight Lean	body	weight Weight	of	all	organs	except	adipose	
tissue

Constant	over	time

Adipose	tissue Weight	of	adipose	tissue Increases	with	excess	caloric	input	and	
decreases	when	caloric	input	is	lower	than	
maintenance	demand

Glucose-	insulin-	
HbA1c	system

Glucose Serum	glucose	concentration Influx	components:	carb.	intake	from	food,	
glucose	released	by	liver,	re-	absorption	
from	the	kidneys

Outflux	components:	absorption	by	tissues	
mediated	by	insulin	and	insulin	sensitivity	
and	removal	through	the	kidneys

Insulin Serum	insulin	level Increases	with	elevated	serum	glucose	level	
and	higher	pancreatic	beta	cell	functioning

Beta	cell	function Levels	of	beta	cell	functioning	
determining	the	rate	of	insulin	
production

Increases	with	elevated	glucose	levels	due	to	
beta	cell	replication;	prolonged	exposure	to	
hyperglycemia	causes	reduction	due	to	beta	
cell	death

Insulin	sensitivity Sensitivity	of	cells	to	reduce	blood	
glucose	levels	in	response	to	insulin

Decreases	with	excess	adipose	tissue	mass;	
inversely	related	with	insulin	resistance

HbA1c Serum	HbA1c	concentration Increases	with	increased	serum	glucose	levels	
and	is	removed	with	RBC	turnover

Lipids Serum	cholesterol Total	serum	cholesterol	level Increases	with	excess	adipose	tissue	mass	and	
increased	insulin	resistance

Serum	LDL-	C Serum	LDL	cholesterol	level Increases	with	excess	adipose	tissue	mass	and	
increased	insulin	resistance

BP Systolic	BP Increases	with	age	due	to	arterial	stiffness,	
which	is	further	increased	by	plaque	
burden

Diastolic	BP

Mean	arterial	
pressure

Time-	weighted	average	arterial	pressure	
during	single	cardiac	cycle

Increases	with	increase	in	either	systolic	or	
diastolic	BP

Kidney	functioning GFR Represents	flow	rate	of	filtered	fluids	
by	kidney;	indicator	of	kidney	
functioning

Decreases	with	age,	increase	in	levels	of	risk	
factors	(MAP,	LDL-	C,	and	glucose)

Creatinine Serum	creatinine	levels Increases	with	decreased	GFR

Abbreviations:	BP,	blood	pressure;	carb.,	carbohydrate;	GFR,	glomerular	filtration	rate;	RBC,	red	blood	cell.
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account	 the	 glucose-	insulin	 homeostatic	 feedback30	 and	
depends	 on	 glucose	 released	 from	 the	 liver,31	 serum	 in-
sulin	 levels,	and	 insulin	sensitivity.	Serum	insulin	 levels	
are	modeled	to	rise	when	there	is	excess	glucose	in	blood	
as	 observed	 in	 an	 oral	 glucose	 tolerance	 test	 (OGTT).32	
However,	prolonged	exposure	to	hyperglycemia	results	in	
damage	to	and	ultimately	death	of	pancreatic	beta	cells33	
and	associated	reduction	in	fasting	insulin	levels	and	in-
sulin	response	to	glucose.34	In	addition,	 insulin	sensitiv-
ity	is	modulated	by	excess	adipose	tissue,35	which	in	turn	
depends	on	net	caloric	intake.	The	effect	of	diabetes	medi-
cations	(listed	in	Supplementary	Material,	Section	S6)	in-
cluding	 metformin,	 DPP-	4I,	 SGLT-	2I,	 sulfonylurea,	 and	
GLP1-	A	 are	 included	 to	 modulate	 the	 appropriate	 parts	
of	 model	 dictated	 by	 mechanism	 of	 action.	 Referring	 to	
Figure 2a,	 it	 is	noted	 that	we	have	associated	HbA1c	as	
a	chronic	measure	of	glucotoxicity	because	HbA1c	levels	
are	reflective	of	the	exposure	to	blood	glucose	levels	over	
a	few	months.

Lipids

The	 primary	 biomarkers	 captured	 in	 the	 lipids	 system	
are	 low-	density	 lipoprotein	 cholesterol	 (LDL-	C)	 and	
total	cholesterol.	The	model	includes	the	effects	of	excess	
weight	 and	 insulin	 sensitivity	 on	 lipid	 synthesis	 (equa-
tions	in	Supplementary	Material,	Section	S3F)	and	the	ef-
fect	of	statins	(listed	in	Supplementary	Material,	Section	
S6)	 in	 suppressing	 lipid	 synthesis.36	Although	high	den-
sity	 lipoprotein	 levels	 varied	 between	 patients,	 they	 did	
not	vary	significantly	over	time,	as	evidenced	in	the	data;	
and	hence	was	not	included.

Blood	pressure

The	time	evolution	of	blood	pressure	depends	on	many	
factors,	which	includes	arterial	stenosis,	obesity,	stress,	
dysregulation	 of	 Renin-	Angiotensin-	Aldosterone	 sys-
tem,	and	possibly	hitherto	unidentified	drivers.37,38	As	
illustrated	 in	 Figure  2b,	 the	 time	 evolution	 of	 blood	
pressure	 was	 modeled	 with	 a	 neural	 network	 model	
with	 the	 following	 inputs:	 excess	 body	 weight,39	 an	
estimate	 of	 plaque	 burden	 using	 cumulative	 expo-
sure40	 to	 oxidized	 lipid	 levels,	 and	 a	 feedback	 of	 pre-
vailing	normalized	blood	pressure	levels	(equations	in	
Supplementary	Material,	Section	S3G).	The	neural	net-
work	contained	a	single	hidden	layer	with	four	neurons	
with	 sigmoid	 activation	 and	 a	 output	 layer	 with	 two	
neurons	with	ReLU	activation.	The	effect	of	antihyper-
tensive	medications	(listed	in	Supplementary	Material,	
Section	 S6)	 is	 also	 considered.	 Although	 both	 systolic	

and	diastolic	blood	pressure	can	show	significant	vari-
ation	 over	 extremely	 short	 time	 scales	 (approximately	
a	 few	 hours)	 depending	 on	 various	 factors,	 including	
stress,	this	short	time	variation	of	blood	pressure	is	not	
incorporated.

Glomerular	filtration	rate	and	serum	creatinine

In	this	study,	we	represent	kidney	function	by	the	glo-
merular	 filtration	 rate	 (GFR).	 The	 time	 evolution	 of	
GFR	 (equations	 in	 Supplementary	 Material,	 Section	
S3H)	incorporates	the	role	of	different	risk	factors,	in-
cluding	 hyperglycemia,	 hyperlipidemia,	 hypertension,	
and	autocrine	inflammation,	as	well	as	accounts	for	the	
natural	 decline	 associated	 with	 aging.	 The	 evolution	
of	serum	creatinine	levels	is	expressed	as	a	function	of	
GFR	assuming	a	quasi-	steady	approximation,	as	the	dy-
namics	of	serum	creatinine	levels	are	much	faster	than	
the	 gradual	 decline	 rate	 of	 GFR.37	 We	 directly	 mod-
eled	serum	creatinine	as	it	is	in	a	continuous	range	as	
compared	to	CKD	stage	information	that	is	available	in	
EHR	data	in	the	form	of	International	Classification	of	
Diseases	(ICD)	codes.

Simulations of differential equations

The	 model	 simulation	 of	 different	 patient	 biomarkers	 is	
posed	 as	 an	 initial	 value	 problem,	 which	 was	 numeri-
cally	solved	using	 the	odeint	module	 from	SciPy41	using	
the	“LSODA”	method.42	The	initial	condition	corresponds	
to	that	of	a	healthy	lean	individual	at	the	age	of	20 years,	
which	 is	 the	simulation	start	 timepoint.	The	majority	of	
initial	conditions	were	known	from	the	healthy	values	of	
different	 biomarkers	 available	 from	 literature;	 whereas	
the	remaining	were	calculated	using	the	structure	of	the	
equations	assuming	steady-	state	at	initial	condition.	A	list	
of	state	variables	and	their	initial	conditions	are	listed	in	
Supplementary	Material,	Section	S4.

Modeling summary

Figure  2c	 summarizes	 how	 the	 semimechanistic	 model	
was	applied	to	EHR	data	to	identify	CKD	subpopulations.	
Specifically,	 the	 semimechanistic	 model	 uses	 the	 EHR	
data	 (demographics	 and	 medications)	 to	 simulate	 the	
time-	trajectories	of	different	state	variables	and	biomark-
ers.	The	simulated	time-	trajectories	were	fit	to	the	longi-
tudinal	biomarker	data	from	EHR	to	estimate	the	model	
parameters	(described	in	Section	“Model	parameters	and	
estimation	 procedure”).	 The	 patient-	specific	 parameters	
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related	 to	 renal	 functioning	 were	 then	 applied	 to	 the	
clustering	 algorithm	 (described	 in	 Section	 “Clustering”)	
to	 segment	 the	 patient	 population	 into	 different	 CKD	
subgroups.

Model parameters and estimation   
procedure

The	model	parameter	values,	which	are	related	to	physio-
logical	pathways,	vary	from	patient	to	patient	and	has	sub-
stantial	variability	in	the	EHR	data.	As	such,	a	single	set	of	
values	for	the	model	parameters	is	insufficient	to	simulate	
the	biomarker	trajectories	for	all	the	patients	in	the	EHR	
data.	Consequently,	we	have	two	sets	of	parameters:

•	 Population-	level	 parameters,	 which	 are	 assumed	 as	
constants	across	the	entire	patient	cohort.	The	values	
for	these	constants	are	directly	available	in	literature	
(e.g.,	red	blood	cell	turnover	rate	and	insulin	removal	
rate)	or	were	calibrated	based	on	data	from	literature	
(e.g.,	constants	in	serum	glucose	clearance	equations	
were	calibrated	using	OGTT	data).	These	population-	
level	parameters	are	listed	for	each	physiological	sys-
tem	as	constants	in	Supplementary	Material,	Section	
S3.

•	 Patient-	specific	 parameters,	 which	 exhibit	 significant	
variation	 over	 the	 population	 and	 thus	 vary	 on	 a	 per-	
patient	basis	 (e.g.,	 rate	 constant	of	damage	 to	pancre-
atic	�-	cells).	The	value	of	these	parameters	is	estimated	
through	 optimization	 process.	 Patient-	specific	 pa-
rameters	 for	 each	 physiological	 system	 are	 listed	 in	
Table S2	(also	 indicated	as	patient-	specific	parameters	
in	Supplementary	Material,	Section	S3).

To	 estimate	 the	 patient-	specific	 parameters,	 we	 used	
the	Differential	Evolution	algorithm.43	As	the	total	num-
ber	of	parameters	to	be	estimated	is	high,	the	optimization	
process	 was	 carried	 out	 for	 each	 patient	 in	 a	 sequential	
fashion	for	each	component	as	listed	below.

•	 Body	weight
•	 Glucose-	HbA1c-	insulin
•	 Lipids
•	 Systolic	and	diastolic	blood	pressure
•	 estimated	GFR	(eGFR)	and	creatinine.

For	 each	 optimization	 step,	 the	 best	 parameters	 ob-
tained	 are	 assumed	 to	 be	 constant	 and	 used	 in	 the	 next	
step.

The	 loss	 function	 for	optimization	at	each	step	 is	de-
fined	as	the	sum	of	scaled	mean	square	error	(MSE)	of	the	
biomarkers	in	that	step:

where	yij	and	 ŷij	are	the	values	of	jth	biomarker	at	ith	time-
point	 from	 EHR	 data	 and	 model’s	 simulated	 trajectory	
respectively,	 Nj  =  number	 of	 available	 timepoints	 for	 jth	
biomarker,	 and	 M  =  number	 of	 biomarkers	 considered	
in	 that	 optimization	 step.	 In	 essence,	 given	 a	 patient,	 the	
MSE	for	each	biomarker	is	scaled	by	the	inverse	of	squared	
maximum	value	of	that	biomarker	in	order	to	account	for	
the	differences	 in	scales	of	different	biomarkers.	After	pa-
rameter	estimation,	robustness	of	parameter	estimates	and	
goodness-	of-	fit	 for	 each	 biomarker	 were	 evaluated	 (See	
Supplementary	Material,	Sections	S7,	S8).

Clustering

The	 patient-	specific	 parameters	 have	 a	 biological	 inter-
pretation	 and	 were	 subsequently	 analyzed	 using	 cluster-
ing	to	understand	different	patient	phenotypes.	Clustering	
was	 performed	 on	 the	 following	 estimated	 parameters	
used	 in	 differential	 equations	 for	 eGFR	 progression	
(Supplementary	Material	Section	S3H,	Eq.	29),	which	cor-
respond	to	the	sensitivity	of	GFR	decline	to	the	following	
specific	risk	factors:

kEegfr,LDL:	 Sensitivity	 to	 excess	 LDL	 (LDL	 in	 excess	 of	
30 mg/dL)
kEegfr,HbA1c:	Sensitivity	to	excess	HbA1c	(HbA1c	in	excess	
of	4.5%)
kEegfr,MAP:	Sensitivity	 to	excess	MAP	(MAP	in	excess	of	
83.33 mmHg)
kEegfr,Eegfr:	 Sensitivity	 to	 existing	 renal	 impairment	 (Eegfr	
=1	for	a	healthy	kidney).

Clustering	 on	 these	 patient	 parameters	 allows	 for	
identification	 of	 groups	 of	 patients	 who	 have	 similar	
response	 to	 risk	 factors	 that	 drive	 renal	 impairment.	
Prior	 to	 clustering,	 the	 parameters	 were	 standardized	
to	have	zero	mean	and	unit	variance.	Spectral	cluster-
ing	with	second	degree	polynomial	kernel	was	used.	To	
determine	the	optimum	number	of	clusters,	Silhouette	
score44	 and	 Calinski-	Harabasz	 score45	 were	 used.	
Higher	values	of	these	scores	indicate	better	clustering	
quality	and	the	optimum	number	of	clusters	was	deter-
mined	when	these	scores	were	maximized.	In	addition,	
the	Jaccard	score46	 index	was	used	to	establish	the	ro-
bustness	of	clustering	method.	Refer	to	Supplementary	
Material,	Section	S9	for	more	details	on	clustering	and	
evaluation	metrics.

Loss function =

M
∑

j= 1

1
[

max
(

y1j, y2j,⋯, yNjj

)]2
.
1

Nj

Nj
∑

i= 1

(

yij − ŷij
)2
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Simulation studies

We	 performed	 simulation	 studies	 to	 explore	 changes	 in	
eGFR	decline	across	different	clusters	 in	response	 to	re-
duction	in	specific	risk	factors	as	described	below:

•	 GFR	decline	is	quantified	as	ΔeGFR = (eGFR	at	the	end	
of	 4  years	 –		 eGFR	 at	 baseline).	 Simulation	 end	 time-
point	was	chosen	as	4 years	as	 the	EHR	data	approxi-
mately	contained	4 years’	worth	of	data.

•	 The	 semimechanistic	 model	 is	 used	 to	 simulate	 bio-
marker	 trajectories	 for	 each	 patient	 with	 a	 particular	
risk	 factor	 (MAP,	 LDL-	C,	 or	 HbA1c)	 reduced	 at	 one	
time.

•	 For	each	simulation	scenario,	ΔeGFR	is	estimated	and	

is	used	to	study	the	differences	in	GFR	decline	among	
the	different	clusters.

RESULTS

Analysis of bias in cohort selection

To	 understand	 if	 there	 is	 any	 bias	 introduced	 due	 to	
cohort	 selection,	 we	 compared	 the	 distributions	 of	
demographics,	 biomarkers,	 and	 vitals	 for	 the	 popu-
lation	 cohort	 (N  =  966,089)	 and	 the	 analysis	 cohort	
(N = 9323),	as	shown	in	Figure 3.	Because	the	number	
of	patients	 in	 these	cohorts	 is	 large,	 the	statistical	dif-
ference	in	the	distributions	of	these	cohorts	have	been	

F I G U R E  3  Analysis	of	bias	in	cohort	selection.	(a)	Proportion	of	individual	races	in	the	two	cohorts	(inset	shows	magnified	graph	
for	the	Asian,	Hispanic,	and	other	races),	(b)	Relative	proportion	of	gender	in	the	two	cohorts.	(c)	Box	and	whiskers	plot	showing	the	age	
distribution	for	the	two	cohorts,	(d)	Forest	plot	of	the	effect	size	(Cohen’s	d)	of	biomarkers	and	vitals	for	the	two	cohorts
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quantified	in	terms	in	effect	size	(Cramer’s	V47	for	cat-
egorical	variables	and	Cohen’s	d48	for	continuous	varia-
bles)	rather	than	looking	at	statistical	tests	of	difference	
between	 their	 means.	 Figure  3a–	c	 show	 the	 distribu-
tions	of	demographics	in	the	two	cohorts	and	Figure 3d	
shows	a	forest	plot	of	effect	size	of	the	differences	in	the	
biomarkers	and	vitals	used	in	the	cohort	selection	pro-
cess	between	the	two	cohorts.	Except	for	serum	creati-
nine	and	hemoglobin,	the	effect	sizes	of	the	differences	
between	the	two	cohorts	are	small.	The	medium	effect	
size	 (>0.2)	 of	 serum	 creatinine	 and	 hemoglobin	 indi-
cate	 that	our	analysis	cohort	 is	 slightly	more	diseased	
than	 complete	 cohort.	 For	 demographics,	 although	
there	is	a	slight	increase	in	Asian,	Hispanic,	and	White	
patients	 and	 a	 slight	 decrease	 in	 Black	 patients	 and	

patients	with	unknown	race	in	the	analysis	cohort,	the	
effect	sizes	of	the	differences	were	small.

Simulated trajectories from the 
semimechanistic model

Figure  4	 illustrates	 the	 simulated	 biomarker	 trajectories	
from	the	semimechanistic	model	along	with	the	raw	EHR	
data	for	an	example	patient	after	parameter	estimation.	We	
see	that	the	simulated	trajectories	follow	the	observed	bio-
marker	data	quite	closely.	The	model	also	captures	the	effect	
of	changes	in	medications	on	target	biomarkers.	For	exam-
ple,	the	patient	in	Figure 4	starts	a	combinatory	antihyper-
tensive	therapy	at	around	t = 18 months	(indicated	by	drug	

F I G U R E  4  Illustration	of	biomarker	trajectories	from	the	model	simulations	along	with	the	electronic	health	record	(EHR)	data	
and	medication	data	for	an	example	patient.	The	different	panels	correspond	to	(a)	weight	(kg),	(b)	glucose	(mM),	(c)	LDL-	C	(mg/dl),	(d)	
diastolic	blood	pressure	(mmHg),	(e)	serum	creatinine	(mg/dl),	(f)	HbA1c	(%),	(g)	total	cholesterol	(mg/dl),	(h)	systolic	blood	pressure	
(mmHg),	and	(i)	estimated	glomerular	filtration	rate	(eGFR;	ml/min/1.73 m2).	Patient	medication	data	obtained	from	EHR	(dosage	
normalized	to	each	subgroup)	are	also	plotted	for	(j)	antidiabetics,	(k)	statins,	and	(l)	antihypertensives.	In	panels	(a–	h),	black	circles	
represent	the	biomarker	data	from	EHR	data	and	grey	lines	represent	the	simulated	biomarker	trajectory	from	the	semimechanistic	model.	
The	shaded	bands	around	the	simulated	trajectories	indicate	the	literature	reported	variability	in	clinical	measurements	for	each	biomarker.	
Conversion	factors	for	units:	serum	creatinine	in	mg/dl	to	μmol/L,	×	88.4;	LDL-	C	in	mg/dl	to	μmol/L,	× 0.02586;	total	cholesterol	in	mg/dl	
to	μmol/L,	×0.02586.	RMSE,	root	mean	squared	error;	TZD,	thiazolidinedione
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dosage	increase	in	Figure 4l).	This	results	in	a	correspond-
ing	decrease	in	systolic	(Figure 4d)	and	diastolic	(Figure 4h)	
blood	pressure	in	EHR	data	beyond	t = 18 months,	which	
is	 also	 reproduced	 in	 the	 model’s	 simulated	 trajectory.	
Similarly,	introduction	of	statins	at	t = 18 months	for	this	
patient	(Figure 4k)	corresponds	to	a	decrease	in	lipid	levels	
(Figure 4c,g).

Some	patients	were	dropped	at	each	optimization	step	
due	 to	 non-	robust	 parameter	 estimates	 (Supplementary	
Material,	Section	S7)	or	high	fitting	errors.	After	param-
eter	estimation,	the	cohort	consisted	of	7792	patients	for	
whom	the	model	can	satisfactorily	fit.	The	median	coeffi-
cient	of	variation	 in	 the	estimates	of	patient-	specific	pa-
rameters	 related	 to	 CKD	 progression	 was	 less	 than	 10%	

indicating	they	are	fairly	robust.	The	goodness	of	fit	varies	
with	each	biomarker	and	Figure 4	 indicates	 the	median	
relative	 root	 mean	 square	 error	 (RMSE;	 refer	 to	 Figure	
S3	and	Supplementary	Material,	Section	S8)	for	each	bio-
marker.	The	 median	 relative	 RMSE	 is	 ~  1	 for	 most	 bio-
markers,	 indicating	 that	 the	 model	 is	 able	 to	 track	 the	
EHR	data	well.

Clustering results

The	 clustering	 methodology	 applied	 to	 patient-	specific	
parameters	 related	 to	 the	 CKD	 progression	 yielded	 five	
clusters.	 Figure  5	 shows	 the	 clustering	 results	 through	

F I G U R E  5  Visualization	of	clusters.	The	2D	scatterplots	for	each	combination	of	sensitivity	parameters	used	in	the	clustering	
procedure.	The	different	clusters	(0,	1,	2,	3,	and	4)	are	illustrated	using	different	colors	and	symbols.	Cluster	0	consists	of	patients	who	are	
insensitive	to	the	modeled	risk	factors,	whereas	clusters	1,	2,	3,	and	4	consist	of	patients	whose	chronic	kidney	disease	progression	is	driven	
by	hypertension,	hyperlipidemia,	impaired	estimated	glomerular	filtration	rate	and	hyperglycemia,	respectively
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2D	 scatter	 plots	 for	 different	 combinations	 of	 scaled	 pa-
rameters	used	in	clustering	(see	Supplementary	Material,	
Section	 S9).	 The	 different	 clusters	 are	 visually	 distin-
guished	using	different	symbols	and	colors.

From	Figure 5,	we	see	that	majority	of	patients	in	clus-
ters	1,	2,	3,	and	4	are	concentrated	along	a	particular	axis	
(i.e.,	 they	 have	 high	 values	 for	 one	 of	 the	 4	 parameters	
used	 in	 clustering)	 indicating	 their	 CKD	 progression	 is	
predominantly	 sensitive	 to	 a	 specific	 risk	 factor	 (hyper-
tension,	hyperglycemia,	hyperlipidemia,	or	existing	renal	
impairment).	There	is	also	a	fifth	cluster	(cluster-	0)	that	is	
not	particularly	sensitive	to	any	of	these	risk	factors.	These	
results	are	also	illustrated	via.	The	1D	marginal	distribu-
tion	plots	 for	each	scaled	parameter	 in	Figure	S5.	Based	
on	these	observations,	 the	characteristics	of	each	cluster	
(driving	risk	factor	for	CKD	progression)	are	summarized	
below:

●	 Cluster-	0:	 Not	 particularly	 sensitive	 to	 any	 risk	 factor	
(N  =  2780)

●	 Cluster-	1:	More	sensitive	to	hypertension	(N = 848)
●	 Cluster-	2:	More	sensitive	to	hyperlipidemia	(N = 622)
●	 Cluster-	3:	More	sensitive	to	existing	renal	impairment	

(N = 2827)
●	 Cluster-	4:	More	sensitive	to	hyperglycemia	(N = 715).

Simulation studies

Figure  6	 shows	 the	 simulation	 results	 studying	 GFR	 re-
sponse	(quantified	by	ΔeGFR	defined	 in	Methods)	due	to	

reduction	 in	 specific	 risk	 factors	 across	 different	 clusters.	
When	 there	 is	 no	 risk	 factor	 reduction	 (x-	axis	 value  =  0	
in	Figure 6),	mean	ΔeGFR	is	negative	for	all	clusters	(i.e.,	
on	an	average),	eGFR	declines	over	4 years	for	all	clusters.	
This	is	expected	because	the	cohort	is	composed	of	patients	
with	CKD.	When	a	specific	risk	factor	is	reduced,	ΔeGFR	
becomes	less	negative;	whereas	when	a	specific	risk	factor	
is	 increased,	ΔeGFR	becomes	more	negative.	Specifically,	
when	a	particular	risk	factor	(MAP,	LDL-	C,	and	HbA1c)	is	
changed,	the	cluster	identified	to	be	sensitive	to	the	corre-
sponding	risk	factor	(cluster-	1,	cluster-	2,	and	cluster-	4,	re-
spectively)	shows	the	largest	change	in	ΔeGFR.	Changes	in	
HbA1c	show	the	biggest	effect	in	ΔeGFR,	because	HbA1c	
also	affects	LDL-	C	and	MAP	indirectly.	Alternatively,	sim-
ulation	studies	allow	for	quantifying	how	much	a	specific	
risk	 factor	 needs	 to	 be	 managed	 for	 a	 specific	 cluster	 to	
prevent	eGFR	decline.	For	example,	when	MAP	is	reduced	
by	5 mmHg	(Figure 6b),	the	mean	ΔeGFR	for	cluster-	1	be-
comes	~ 0	whereas	the	mean	ΔeGFR	for	other	clusters	does	
not	change	much.

DISCUSSIONS

Insights

A	major	part	of	the	semimechanistic	model	is	defined	in	
a	 biological	 causal	 fashion	 using	 the	 QSP	 approach	 and	
feedforward	neural	networks	 supplement	 the	parts	with	
not	well-	established	biology	(e.g.,	variations	in	blood	pres-
sure	 data).	 Alternatively,	 the	 GFR	 decline	 rate	 could	 be	

F I G U R E  6  Results	of	simulation	studies.	Mean	ΔeGFR	(quantifying	GFR	decline	over	4 years)	for	each	cluster	for	different	simulation	
scenarios:	(a)	Reduction	in	MAP,	(b)	reduction	in	LDL-	C,	and	(c)	reduction	in	HbA1c.	The	different	clusters,	which	are	sensitive	to	specific	
risk	factors,	are	indicated	in	different	colors	and	symbols.	Cluster	0	consists	of	patients	who	are	insensitive	to	the	modelled	risk	factors,	
whereas	clusters	1,	2,	3,	and	4	consist	of	patients	whose	CKD	progression	is	driven	by	hypertension,	hyperlipidemia,	impaired	eGFR,	and	
hyperglycemia,	respectively.	The	error	bars	indicate	the	95%	confidence	interval	estimate	for	mean	ΔeGFR	of	each	cluster.	Conversion	
factors	for	units:	LDL-	C	in	mg/dL	to	μmol/L,	× 0.02586
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satisfactorily	explained	with	a	weighted	additive	contribu-
tion	of	its	risk	factors,	which	suggests	that	a	simpler	linear	
model	 is	 appropriate	 to	 explain	 serum	 creatinine/eGFR	
dynamics.	 Moreover,	 the	 model’s	 linear	 nature	 offered	
clear	physiological	interpretability	of	the	parameters.

Our	methodology	incorporates	the	effects	of	different	
medication	 classes	 on	 appropriate	 physiological	 path-
ways	taking	into	account	appropriate	mechanism	of	ac-
tion	and	other	drug-	specific	information	(dose-	response	
curves	from	literature).	By	looking	retrospectively	at	the	
estimated	 medication	 adherence,	 this	 feature	 allows	
in	 assessing	 patients’	 response	 to	 a	 drug	 with	 realistic	
adherence.

The	model’s	mechanistic	parameters	have	a	clear	phys-
iological	 meaning	 and	 clustering	 on	 patient-	specific	 pa-
rameters	 corresponding	 to	 CKD	 progression	 segmented	
the	 patient	 cohort	 into	 groups	 with	 similar	 progression	
characteristics.	Treatment	strategies	will	vary	for	 the	pa-
tients	 belonging	 to	 the	 different	 clusters;	 the	 different	
clusters	characterized	as	sensitive	 to	specific	 risk	 factors	
will	benefit	through	control	of	the	corresponding	risk	fac-
tors,	as	shown	through	simulations.

The	analysis	also	revealed	a	cluster	in	which	CKD	pro-
gression	 is	driven	by	 feedback	of	GFR	 to	 itself	 indicating	
a	 disease	 progression	 pathway	 related	 to	 autocrine	 effect,	
wherein	 control	 of	 comorbidities	 would	 not	 help	 the	 pa-
tients.	Further	investigation	is	required	to	understand	this	
pathway.	 The	 analysis	 also	 revealed	 a	 cluster	 insensitive	
to	any	of	the	risk	factors	suggesting	that	there	are	patients	
whose	GFR	decline	is	very	gradual	even	though	their	risk	
factor	values	may	be	high.	Such	patients	may	have	other	un-
measured	mechanisms	slowing	down	their	progression	and	
require	further	investigation.	We	also	note	that	the	identi-
fied	clusters	are	characterized	by	disease	progression	driven	
largely	by	a	dominant	risk	factor.	This	does	not	imply	that	
adverse	changes	in	other	risk	factors	will	not	have	any	ef-
fect,	rather	the	maximal	effect	will	be	due	to	the	dominant	
risk	factor.

Limitations

First,	 the	 model	 does	 not	 attempt	 to	 incorporate	 exhaus-
tively	all	the	risk	factors	that	contribute	to	CKD	progression	
but	 the	 most	 important	 ones	 regularly	 captured	 in	 EHR.	
Any	attempts	 to	make	 the	model	more	extensive	by	add-
ing	more	mechanisms	will	increase	the	number	of	param-
eters	to	be	estimated,	which	in	turn	would	require	a	more	
comprehensive	 data	 coverage.	 For	 example,	 physical	 ac-
tivities	apart	from	affecting	body	weight	can	affect	insulin	
sensitivity,	glucose,	blood	pressure,	and	lipids;	however,	the	
data	 associated	 with	 physical	 activities	 and	 exercise	 were	
not	available	in	our	EHR	data	and	are	rarely	captured	in	a	

traditional	healthcare	setting.	Likewise,	our	model	is	able	to	
discriminate	among	the	different	patients	with	distinct	dis-
ease	progression	characteristics;	however,	the	same	risk	fac-
tor	(e.g.,	hypertension)	can	cause	CKD	progression	through	
different	pathways.	The	development	of	a	model	 that	can	
discern	between	different	pathways	requires	additional	data	
typically	not	captured	in	the	standard	healthcare	setting.	A	
“big	data”	approach	incorporating	more	biomarkers,	dense	
measurements,	and	metabolomics	can	allow	such	analysis.

The	 effects	 of	 medications	 are	 currently	 considered	
to	 be	 independent	 of	 each	 other.	 Combination	 therapy	
is	considered	as	a	simple	simultaneous	effect	of	the	indi-
vidual	drugs,	which	is	not	universally	true.	Incorporating	
exact	responses	of	combination	therapy	is	harder	due	to	
a	large	number	of	combinations	and	sparsity	in	available	
data	for	many	combinations.	The	effects	of	drugs	outside	
the	direction	mechanism	or	biomarker	are	also	not	incor-
porated.	For	example,	the	reported	increase	in	fasting	glu-
cose	due	to	high-	dose	statins	is	not	incorporated.49	There	
is	plenty	of	evidence	for	a	patient	being	on	multiple	drugs	
with	different	mechanisms	of	action	for	the	same	disease,	
like	 diabetes;	 interactions	 between	 drug	 classes	 are	 not	
included.

Currently,	the	model	requires	sufficient	longitudinal	
data	density	for	cluster	assignment	and	it	would	be	ben-
eficial	 to	perform	this	with	minimal	 follow-	up	data	 to	
expedite	treatments	based	on	model’s	insights.	Ideally,	
it	 is	 desirable	 to	 assign	 clusters	 using	 baseline	 data	
only;	however,	 the	model	 currently	needs	at	 least	one	
follow-	up	measurement	to	estimate	patient-	specific	pa-
rameters	as	they	depend	on	the	derivative	of	GFR.

The	 large	changes	 in	risk	 factors	used	 in	our	simula-
tion	studies	are	often	unrealistic	due	to	other	side	effects	
or	even	adverse	effects.	For	example,	a	large	reduction	in	
HbA1c	 in	 patients	 with	 diabetes	 increases	 risk	 of	 hypo-
glycemic	shock.	The	model	does	not	consider	these	other	
effects	that	a	clinician	needs	to	consider	when	choosing	to	
manage	a	risk	factor.50
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