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Abstract: Dietary nitrate (NO3
−) supplementation, which can enhance performance in exercise

settings involving repeated high-intensity efforts, has been linked to improved skeletal muscle
contractile function. Although muscular strength is an important component of explosive movements
and sport-specific skills, few studies have quantified indices of muscular strength following NO3

−

supplementation, particularly isokinetic assessments at different angular velocities. We performed a
systematic review and meta-analysis to determine whether dietary NO3

− supplementation improves
peak torque, as assessed by the gold standard method of isokinetic dynamometry, and if this effect
was linked to the angular velocity imposed during the assessment. Dialnet, Directory of Open
Access Journals, MEDLINE, PubMed, SciELO, Scopus, and SPORTDiscus were searched for articles
using the following search strategy: (nitrate OR beet*) AND (supplement* OR nutr* OR diet*) AND
(isokinetic OR strength OR “resistance exercise” OR “resistance training” OR “muscular power”).
The meta-analysis of data from 5 studies with 60 participants revealed an overall effect size of −0.01
for the effect of nitrate supplementation on isokinetic peak torque, whereas trivial effect sizes ranging
from −0.11 to 0.16 were observed for independent velocity-specific (90◦/s, 180◦/s, 270◦/s, and 360◦/s)
isokinetic peak torque. Four of the five studies indicated that dietary NO3

− supplementation is not
likely to influence voluntary knee extensor isokinetic torque across a variety of angular velocities.
These results suggest that NO3

− supplementation does not influence isokinetic peak torque, but
further work is required to elucidate the potential of NO3

− supplementation to influence other indices
of muscular strength, given the dearth of experimental evidence on this topic.

Keywords: beetroot; ergogenic aid; exercise performance; strength; muscle

1. Introduction

Performance outcome in a variety of sports is determined by the ability to perform a range of rapid,
dynamic, and explosive movements such as sprinting, changing direction, jumping, and exhibiting
sport-specific skills (e.g., kicking, throwing, or hitting a ball). Indeed, the ability to produce force and
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power is considered among the most important factors for optimizing overall athletic performance [1,2].
It is important to note that there are a variety of methods to quantify force production (i.e., strength), such
as isokinetic dynamometry, isometric assessments, resistance exercise protocols (e.g., one-repetition
maximum (1RM), 3–10RM), and field tests (e.g., hand-grip and hand-held dynamometry, and body
mass muscle testing such as vertical jump height) [3,4]. Each method provides different parameters of
strength and has specific inherent weaknesses [5], such that strength assessments may not be equivalent
between methods [4]. Although isokinetic strength measures have limited translation to sport-specific
tasks, since these are rarely completed at an isokinetic pace [6], isokinetic assessments have several
important advantages. These conducting assessments against a maximal resistance throughout the
complete range of motion of a joint at different movement velocities [7], and the possibility of measuring
torque [8]. In addition, isokinetic strength assessment is a highly reliable method for the measurement
of force production [7,9,10]. Consequently, isokinetic dynamometry has been proposed as a gold
standard method of strength assessment [11–14].

Dietary supplementation strategies (e.g., beta-alanine, sodium bicarbonate, and creatine) are
often implemented in an attempt to enhance performance during single or intermittent maximal
contractions; however, there are few supplements evidenced to be ergogenic in single intermittent
maximal contractions [15]. One such supplement that may improve single maximal voluntary
contractile function is inorganic nitrate (NO3

−), which is typically administered as NO3
−-rich beetroot

juice (BR) [16]. Following ingestion, NO3
− is metabolized via the sequential reduction of NO3

− to
nitrite (NO2

−) and subsequently to nitric oxide (NO) [17], which plays a crucial role in skeletal muscle
function [18]. The elevation in NO bioavailability following BR ingestion is thought to underpin the
enhanced type II muscle fiber contractile function [18], lowered ATP cost of force production [5], and
improved blood flow to the skeletal muscle [19,20]. More specifically, NO3

−-induced enhancements to
skeletal muscle contractile function may be due to improved calcium (Ca2+) handling [21,22].

The effect of NO3
− supplementation on involuntary electrically evoked contractions is equivocal.

NO3
− supplementation has been reported to increase force production at low stimulation frequencies

in some (≤20 Hz) [22–24], but not all studies [25,26]. Although dietary NO3
− supplementation has been

reported to improve maximal voluntary contractile force during a mid-thigh pull [27], most studies
have not observed an increase in maximal voluntary isometric contractile force when contracting
the knee extensors [19,22,23,25,26,28,29]. Acute NO3

− ingestion has been reported to enhance peak
torque during isokinetic dynamometry at high but not low angular velocities [30–32]. Type II muscle
fibers are more likely to be recruited at high angular velocities [33,34] and NO3

− appears to be
more effective at improving contractile function in type II muscle fibers [21]. This might account
for the potential velocity-specific effects of NO3

− supplementation. Further evidence to support a
potential velocity-specific effect of NO3

− supplementation is evidenced by increased peak power
output [35–37] during a 30 s Wingate test performed using an inertial cycle ergometer, which results
in faster pedaling cadence compared with an isokinetic cycle ergometer [38], and improved time
to exhaustion when cycling at a high (115 rpm) but not a low (35 rpm) pedal cadence, after NO3

−

supplementation [39]. However, there is currently a paucity of published reports examining the effect
of NO3

− supplementation on torque at different angular velocities, and studies that have addressed
this have yielded disparate findings [30,40]. Determining the potential of NO3

− supplementation
to elicit velocity-specific effects on skeletal muscle contractile function is important to help inform
exercise settings in which NO3

− supplementation is more and less likely to be ergogenic. Since
isokinetic strength assessment is a reliable method for analyzing force production [10] at different
movement velocities [7], it was selected as the experimental approach to assess the potential of NO3

−

supplementation to improve skeletal muscle contractile function.
The aim of the present study was threefold: (i) to perform a systematic review of the studies

that have investigated the effect of NO3
− supplementation on isokinetic torque production, (ii) to

conduct a meta-analysis of reported findings, and (iii) to explore whether there is a velocity-specific
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effect of NO3
− supplementation on isokinetic torque production. It was hypothesized that NO3

−

supplementation would improve isokinetic torque at high but not low angular velocities.

2. Methods

The present systematic review and meta-analysis followed the Preferred Reporting Items
for Systematic Reviews and Meta-Analysis (PRISMA) guidelines [41] and the PICOS (population,
intervention, comparison, outcome, setting) criteria [42] and was conducted using Dialnet, Directory of
Open Access Journals, MEDLINE, PubMed, SciELO, Scopus, and SPORTDiscus databases, including
all results published before April 2020. The search strategy terms used were as follows: (nitrate OR
beet*) AND (supplement* OR nutr* OR diet*) AND (isokinetic OR strength OR “resistance exercise”
OR “resistance training” OR “muscular power”). To our knowledge, this is the first systematic review
on this topic, and therefore the search did not include limitations of publication date or language.
The original search yielded a total of 546 results. After the elimination of duplicates and screening of
inclusion criteria, a total of 70 full-text articles were identified and reviewed by three authors (J.J.R.-Á.,
F.M.T., P.J.). A quality assessment was performed by two authors (J.J.R.-Á., F.M.T.) according to the
PEDro scale [43]. A total of five articles met the eligibility criteria for the present systematic review
and meta-analysis (Figure 1).
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Based on the PICOS criteria, the following inclusion criteria were applied:

- Studies that were published as a full article and performed in adults (age 18–80 years);
- Studies that included a NO3

− and placebo intervention;
- Studies that assessed and reported isokinetic torque measures;
- Studies that employed a randomized double-blind experimental design.

Since this systematic review and meta-analysis was focused on isokinetic peak torque, we asked
corresponding authors to provide maximum isokinetic torque data when they were not directly
reported in the original article.

Meta-analytic statistical analysis was performed using Review Manager (RevMan) version 5.3
(Copenhagen: The Nordic Cochrane Centre, The Cochrane Collaboration, 2014). A fixed-effects model
was applied and performed using mean and standard deviation of peak torque and the number
of participants to quantify the standardized mean differences (SMDs) between NO3

− and placebo
interventions, calculated as Hedges’ g [44]. The SMDs for each study were weighted as the reciprocal
of their variance in order to calculate an overall effect and 95% confidence interval (CI), both for
the overall movement velocities reported in the reviewed studies (i.e., overall analysis) and for each
movement velocity reported at least in two studies (i.e., subgroup analysis). Effect sizes were defined
as trivial (<0.2), small (<0.5), moderate (<0.8), and large (>0.8) [45]. I2 values were calculated for the
percentage of total variation among studies [46]. I2 values were defined as small (25–50%), medium
(50–75%), and large (>75%) [47].

The five studies included in the systematic review and meta-analysis comprised a total of 60
participants (38 males and 22 females, age 47 ± 18 years, BMI 26 ± 2 kg·m−2). All of the included studies
provided acute administration of commercially available concentrated NO3

−-rich beetroot juice (BR;
Beet It Sport, James White Drinks, Ipswich, UK) 120 min prior to exercise (2 × 70 mL; ~11.2–13.4 mmol
of NO3

−) [30–32,48] or 180 min prior to exercise (1 × 70 mL; ~6.4 mmol of NO3
−) [40].

3. Results

A summary of the methodologies and results of the studies included in this systematic review is
provided in Table 1. Isokinetic dynamometry was used in all studies to assess voluntary peak torque
production at various angular velocities ranging from stationary (0◦/s) to fast movement (360◦/s). In
one study, knee extension and flexion were performed at 60◦/s and 240◦/s [40], respectively, while in the
remaining studies, knee extensions were perfomed at 0◦/s, 90◦/s, 180◦/s, 270◦/s, and 360◦/s [30–32,48].

There was an improvement in knee extension peak torque at a high angular velocity of 360◦/s
following NO3

− supplementation [31], but not during slower movement angular velocities of 60◦/s [40],
90◦/s [30,31,48], 180◦/s [30–32,48], 240◦/s [40], or 270◦/s [30–32,48] (Table 1). There was no effect of
NO3

− supplementation on knee flexion peak torque at slow- or fast-movement angular velocities of
60◦/s or 240◦/s respectively [40].
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Table 1. Studies assessing the effects of dietary NO3
− supplementation on isokinetic peak torque

production in humans.

Reference Subjects Supplementation Exercise Protocol Findings (BR vs. PL)

Coggan et al. [30] 7 M/5 F healthy
adults

120 min prior to
exercise ingestion
of 2 × 70 mL BR

shots (~11.2 mmol
NO3

−)

Isokinetic knee
extension peak
torque at: 90◦/s,

180◦/s, 270◦/s, and
360◦/s

−1.86% at 90◦/s
−1.72% at 180◦/s
+0% at 270◦/s

+4.27% at 360◦/s

Coggan et al. [31] 5 M/4 F heart
failure patients

120 min prior to
exercise ingestion
of 2 × 70 mL BR

shots (~11.2 mmol
NO3

−)

Isokinetic knee
extension peak
torque at: 90◦/s,

180◦/s, 270◦/s, and
360◦/s

+1.47% at 90◦/s
−3.81% at 180◦/s
+9.41% at 270◦/s

+10.94% at 360◦/s *

Coggan et al. [48]
13 M/ 7 F healthy
young and older

adults

120 min prior to
exercise ingestion
of 2 × 70 mL BR

shots (~12.3 mmol
NO3

−)

Isokinetic knee
extension peak
torque at: 90◦/s,

180◦/s, 270◦/s, and
360◦/s

−3.11% at 90◦/s
−0.67% at 180◦/s
+0.8% at 270◦/s
+3.06% at 360◦/s

Coggan et al. [32] 6 M/6 F healthy
older adults

120 min prior to
exercise ingestion
of 2 × 70 mL BR

shots (~13.4 mmol
NO3

−)

Isokinetic knee
extension peak

torque relative to
body mass at: 0◦/s,
90◦/s, 180◦/s, 270◦/s,

and 360◦/s

−2.06 at 0◦/s
−2.82% at 90◦/s
−2.94% at 180◦/s
+0% at 270◦/s

+8.33% at 360◦/s

Kokkinoplitis and
Chester [40] 7 M healthy adults

180 min prior to
exercise ingestion
of 1 × 70 mL BR
shot (~6.4 mmol

NO3
−)

Isokinetic knee
extension and

flexion peak torque
at: 60◦/s and 240◦/s

Knee extension
−3.47% at 60◦/s
−5.56% at 240◦/s

Knee flexion
−6.85% at 60◦/s
−13.83% at 240◦/s

* = significant difference between BR and PL; BR: beetroot juice; PL: placebo juice; F: females; M: males; min:
minutes; NO3

−: nitrate; s: seconds; ◦: degrees.

There was a trivial effect size of −0.01 (CI: −0.19, 0.17; I2: 0%; p = 1.00; Figure 2) for the effect of
NO3

− supplementation on isokinetic torque production when data from all angular velocities were
combined. Subgroup analysis on the effect of NO3

− supplementation on knee extension isokinetic
torque production at 60◦/s, 90◦/s, 180◦/s, 240◦/s, 270◦/s, and 360◦/s revealed that there was a trivial
effect size of 0.01 (CI: −0.18, 0.19; I2: 0%; p = 1.00). Independent analysis for each angular velocity
revealed trivial effect sizes (ESs) for the effect of NO3

− supplementation on knee extension isokinetic
torque production at 90◦/s (ES: −0.11, CI: −0.49, 0.27; I2: 0%; p = 0.98), 180◦/s (ES: −0.02, CI: −0.40, 0.37;
I2: 0%; p = 0.98), 270◦/s (ES: 0.08, CI: −0.30, 0.46; I2: 0%; p = 0.92), and 360◦/s (ES: 0.16, CI: −0.22, 0.5; I2:
0%; p = 0.98).
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4. Discussion

This is the first systematic review and meta-analysis to have investigated the potential influence
of dietary NO3

− supplementation on isokinetic torque at different angular velocities. The main finding
was that acute dietary NO3

− ingestion does not significantly alter isokinetic torque irrespective of the
angular velocity imposed.

Of the five studies included in this review, only one study reported a significant ~11% improvement
in knee extension peak torque at a high angular velocity of 360◦/s [31], with two studies reporting a
tendency for improved knee extension peak torque at 270◦/s (+9%) [31] and 360◦/s (+4%) [30] following
acute NO3

− ingestion. In contrast, the remainder of the studies reported that knee flexion [40] and
knee extension peak torque at slow-to-moderate angular velocities were not influenced by NO3

−

supplementation [30–32,40,48]. Therefore, the findings from the present meta-analysis suggests that
acute dietary NO3

− ingestion does not influence lower limb muscle isokinetic torque.
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It is recognized that the increase in plasma [NO2
−] following NO3

− supplementation is a
correlate of improved performance [48,49]. Since plasma [NO2

−] attains peak values ~3 h post NO3
−

ingestion [49–51], the lack of an effect of NO3
− ingestion on peak torque across the range of angular

velocities assessed in the current meta-analysis might be a result of the acute NO3
− ingestion occurring

2 h prior to the peak torque assessments [30–32,40,48] such that a suboptimal plasma [NO2
−] was

attained. It should also be highlighted that a limitation of some of the studies included in the current
meta-analysis is that plasma [NO2

−] was either not measured [30,40], or was measured with an assay
with insufficient sensitivity to detect an increase in plasma [NO2

−] post NO3
− ingestion [31]. In addition,

since all studies in the current meta-analysis assessed the effect of acute NO3
− ingestion on peak torque

at different angular velocities, and since there is evidence to suggest that chronic NO3
− supplementation

may be more ergogenic than acute NO3
− ingestion (at least during endurance exercise [52,53]), chronic

NO3
− supplementation may have elicited enhanced isokinetic peak torque production. It is possible

that chronic NO3
− supplementation can elevate skeletal muscle tissue stores of NO3

− and NO2
−

compared to acute NO3
− ingestion [54], which could facilitate improved skeletal muscle contractile

performance. Moreover, chronic NO3
− supplementation has been reported to increase the content

of the calcium-handling proteins calsecuestrin (CASQ) and the dihydropyridine receptor (DHPR) in
skeletal muscle, and evoked contractile force in mouse fast-twitch muscle, which supports the postulate
that chronic NO3

− supplementation could improve skeletal muscle contractile function [21]. Although
an increase evoked for production was reported after chronic NO3

− supplementation in humans, this
was not accompanied by increases in skeletal muscle CASQ and DHPR content [22]. In addition, the
lack of an effect as reported in the study by Kokkinoplitis and Chester [40] compared to the studies by
Coggan and colleagues [30–32,48] could be a function of the lower NO3

− dose (6.4 mmol) administered
in the former study. Indeed, it was reported that exercise performance dose-dependently increases after
acute NO3

− supplementation up to 8.4 mmol, with no additional performance benefits at 16.8 mmol
compared to 8.4 mmol, at least during endurance exercise [49]. Further research is required to address
the effects of chronic NO3

− supplementation on skeletal muscle contractile function and the potential
mechanisms that could underpin an ergogenic effect.

It is becoming increasingly appreciated that the efficacy of NO3
− supplementation is influenced by

the population evaluated, which could be related to factors influencing NO bioavailability [18,55]. For
example, basal NO synthesis is higher in individuals with a high cardiorespiratory fitness compared
to that in senescent populations [56] and lower in individuals with a pathology [57,58]. There is also
evidence that the increase in plasma [NO2

−] (which is a sensitive NO biomarker [59]) after NO3
−

supplementation is correlated to relative improvements to maximal knee extensor power (R = 0.60) [48].
Peak torque was enhanced to a greater extent in heart failure patients [31] compared to young and older
healthy individuals [30,32,40,48] after NO3

− supplementation. This might be a function of impaired
NO synthesis in heart failure patients, providing a greater scope for NO3

− supplementation to increase
NO synthesis and muscle contractile performance compared to healthy individuals with a higher
residual NO synthesis and muscle function. Furthermore, sex differences may influence the efficacy of
NO3

− supplementation. Indeed, Coggan et al. [48] observed that females tended to have a greater
magnitude of increase in maximal power after NO3

− supplementation, which might be linked to the
greater increase in plasma [NO2

−] after NO3
− supplementation in females [50]. Since the efficacy of

NO3
− supplementation appears to be linked to NO synthesis, and since various subject population

characteristics including health, age, and sex can modulate NO bioavailability, further research is
required to aid understanding of the different settings in which NO3

− supplementation might influence
muscular strength.

It should be noted that there are a variety of methods to assess muscle contractile function; these
methods range from isometric to the commonly implemented isotonic methods. In addition, there are
methods that employ single-joint (isokinetic dynamometry) or multi-joint movements (1RM testing),
which may have better reliability, sensitivity, and validity, while other methods may better translate to
sport-specific performance [4]. Given the relative strengths and weaknesses of each approach, future
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studies should seek to implement multiple modes of assessment for strength in order to more clearly
resolve the potential influence of NO3

− supplementation on the muscle contractile function. It should
also be acknowledged that although NO3

− supplementation does not appear to influence isokinetic
peak torque during independent angular velocity assessments, subsequent calculations of maximal
power and velocity of contraction from peak torque values obtained across a series of independent
angular velocity assessments were improved by NO3

− supplementation [30–32,48]. In addition to
isokinetic torque, the effect of NO3

− supplementation on different aspects of skeletal muscle contractile
function is equivocal. Indeed, NO3

− supplementation has been reported to increase force production
at low stimulation frequencies in some (≤20 Hz) [22–24] but not all studies [25,26]. Although most
studies have not observed an increase in maximal voluntary isometric contractile force after dietary
NO3

− supplementation [19,22,23,25,26,28,29], improved weightlifting performance [30–32,48,60] and
concentric and eccentric contractile force during the back squat [61] have been reported after dietary
NO3

− supplementation. There is also evidence of an increased peak power output during a 30 s Wingate
test after dietary NO3

− supplementation [35–37]. Therefore, the possibility of NO3
− supplementation

improving skeletal muscle strength, power, and velocity cannot be excluded on the basis of the present
meta-analysis, and further studies are warranted to provide greater clarity on the effects of NO3

−

supplementation on skeletal muscle contractile function.

5. Conclusions

In conclusion, the current systematic review and meta-analysis indicates that acute dietary NO3
−

ingestion is not likely to induce positive benefits to muscle peak torque production at a variety of
angular velocities in the lower limbs, at least when assessed using isokinetic dynamometry. The lack
of an effect of NO3

− supplementation might be linked to NO bioavailability, which is modulated by
factors such as dosing strategy, and participant health and training status, and sex. Given the paucity
of literature, further research is required for a more complete understanding of the influence of NO3

−

supplementation on different aspects of muscle strength.
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