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Abstract

Background

Until recently, the Chagas disease vector, Triatoma infestans, was widespread in Arequipa,

Perú, but as a result of a decades-long campaign in which over 70,000 houses were treated

with insecticides, infestation prevalence is now greatly reduced. To monitor for T. infestans

resurgence, the city is currently in a surveillance phase in which a sample of houses is

selected for inspection each year. Despite extensive data from the control campaign that

could be used to inform surveillance, the selection of houses to inspect is often carried out

haphazardly or by convenience. Therefore, we asked, how can we enhance efforts toward

preventing T. infestans resurgence by creating the opportunity for vector surveillance to be

informed by data?

Methodology/principal findings

To this end, we developed a mobile app that provides vector infestation risk maps generated

with data from the control campaign run in a predictive model. The app is intended to

enhance vector surveillance activities by giving inspectors the opportunity to incorporate the

infestation risk information into their surveillance activities, but it does not dictate which

houses to surveil. Therefore, a critical question becomes, will inspectors use the risk informa-

tion? To answer this question, we ran a pilot study in which we compared surveillance using

the app to the current practice (paper maps). We hypothesized that inspectors would use the

risk information provided by the app, as measured by the frequency of higher risk houses vis-

ited, and qualitative analyses of inspector movement patterns in the field. We also compared

the efficiency of both mediums to identify factors that might discourage risk information use.

Over the course of ten days (five with each medium), 1,081 houses were visited using the

paper maps, of which 366 (34%) were inspected, while 1,038 houses were visited using the
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app, with 401 (39%) inspected. Five out of eight inspectors (62.5%) visited more higher risk

houses when using the app (Fisher’s exact test, p < 0.001). Among all inspectors, there was

an upward shift in proportional visits to higher risk houses when using the app (Mantel-

Haenszel test, common odds ratio (OR) = 2.42, 95% CI 2.00–2.92), and in a second analysis

using generalized linear mixed models, app use increased the odds of visiting a higher risk

house 2.73-fold (95% CI 2.24–3.32), suggesting that the risk information provided by the app

was used by most inspectors. Qualitative analyses of inspector movement revealed indica-

tions of risk information use in seven out of eight (87.5%) inspectors. There was no difference

between the app and paper maps in the number of houses visited (paired t-test, p = 0.67) or

inspected (p = 0.17), suggesting that app use did not reduce surveillance efficiency.

Conclusions/significance

Without staying vigilant to remaining and re-emerging vector foci following a vector control

campaign, disease transmission eventually returns and progress achieved is reversed. Our

results suggest that, when provided the opportunity, most inspectors will use risk information

to direct their surveillance activities, at least over the short term. The study is an initial, but

key, step toward evidence-based vector surveillance.

Author summary

Chagas disease is a serious infection that is spread by blood-sucking insects called ‘kissing

bugs.’ These bugs live in and around human homes, and until recently, they infested thou-

sands of human homes throughout Arequipa, the second largest city in Perú. However, a

decades-long control campaign drastically reduced the number of infested houses, and the

city is now in a stage where health personnel annually inspect a sample of houses throughout

the city for kissing bug reinfestation. A large amount of information was collected during the

control campaign that could be used to help identify the houses at highest risk for re-infesta-

tion, so we developed a cell phone app to provide this information to health personnel in the

form of interactive, user-friendly risk maps. We carried out a pilot study to see if health per-

sonnel would use these maps to select houses to inspect for re-infestation, and we found that

most inspectors did use the information. We also observed that using the app did not slow

the inspectors down, which can be an issue when introducing new technology. Our results

suggest that the app could be a useful tool for monitoring diseases spread by insects in cities.

Introduction

Background

Chagas disease is a neglected tropical disease (NTD) endemic to the Americas with a current

estimated prevalence of six to nine million people worldwide [1,2] and 70 million more at risk

[3]. An estimated 30% of those with Chagas disease will develop serious cardiac and/or gastro-

intestinal problems for which there is no vaccine or cure [4,5]. The etiological agent of Chagas

disease, Trypanosoma cruzi, is a parasite of mammals that is transmitted between vertebrate

hosts by triatomine bugs [6], and vector control is at the core of large-scale Chagas disease con-

trol efforts [7–9].
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Historically, Chagas disease was considered to be a rural problem [5,10,11] associated with

homes made of rudimentary materials [12–15], the presence of domestic animals in and

around the domicile [16,17], and/or in close proximity to less disturbed landscapes that serve

as habitat for sylvatic mammal reservoirs of T. cruzi and T. cruzi vector foci [18,19]. Disease

control efforts in the past were designed accordingly, to accommodate the characteristics of

rural areas. However, Chagas disease is now known to be established in several urban settings,

creating a new epidemiological challenge for prevention [20–28].

In Arequipa, Perú, with a population approaching one million people, Chagas disease is an

urban problem due to widespread domestic infestation by the triatomine bug species Triatoma
infestans [23,28–37]. In 2002, a vector control campaign targeting T. infestans was imple-

mented in Arequipa, and today the bug is nearly eliminated from the city. The campaign is

now in its 16th year; over 70,000 households in 16 out of 18 target districts have been treated

with insecticides in what was called the ‘attack’ phase of the campaign. These houses are now

in the surveillance phase of the campaign, in which the highly challenging task of monitoring

for vector resurgence is carried out through annual inspections of a fluctuating proportion of

houses in each district. Although the ’attack’ phase of the campaign generated a great amount

of data relevant to the risk of subsequent vector infestation [30], these data are rarely used to

inform the selection of houses to visit in the surveillance phase. Rather, the selection of houses

is often carried out haphazardly or by convenience. Therefore, we asked, how can we harness

the extensive data collected during the attack phase to enhance vector surveillance, and con-

tinue the considerable progress made toward the elimination of T. infestans from Arequipa?

VectorPoint: Infestation risk maps to support independent decision

making

To this end, we developed a cloud-based, open-source mobile app that provides vector infesta-

tion risk maps for use by health inspectors. The app, which we call ‘VectorPoint,’ is intended

to enhance vector surveillance by giving inspectors the opportunity to incorporate infestation

risk information into their process of selecting houses to inspect for T. infestans. Risk informa-

tion is generated by a predictive model that calculates infestation risk estimates using data

from the attack phase of the control campaign, in combination with new data collected during

the surveillance phase. The app also provides a data entry function to collect new surveillance

data. Upon collection, new data are sent directly to a virtual server, and then incorporated into

the next run of the model, after which they are immediately visualized in the risk maps.

There are currently several apps for disease surveillance in resource limited settings, the most

common being SMS-based apps (FrontlineSMS [38–40], RapidSMS [41,42], U-Report [43,44],

Ushahidi [40,45], CycleTel [46,47], Geochat [48], among others [49]; see [50] for a thorough

review of SMS apps for disease surveillance), and generic software and tool collections that offer

mobile device-based data collection as their primary function, and some combination of basic

data analysis, visualization and/or mapping as secondary functions (SAGES [51], Open data kit

[52–54], Epicollect [54–56], eMOCHA [57,58], Medic mobile [59], Magpi [formerly Episur-

veyor, 60–62], DataWinners [63], and PhiCollect [64], among others [65–69]). A small number

of apps have been developed for vector surveillance (Dengue Chat [70], CHAAK [71], eMO-

CHA [72]), with the primary features being data collection based in social networking and com-

munity based surveillance [70], and data collection using electronic forms and/or SMS [71,72].

VectorPoint is unique in that it supports independent decision making by the individual

collecting the data, and it does not dictate a path to the user or mandate which houses to sur-

veil. Rather, it provides the opportunity to integrate risk information into the inspector’s deci-

sion making process. Collaborative approaches that give control to the end-user have been
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shown to contribute to the sustainability of new technologies in resource-limited settings [73],

and this is an important feature of VectorPoint. However, an inherent challenge with imple-

menting a technology that supports independent front-end user decision-making is that the

user can decide not to use it. As such, the potential for the app to enhance vector surveillance

lies in the hands of the front-end user, and a critical question becomes, will inspectors use the

information it provides?

VectorPoint pilot

To answer this question, we carried out a pilot trial comparing surveillance using the Vector-

Point app to the current practice of surveillance using paper maps. We hypothesized that

inspectors would use the risk information provided by the app, as measured by the frequency

of higher risk houses visited and inspected with the app compared to the paper maps. We also

looked for qualitative evidence of risk information use by analyzing daily and weekly maps of

the inspector’s movement patterns throughout the search zones when using the app and paper

maps. Finally, we compared measures of productivity between the app and the paper maps to

ensure that the app was not hindering inspector progress, which might also discourage its use.

Methods

Ethics statement

All health inspectors in the field study described below participated in the study under a writ-

ten informed consent approved under University of Pennsylvania IRB protocol number

824603 and Universidad Peruana Cayetano Heredia IRB protocol number 66427.

App overview

The front end (i.e., what the user sees and interacts with) of VectorPoint is a neighborhood

map that displays T. infestans infestation risk at the individual house level, and a data entry

tool for collecting data resulting from home inspections (Fig 1). The back end of VectorPoint

(Fig 2) is composed of a spatio-temporal Gaussian field model that generates the infestation

risk estimates visualized in the maps, and a relational system of cloud-based databases and

servers that are used to store and send data between the predictive model and the platform

that visualizes the model-generated risk estimates in the maps. Below is a more detailed

description of each component of VectorPoint.

Infestation risk map

The principal feature of VectorPoint is the risk map (Fig 1), which displays T. infestans relative

risk estimates at the household level that are generated by a statistical model (detailed below).

The map is intended to be used by health inspectors carrying out house-to-house T. infestans
surveillance. The output from the model is presented in a simple and user-friendly format in

which risk estimates are divided into five quantiles, ranging from lowest to highest infestation

risk, and each quantile is then represented in the map by a color. We use the five-class, multi-

hue color scheme, ‘YlOrRd,’ developed by Brewer [74] for cartography data visualization

[75,76], which is color-blind friendly. The color scheme progresses from light yellow to dark

red, (a color progression found to be associated with increasing hazard among Spanish speak-

ers [77]) with saturation increasing with infestation risk, and orange representing intermediate

risk. Each house is displayed in the map as a dot that is colored as one of the five colors that

corresponds to the its infestation risk estimate. A legend in the corner of the map presents the

colors accompanied by a one or two word description in Spanish of their corresponding
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Fig 1. T. infestans infestation risk map zoomed out (left) and zoomed in (right). Houses are represented by dots that are colored according to their risk of infestation as

estimated by the model. Legend translates to (from top to bottom): ‘Risk of infestation- Lowest; Low; Medium; High; Highest.’ Note that the images display infestation

data overlay and app functions only; cartographic details (i.e., roads, parks, etc) have been removed for this publication. Images of the app with cartographic detail derived

from data available at the OpenStreetMap project (openstreetmap.org) for the municipality of Arequipa, Perú, and served by MapBox (mapbox.com) are available in the

VectorPoint repository, https://github.com/chirimacha/VectorPoint.

https://doi.org/10.1371/journal.pntd.0006883.g001
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Fig 2. Part of the data collection form found in VectorPoint. Spanish text translates to, from top to bottom: ‘Date’;

‘Property characteristics: Regular house’; ‘State of the inspection: inspection’; ‘Inspection area: Triatoma infestans
(‘chiris’), signs of the bugs (‘rastros’), inside the house (‘intra’), yard and patio (‘peri’)’; ‘How many people live on the

property?’; ‘What animals are there?: Dogs, Cats, Poultry, Guinea Pigs, Rabbits.’

https://doi.org/10.1371/journal.pntd.0006883.g002
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infestation risk category, which translate into English as, “lowest,” “low,” “medium,” “high,”

and “highest” infestation risk. Each risk category is represented in the map equally. The maps

are set to display relative risk (i.e., a house’s risk of infestation relative to all other houses in the

neighborhood), but they can be adjusted from the back end to display data divided into any

number of quantiles, or to display absolute, instead of relative, risk estimates.

Data collection tool

The second feature of VectorPoint is its data collection functionality (Fig 2). Inspectors can

enter the data resulting from individual home visits and inspections directly into a data entry

form in the app. The form is designed to collect the same data as the paper forms used by the

Ministry of Health for T. infestans surveillance: date, house code (explanation below), areas of

the home inspected (inside, outside, or both), number of inhabitants, number and type of

domestic animals, and whether T. infestans or signs thereof (generally, eggs, feces or exuviae,

grouped together as ‘rastros,’ meaning ‘traces’) were found. Radio buttons and drop-down

menus are provided whenever possible for consistency, and to avoid typographical errors.

After the data entry form is completed, data are encrypted and transmitted from the app to a

SQL database, eliminating the step of digitizing data from paper forms.

It should be noted that T. infestans surveillance data in Arequipa are organized with four

tuple identification (ID) codes assigned to each home by the Peruvian Ministry of Health at

the beginning of the vector-control campaign. The four tuple consists of: province/district/

locality/house. (VectorPoint is designed to be used for house to house surveillance at the local-

ity level, which are neighborhoods ranging from 30–2000 households.) We have maintained

the four tuple ID system in VectorPoint, and throughout the manuscript, we refer to the four

tuple house IDs as ‘house codes.’

Spatio-temporal model

The model in VectorPoint is designed to estimate the relative probability of T. infestans infes-

tation of sites (primarily households) in an urban landscape. The model incorporates three

types of information: (i) site covariates; (ii) the results of any previous inspections for T. infes-
tans; and (iii) infestation history in neighboring sites. For each site, we include one covariate

that is an indicator of participation in the attack phase of the vector control campaign, during

which insecticide was applied to all participating households, as previous studies have shown

that houses that did not participate are more likely to be infested [30]. We did not include

other finer-scale risk factors for T. infestans infestation, such as guinea pig husbandry [23],

because data were not available at the scale required for app.

Concretely, let the probability of vector presence, i, at time, t, be given by pi. We model the

probability using a logistic model with intercept, b0, covariate information ; b1, and separable

spatio-temporal random effects, uitandvit :

logitðpiÞ ¼ b0 þ b1 þ uit þ vit

where uit is a realization of the Gaussian field with a Matérn covariance structure [78,79]. The

Gaussian field functions such that any adjustment to the estimate for one house affects all

other houses in a given area, with a greater effect on those nearby. The Matérn function is a

versatile model of covariance that includes Gaussian covariance as a special case [80]. The

term vit is a first order autoregressive discrete time random effect.

As mentioned earlier, the model takes into account the inspection history of each house-

hold/site. We currently include four discrete time periods (Fig 3). We selected our time periods

in reference to the phase of the vector control campaign in each area. The earliest point reflects
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the ’attack’ phase of the campaign, which occurred between January 11th, 1997 and January 6th,

2014, depending on the district. The second time period is the early surveillance period, and it

includes all inspection data collected between January 7th, 2014 and January 6th, 2016. The

third time period includes inspection data collected between January 7th, 2016 and January 4th,

2018. The final time point reflects the current calendar year, currently set to (at the time of this

publication) January 5th, 2018—present. The later time periods can be adjusted if needed. The

predicted probability of infestation for the most recent time point is visualized in the app.

We fit the model with integrated nested Laplace approximations (INLA) using the R-package,

“INLA” [81,82]. To account for effects of streets as semi-permeable barriers to the spread of T.

infestans [29], we used an extension of a Gaussian Field model in which we stretched the city

map so the geographic center (i.e., the statistical mean of the coordinates) of each city block is at

a multiple (1.5;[83]) of the true distance. We maintain the within-block structure, so only the

distance between blocks is stretched [83]. We set strong priors (mean = 1.17 and standard devia-

tion = 0.01) on the covariate of not participating in the original insecticide application campaign,

based on our previous analysis of this factor [30]. We set the prior on the intercept term to corre-

spond to an expected baseline infestation prevalence of approximately 1 in 1000, with the preci-

sion matrix set to 50. This value reflects our best estimate of T. infestans infestation prevalence in

Arequipa based on recent results from both passive surveillance (i.e., reports of T. infestans infes-

tation from community members that are later confirmed by health personnel) and active sur-

veillance (house to house surveillance conducted by our team and the Ministry of Health).

Data flow and platform

Infestation risk estimates generated by the model are sent to a cloud-based database (Amazon

Relational Database Service from Amazon Web Services) through the RMySQL package [84].

These data are then sent to the Shiny [85] server, which graphically renders the risk estimates

Fig 3. Map of a locality as represented in the model throughout the four time periods (T1-T4). Dots represent

houses. T1 represents the time period of the ‘attack phase’ of the control campaign, which occurred between January

11th, 1997 and January 6th, 2014, depending on the district. In T1, grey dots represent houses that participated in the

‘attack phase’ of the control campaign but were not found to be infested with Triatoma infestans, and black dots

represent houses that participated and were found to be infested with T. infestans. Time periods T2-T4 represent the

time period of the surveillance phase (T2: January 7th, 2014—January 6th, 2016; T3: January 7th, 2016—January 4th,

2018; T4: the current calendar year, currently set to (at the time of this publication) January 5th, 2018—present). In T2-

4, grey dots represent houses that were inspected and not found to be infested with T. infestans during the surveillance

phase.

https://doi.org/10.1371/journal.pntd.0006883.g003
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in the app. Inversely, new data collected with the app are sent back to the SQL database, and

incorporated into the next run of the model. We present a diagram of the VectorPoint work-

flow in Fig 4.

To address connectivity issues, VectorPoint has a caching function that stores partial

inspection results, and retrieves them when connectivity is restored. VectorPoint supports

multiple model result tables, and all operations are computationally parallel, allowing the app

to be used by multiple inspectors simultaneously without speed degradation.

We constructed VectorPoint using open source software throughout to enable sharing and

extensions. We built it using the Shiny package for R [85], and we implemented it entirely in

the open source R programming language [82]. We mapped vector infestation predictions

using the Leaflet package for R [86], and we overlaid these data on top of street data from

OpenStreetMap.org. Open source code and related tools for VectorPoint can be downloaded

from https://github.com/chirimacha/VectorPoint, including a link to a fully-functional instal-

lation of the app, which is available in the ‘README’ section.

Workflow in the field

VectorPoint is located on a web server that can be accessed using a web browser on any desk-

top or mobile device, regardless of platform (Android, iOS, Windows, OSX, Linux, etc). Upon

loading the VectorPoint web page, the inspector is presented with an authentication form in

which they enter a username and password. All connections are encrypted, and risk maps can

be accessed only by the study team and authorized health personnel. After user authentication,

the inspector selects the locality or group of localities where they will carry out surveillance

that day. The app retrieves the data for the locality from the database, and loads the corre-

sponding risk map, zoomed out (Fig 1A). This view provides the inspector with a high-level

view of the houses and their relative risk levels of infestation.

From there, the inspector zooms in on the map (Fig 1B), and selects a house to potentially

visit by clicking on the corresponding dot on the map. A dialogue box will open up containing

Fig 4. VectorPoint workflow diagram. From left, risk estimates generated by the model are first sent to an SQL

database, and then sent to the Shiny platform and server for visualization in the risk map. From right, data collected by

the app are sent to the Shiny server and then to the SQL database. The model then pulls the new data from the SQL

database the next time it is run. All data are TLS encrypted.

https://doi.org/10.1371/journal.pntd.0006883.g004
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the house code, the date that the house was last visited, and whether or not the house was

inspected at that time. If the inspector decides to visit that house, they can load a data entry

form with the house code and date auto-filled in. If the inspector receives permission to inspect

the house for T. infestans, data from the inspection is entered into the data entry form. If the

inspector does not receive permission to inspect the house, it is recorded in the data entry

form as one of four alternative outcomes: “interview,” “closed,” “refused,” or “return.” ‘Inter-

view’ means that the inspector spoke with someone at the door about T. infestans infestation,

but did not receive permission to enter the house and inspect it; ‘closed’ means that no one

answered the door; ‘refused’ means that inspection was directly refused; and ‘return’ means

that the inspector was asked to return at a later time. After each house visit, data are sent from

the app to the database, regardless of visit outcome. In cases of data outages or other internet

connectivity issues, inspection data can be saved and sent to the database at a later time, as

described above. This process is repeated for each home visited by the inspector in a given day.

At the end of the day, all data collected with the app are pulled from the database and run in

the model to generate new predictions. The predictions are then pushed back to the database

and visualized in the map.

Field study design

In the study comparing T. infestans surveillance with the app to surveillance under the current

practice of using hand-drawn paper maps (Fig 5), eight members of our field team previously

trained to carry out home inspections for T. infestans carried out vector surveillance in Are-

quipa for a total of two work weeks (10 days). At the beginning of each week, inspectors were

randomly assigned (i) a zone to surveil, and (ii) if they would use the app or the paper map in

that zone. Only one inspector was assigned to each search zone, which were all in the same city

district. Each search zone met the following five criteria: (i) it was located in a developed area

Fig 5. Example of a paper map used in vector surveillance under the current practice. The numbers displayed on

each block are the last three digits of the house code, with arrows indicating their ascending order. For example, a

block with ‘1! 12’ indicates that houses with unicodes ending in one through 12 are on that block. Street names and

other identifying information have been removed.

https://doi.org/10.1371/journal.pntd.0006883.g005
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(i.e., all roads paved) within the central portion of the district, (which is safer than peripheral,

less developed areas); (ii) it contained a minimum of 400 houses, and no more than 1.25 times

the number of houses in the zone with the fewest houses; (iii) its area was a minimum of 0.1

km2, and could not be greater than twice that of the zone with the smallest area; (iv) house den-

sity was at least 2000 houses per km2; and (v) the search zone was in a locality where at least

one house had been found positive for T. infestans during the attack phase of the control cam-

paign. These criteria resulted in 16 search zones with 416–514 homes, areas of 0.12–0.20 km2,

perimeters ranging between 1.62–2.37 km, and house densities ranging from 2,570 to 3,623

houses per km2. Half of the inspectors used the app in the first week and paper maps in the sec-

ond week, and the other half used paper maps in the first week and the app in the second

week. All inspectors used the same cell phone model and operating system when using the app

(Samsung Galaxy J7, with Android version 7.0), to control for variation between devices.

Inspectors received training in app use with these phones before starting the experiment.

Surveillance was carried out daily during normal working days (Monday-Friday) and hours

(7am-1pm). Inspectors were told to carry out T. infestans surveillance as they would normally,

and that their objective was simply to find T. infestans, in order to avoid perceptions that they

needed to fulfill a quota of visiting a certain number of houses. The protocol for T. Infestans
inspections is stipulated by the Peruvian Ministry of Health, and consists of systematic searches

in all areas of the domicile and peri-domicile (pending permission by the resident), including

spaces occupied by humans and live animals. Searches last approximately one person-hour;

flexibility is allowed to account for the heterogeneity in the size of houses. During the search,

the inspector looks for live T. infestans, in addition to T. infestans eggs, exuviae, and feces.

Inspectors using the paper maps did sometimes have access to two pieces of infestation risk

information, as each house code (which is painted on the outside of the house) contains indi-

cators of participation in the attack phase of the vector control campaign, and a ’+’ sign at the

end of the code if the house was ever found to be infested with T. infestans. This information is

available only when standing directly in front of a house looking at the house code; it is not

shown in the paper maps, meaning that inspectors using the paper maps could not see the spa-

tial distribution of houses with these risk factors. In addition, many of the house codes have

been painted over by homeowners in the years since the attack phase of the campaign, so all

houses with these risk indicators are not identifiable.

Data analysis

To measure the effect of using the app in the field on inspector productivity we compared the

total houses visited and total houses inspected between the app and paper maps. We also com-

pared the proportion of total houses visited that ended up being inspected between the two

mediums. We selected these metrics to test if the app was slowing the inspectors down or con-

stricting their surveillance activities in some way, due to technical difficulties or otherwise. As

mentioned above, we did not compare the number of infested houses found, since the preva-

lence of infestation is currently very low [29].

To investigate if inspectors used the risk information provided in the app to select houses to

visit, we compared the proportion of houses visited that were higher risk houses (top two risk

levels) when using the app and when using paper maps. To further investigate risk information

use, we compared the proportion of total houses visited that resulted in inspection between the

app and paper maps among just the higher risk houses visited (houses presented in the app as

‘highest’ and ‘high risk’) and just the lower risk houses visited (houses presented in the app as

‘medium,’ ‘low,’ and ‘lowest’ risk). We were interested in how the possession of information

about a house’s estimated risk level might influence the visit outcome (i.e., if a house was
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inspected, closed, inspection refused, an interview took place, or the inspector was asked to

return at a later time).

Finally, we looked for qualitative evidence of risk information use by comparing maps of

inspector movement patterns throughout the search zones when using the app and paper

maps. The daily maps for each inspector are found in the VectorPoint repository (https://

github.com/chirimacha/VectorPoint). We examined movement patterns on a smaller scale,

such as changes in direction and the tendency to visit every neighboring house versus skipping

houses. In addition we looked at patterns on a larger scale, such as the tendency to visit all

houses in one area of a zone versus visiting a few houses across several areas, as well as cumula-

tive movement throughout the total search zone across all five days, which we refer to as ‘spa-

tial coverage’ of the zone.

Statistical testing

To compare the total number of houses visited and houses inspected between the app and

paper maps we used a paired t-test. For analyses involving house risk level, we split the houses

visited into binary categories of higher and lower risk, consisting of the top two risk levels and

the bottom three risk levels, respectively. For analyses involving visit outcome, we classified

visit outcomes into the binary categories, ‘inspection,’ and ‘other.’ For all metrics except total

houses visited and total house inspected, we carried out a preliminary analysis using Fisher’s

exact test to test for differences between the app and paper maps for each individual inspector,

and a Mantel-Haenszel chi-square test with continuity correction to test for an overall shift in

one direction among all inspectors. We carried out a second analysis using binomial General-

ized Linear Mixed Models with "Inspector ID" random intercepts to test whether the inclusion

of an "app" fixed effect helped to explain any variance. In this analysis, we compared the results

from a model run with only inspector ID random intercepts with results from a model run

with inspector ID random intercepts plus an app fixed effect. We used the BIC scores [87] as a

metric to assess if the addition of the app fixed effect improved the performance of the models,

with smaller BIC scores suggesting model improvement. In addition, we evaluated the odds

ratios in the app fixed effects models to understand if the app increased the odds of the out-

come occurring. Models were fit by maximum likelihood (Laplace Approximation) using the

‘glmr’ function in the lme4 package [88] for R. All data analyses were carried out in the R sta-

tistical computing environment [82].

Results

Over the course of ten days, eight inspectors visited a total of 2,119 houses, of which 767 were

inspected for T. infestans (Table 1). In the five days using the paper maps, 1,081 houses were

visited, resulting in 366 inspections (33.9%). In five days with the app, 1,038 houses were vis-

ited, resulting in 401 inspections (38.6%).

Effect of the app on inspector productivity

There was no difference between the app and paper maps in the total number of houses visited

(paired t-test, p = 0.67, Table 1), the total number of houses inspected (paired t-test, p = 0.17,

Table 1), or the proportion of total visits that resulted in inspection (Mantel-Haenszel test, chi

square = 2.63, p = 0.105, odds ratio (OR) = 1.18, 95% CI = 0.97–1.42; Fig 6), further suggesting

that the app did not reduce productivity in the field. When looking at inspectors individually,

no one inspected proportionally more houses with paper maps. Two inspectors, C and H,

inspected a significantly higher proportion of houses when using the app as based on test p-
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Table 1. Columns: Total number of house visits (left) and the number of house visits that resulted in inspection

(right) using the app and paper maps. Rows: data for each inspector.

Inspector

Total visits Inspections

App Paper maps App Paper maps
A 88 90 44 37

B 184 141 65 49

C 164 175 31 19

D 111 95 81 76

E 130 123 46 43

F 126 145 47 43

G 112 114 46 56

H 123 198 41 43

Total 1,038 1,081 401 366

https://doi.org/10.1371/journal.pntd.0006883.t001

Fig 6. Visit outcome distributions. Inspections shown in blue, visit outcomes making up the ‘other’ category shown in shades of grey. Letters A-H refer to the

corresponding inspector. �Significantly higher proportion of houses inspected when using the app (Fisher’s exact test, p<0.05).

https://doi.org/10.1371/journal.pntd.0006883.g006
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values (Fisher’s exact test, Inspector C: p = 0.046, OR = 1.91, 95% CI = 0.99–3.76; Inspector H:

p = 0.026, OR = 1.80, 95% CI = 1.05–3.08, Fig 6).

In the generalized linear mixed models (GLMMs), the odds ratio of the app fixed effect was

1.18 (95% CI = 0.97–1.42, Table 2), suggesting little effect of the app on the odds of a visited

house being inspected. The standard deviation in inspector random effects was high regardless

of whether or not the model included an app effect (SD = 0.76, 95% CI = 0.49–1.39 with the app;

SD = 0.77, 95% CI = 0.49–1.40 without the app). The addition of the app fixed effect did not

improve the model, with similar BIC scores for both models (138.71 and 138.80 for the model

with and without the app, respectively). Results from the GLMMs are presented in Table 2.

Risk information use

Five out of eight inspectors (B,D,E,F, and H; 62.5%, Fig 7), visited proportionally more higher

risk houses (top two risk levels) when using the app than when using paper maps (Fisher’s exact

test, Inspector B: p = 4.14e-14, OR = 25.38, 95% CI = 7.80–131.06; Inspector D: p = 1.81e-14,

OR = 40.71, 95% CI = 9.94–360.00; Inspector E: p = 4.82e-07, OR = 4.42, 95% CI = 2.37–8.51;

Inspector F: p< 2.2e-16, OR = 10.10, 95% CI = 5.58–18.80; Inspector H: p< 2.2e-16,

OR = 14.86, 95% CI = 6.80–37.13). Two inspectors (25%), A and C, showed no difference in the

proportion of total visits that were to higher risk houses when using the app (Fisher’s exact test,

Inspector A: p = 0.65, OR = 1.19, 95% CI = 0.63–2.25; Inspector C: p = 0.12, OR = 1.43, 95%

CI = 0.90–2.26; Fig 7), and and one inspector, G, visited proportionally more higher risk houses

when using the paper map (Fisher’s exact test, p< 2.2e-16, OR = 0.0, 95% CI = 0.0–0.02; Fig 7).

Overall, there was a significant shift upward in the risk level of the houses visited from the paper

maps to the app (Mantel-Haenszel test, chi-square = 104.44, p< 2.2e-16, common OR = 2.42,

95% CI = 2.00–2.92; Fig 7), suggesting that inspectors did incorporate the risk information pro-

vided in the app into their selection of houses to visit.

Table 2. Results for generalized linear mixed models investigating inspector productivity and risk information use with and without the vectorpoint app as a fixed

effect.

Inspector productivity Risk information use

Random

inspector

variation only

With app

fixed effect

Random

inspector variation only

With app

fixed effect

Dependent variable # inspections # higher risk houses visited

Predictor variable Inspector variation App use Inspector variation App use

Inspector variation intercept

(95% CI)

-0.495

(-1.107–0.118)

-0.576

(-1.191–0.041)

0.571

(-0.031–1.177)

0.110

(-0.512–0.733)

Intercept SE 0.275 0.279 0.272 0.281

Intercept p-value 0.0723 0.0387 0.0356 0.697

App effect parameter estimate

(95% CI)

n/a 0.163

(-0.026–0.352)

n/a 1.00

(0.808–1.202)

App effect parameter estimate SE n/a 0.096 n/a 0.100

App effect p-value n/a 0.0906 n/a <2e-16

Estimated mean probability of outcome occurring

(likelihood profile 95% CI)

0.379

(0.249–0.530)

0.398

(0.228–0.597)

0.639

(0.492–0.765)

0.753

(0.573–0.874)

Random effects SD estimate

(95% CI)

0.767

(0.489–1.395)

0.764

(0.487–1.391)

0.756

(0.484–1.374)

0.774

(0.495–1.202)

Odds ratio

(95% CI)

n/a 1.18

(0.974–1.142)

n/a 2.73

(2.240–3.321)

BIC score 138.80 138.71 544.30 442.90

Model improved with app fixed effect? no yes

https://doi.org/10.1371/journal.pntd.0006883.t002
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In the GLMM, the app effect was a significant predictor of a higher risk house being visited

(p< 2e-16), and it increased the odds of visiting a higher risk house by 2.73 (95% CI = 2.24–

3.32, Table 2). Standard deviation in inspector ID random effects was again high in both mod-

els (0.76, 95% CI = 0.48–1.37 with the app, and 0.77, 95% CI = 0.50–1.20 without the app). BIC

scores suggested that the app improved the model, with scores of 442.9 and 544.3 for the mod-

els with and without the app, respectively.

We did not observe any patterns associated with arm order (i.e, which medium was used in

the first week and which was used in the second week, Fig 7). Out of the five inspectors who

visited proportionally more higher risk houses using the app, two used the app first and three

used the paper maps first. For the two inspectors who showed no difference between the app

and paper maps, one inspector started with the app, and the other started with the paper map.

The inspector who visited more higher risk houses with paper maps used the app first.

We also found no difference between the app and paper maps in the proportion of visits

to higher risk houses or lower risk houses that resulted in inspection, suggesting that there

is no association with knowledge of a house’s infestation risk and obtaining permission to

Fig 7. Infestation risk distribution of all houses visited for each inspector. Superscripts in the x axis text indicate arm order (i.e, which medium was used in the first

week of the study, and which was used in the second week); values< 4% are not labeled due to space constraints; �p< 0.001, with more higher risk houses visited using

the app; ^p< 0.001, with more higher risk houses visited using paper maps.

https://doi.org/10.1371/journal.pntd.0006883.g007
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inspect it (Fisher’s exact test, p > 0.05 for all inspectors for higher and lower risk houses;

overall: Mantel-Haenszel test, higher risk houses: chi square = 1.71, p = 0.19, common

OR = 1.19, 95% CI = 0.93–1.51; lower risk houses: chi square = 0.44, p = 0.51, common

OR = 1.18, 95% CI = 0.78–1.78).

Qualitative characterization of movement patterns and spatial coverage

We observed two predominant movement patterns throughout the study. The first movement

pattern was more individual house focused, while the second pattern was more focused on cov-

erage of the total search zone. (As mentioned above, daily maps for each inspector are available

in the VectorPoint respository, https://github.com/chirimacha/VectorPoint.) While most

inspectors consistently exhibited one pattern or the other, some inspectors displayed a mixture

of both throughout the week. In the individual-house-focused movement pattern, inspectors

tended to travel short distances (1–3 blocks/day), and visit every house on a block. Movement

patterns appeared systematic and focused on covering all households in a small part of the zone,

resulting in low spatial coverage of the total search zone. In the pattern that was more focused

on search zone coverage, inspectors tended to travel longer distances, visiting a cluster of houses

in one area, and then moving on to another part of the zone. Movement appeared less system-

atic than the individual-house-focused pattern, with a more holistic focus on the entire search

zone, resulting in higher spatial coverage. There are many practical constraints in the field that

will influence inspector movements, but larger movements across the zone were much more

common in inspectors that tended toward the broader coverage of the search zone.

Seven out of eight inspectors (A, B,C,D,E,F and H) displayed at least one indication of risk

information use in the context of the predominant movement patterns. In inspectors with

individual house-focused movement patterns, risk information use was indicated when they

skipped lower risk houses in between higher risk houses, or made abrupt changes in direction

to avoid a cluster of lower risk houses, which sometimes resulted in increased spatial coverage

of the search zone. While using the paper maps, these inspectors rarely skipped houses or

changed direction, and their spatial coverage of the zone was low. Inspectors who were more

focused on coverage of the total zone tended to indicate risk information use with movement

that was more systematic and directed toward higher risk houses when using the app. When

using the app in areas with clusters of higher risk houses, some of these inspectors adjusted

their usual broader coverage movement pattern to be more individual house focused, resulting

in visits to every house on a higher risk block.

We observed indications of risk information use in inspectors that did visit significantly

more higher risk houses with the app (B,D,E,F,H) and in those that did not (A and C). Inspector

C did not visit significantly more higher risk houses, but did skip clusters of lower risk houses

on some days, suggesting they were ‘trying out’ the risk information. Inspector A greatly

increased spatial coverage when using the app as compared to the paper map, which was due to

a movement pattern that appeared to ‘sample’ a new risk level each day. Over the week, the

inspector progressed in order of risk level from visiting lowest risk houses on day one to visiting

highest risk on day five. This inspector did not visit significantly more higher risk houses using

the app, but did appear to be paying attention to the risk information in the app. Indeed, by the

end of the week, the inspector was skipping houses that were low and lowest risk.

Only one inspector, G, showed no qualitative or quantitative indications of using the risk

information in the app to select houses to visit. In fact, this inspector unexpectedly visited signif-

icantly more higher risk houses when using the paper map, which we attribute to clustering of

houses of the same risk level in the search zone. Based on examination of this inspector’s move-

ment patterns when using the paper map, it seems that they visited more higher risk houses
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with the paper map because the inspector displayed a strong tendency toward fine-scale (indi-

vidual house-focused) movement. They selected their day one starting point with the paper

map based on house code (lowest codes first) and proceeded through the zone in numerical

order. Coincidentally, the starting house was located in the beginning of a large cluster of higher

risk houses, resulting in only higher risk houses being visited with the paper map.

Discussion

Here we present a mobile app designed to provide the opportunity to incorporate data-based

risk information into field surveillance for the Chagas disease vector species Triatoma infestans
in the city of Arequipa, Perú. In our study comparing surveillance using the app to the current

practice of surveillance using paper maps, we observed multiple indications that the risk infor-

mation provided in the app was used in the selection of houses to inspect, suggesting that the

app is a feasible tool to enhance vector surveillance and support decision making in the field.

mHealth state of the art

mHealth tools, defined as mobile and wireless technologies for health-related objectives [89] are

being introduced at a rapid-fire pace [90]. While the majority of mHealth apps are for personal

uses related to aspects of individual health, the use of apps for disease surveillance in resource-

limited settings has been growing steadily. The large number of data collection apps available

for disease surveillance has provided the opportunity to replace often slow and cumbersome

paper-based data collection systems with mobile data collection systems in which data are sent

directly to a central database at the time of collection. Ideally, the shift from paper to technology

will lead to increased data completeness and coverage in resource-limited settings, a critical step

for achieving disease surveillance goals [91]. (Of course, new technologies bring new challenges,

some of which are detailed below.) The next step is now integrating data collection functionali-

ties with more complex tools to support ongoing decision making in the field in real or close to

real time. While several data collection apps offer basic data visualization capabilities such as

simple maps or bar graphs showing raw data distributions, these functionalities are often not

immediately available to the individuals collecting data in the field, and the usefulness of raw

data for on the ground decision making can be limited. The VectorPoint app is among the first

in its marriage of data collection with predictive modeling and spatial data visualization, all of

which are intended to support the individual collecting the data.

Risk information use

As mentioned previously, for VectorPoint to meet the objective of integrating data into vector

surveillance activities, inspectors with years of experience and well-established routines must

adapt their decision-making processes to include at least some of the risk information in the

app. Model-generated estimates are not necessarily more valuable than knowledge derived

from experience, and VectorPoint is meant to complement an inspector’s experience, not

replace it. In the study, we observed multiple indications that risk information was used by the

inspectors. Namely, we observed a significant upward shift among all inspectors in the number

of high risk houses visited when using the app compared to paper maps, and a majority of the

inspectors visited significantly more higher risk houses when using the app. These results were

then confirmed in a second analysis comparing generalized linear mixed models run with and

without the app, in which the app was a highly significant predictor of a higher risk house

being visited. In the maps of inspector movement throughout the search zones, we also

observed changes in predominant movement patterns when using the app that indicated risk

information use. Even inspectors who did not visit significantly more higher risk houses with
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the app appeared to at least ‘try out’ targeting higher risk houses or explore the different risk

levels, suggesting that over time inspectors may gradually introduce the risk information into

their surveillance activities.

While our results are encouraging, one inspector did not show any signs of using the risk

information, and we cannot assume adoption would be universal. Indeed, our more rigorous

analyses using generalized linear mixed models confirmed that random among-inspector vari-

ation is high regardless of the outcome tested. Willingness to use the information in the app

may be associated with factors specific to the individual, such as age or experience with tech-

nology [89], and we may need to take into account inspector demographic information when

analyzing app use in future studies in order to develop strategies for increasing risk informa-

tion use. In addition, motivation to use the app may increase as more data are collected, allow-

ing us to compare infestation indices of houses inspected while using the app versus paper

maps. As mentioned above, this study was not scaled to formally compare infestation indices;

only one infested house was found in the study, and the inspector was using a paper map at the

time. Specialized training or more creative solutions such as incentives [92–94] or games

[95,96] may be necessary in cases where inspectors have trouble engaging with the app, or if

enthusiasm for the new technology wanes over time.

Spatial coverage of surveillance zones

Although the tendency to travel or not tended to be a fixed characteristic between both arms

of the study, in a few cases we observed qualitative changes in spatial coverage of the search

zone when using the app. While the app is not currently designed to directly address the issue

of spatial coverage, the model is expected to redistribute the relative risk estimates throughout

the search zone every time it is run with new inspection data. In other words, if a house is sur-

veyed and not found to be infested with T. infestans, infestation risk should decrease for all

households within a certain distance of the uninfested house. In this way, inspectors who use

the risk information in the app to target high risk houses may also display even spatial coverage

of their search zone. In the study, we observed this effect only occasionally, and in some cases,

inspectors targeting high risk houses displayed reduced spatial coverage of their search zone

when higher risk houses were clustered. This outcome is likely due to the relatively small

amount of data collected by each inspector, and the varying amounts of information available

in each search area prior to the study. As detailed above, we expect risk level clustering to be

dynamic, and, in the absence of a positive house, risk distribution should even out as more

data are collected. The utility of the model behind the app, like all Bayesian models, increases

as more data are accumulated.

Extensions to the app, or the model itself, may be useful in improving spatial coverage of

surveillance, and for exploring more complex questions revolving around the benefits or draw-

backs of using the app. In particular, we do not know if a trade off occurs between exploration

and exploitation when using the app; by focusing on areas that are known or predicted to have

a higher risk of infestation (i.e., exploitation), will we fail to detect new high risk foci (i.e.,

exploration)?

Feasibility: Overcoming logistical barriers and increasing adoption

The use of mHealth tools in resource-limited settings presents inherent challenges [50,55,73]

due to the financial and technical requirements of cell-phone based systems. An advantage of

VectorPoint is that it uses entirely free open-source technologies, which allows large-scale

deployment at little cost. The remaining operational costs involve the acquisition of mobile

devices and their corresponding cellular network subscriptions. For cloud-based and web-
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based apps such as VectorPoint, these networks must provide data coverage of at least 2G

speeds. In our field tests of VectorPoint, we found that frequent interruption and reloading of

the maps were avoided when data speeds were 3G or higher. Fortunately, Peru has a robust

mobile phone culture, with 117 mobile phone subscriptions per 100 people in 2016 [97],

higher than the world average of 101.5. There are several networks available throughout Peru,

all offering high-speed data plans. In cases where network problems do occur, VectorPoint has

a caching functionality, as mentioned above, that allows data entry, although some internet

connectivity is still needed for efficient use of the app. We are working towards a completely

offline-capable version of VectorPoint to overcome this limitation. In our study, there was no

difference in the number of houses visited between paper maps and the app, suggesting that

any connectivity issues encountered did not significantly slow surveillance activities.

Being a cloud-based computing app means that VectorPoint can be run on any device with-

out any configuration or installation, but it does require human expertise to oversee and prob-

lem-solve its backend components. Fortunately, there is a growing culture and acceptance of

electronic health tools in Peru, which has been found to contribute to the sustainability of

health information systems in resource-limited settings [73]. Gozzer Infante [98] reviewed 38

electronic health systems that were introduced in Peru between 2002–2010, and 66% of them

were still being used in 2015. These systems include Alerta, an large multi-disease top down

surveillance system [99]; Netlab, a laboratory support system for HIV treatment [100]; and

Magpi, a data collection app being used by researchers to study HPV prevalence [61]. As of

2018, several mHealth apps were confirmed to be in use at the national level, (Leonardo Rojas,

Peruvian Institute of Health, personal communication), such as Guardianes de la Salud [101],

a mobile phone based disease surveillance system for use during the early 2018 Papal visit. In

the case of VectorPoint, we collaborated with local personnel in the development of the app

from the start, and they currently control both its operational use and its engineering. How-

ever, it should be mentioned that although the VectorPoint app is flexible, the predictive

model must still be adapted to fit the local epidemiological and ecological characteristics of

each disease surveillance scenario to which it is applied, which could present challenges in

cases where expertise is limited.

Conclusion

Our findings suggest that the VectorPoint app could be a useful tool to integrate evidence and

models into epidemiological surveillance in cities. The app was designed to be used for T. infes-
tans surveillance, but its components are cloud-based, open-source, and ready to be adapted to

other appropriate scenarios, although the availability of sufficient data and/or resources may

be a hurdle to overcome in some cases. VectorPoint is simple to use, but critical in function:

without staying vigilant to remaining and re-emerging vector foci following a vector control

campaign, disease transmission inevitably returns and progress achieved is reversed [102].
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13. Feliciangeli MD, Sánchez-Martı́n MJ, Suárez B, Marrero R, Torrellas A, Bravo A, et al. Risk factors for

Trypanosoma cruzi human infection in Barinas State, Venezuela. Am J Trop Med Hyg. 2007; 76: 915–

921. PMID: 17488916

14. Lardeux F, Depickère S, Aliaga C, Chavez T, Zambrana L. Experimental control of Triatoma infestans

in poor rural villages of Bolivia through community participation. Trans R Soc Trop Med Hyg. 2014;

109: 150–158.

15. Medina-Torres I, Vázquez-Chagoyán JC, Rodrı́guez-Vivas RI, de Oca-Jiménez RM. Risk factors
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50. Déglise C, Suzanne Suggs L, Odermatt P. SMS for disease control in developing countries: A system-

atic review of mobile health applications. J Telemed Telecare. 2012; 18: 273–281. https://doi.org/10.

1258/jtt.2012.110810 PMID: 22826375

51. Lewis SL, Feighner BH, Loschen WA, Wojcik RA, Skora JF, Coberly JS, et al. Sages: A suite of freely-

available software tools for electronic disease surveillance in resource-limited settings. PLoS One.

2011; 6: 1–7.

52. Hartung C, Lerer A, Anokwa Y, Tseng C, Brunette W, Borriello G. Open Data Kit: Tools to Build Infor-

mation Services for Developing Regions. Proceedings of the 4th ACM/IEEE International Conference

on Information and Communication Technologies and Development. New York, NY, USA: ACM;

2010. pp. 18:1–18:12.

53. Tom-Aba D, Olaleye A, Olayinka AT, Nguku P, Waziri N, Adewuyi P, et al. Innovative Technological

Approach to Ebola Virus Disease Outbreak Response in Nigeria Using the Open Data Kit and Form

Hub Technology. PLoS One. 2015; 10: e0131000. https://doi.org/10.1371/journal.pone.0131000

PMID: 26115402

54. Mwabukusi M, Karimuribo ED, Rweyemamu MM, Beda E. Mobile technologies for disease surveil-

lance in humans and animals. Onderstepoort J Vet Res. 2014; 81: 1–5.

55. Aanensen DM, Huntley DM, Feil EJ, Al-Own F ‘a, Spratt BG. EpiCollect: Linking smartphones to web

applications for epidemiology, ecology and community data collection. PLoS One. 2009; 4. https://doi.

org/10.1371/journal.pone.0006968 PMID: 19756138

56. Karimuribo ED, Sayalel K, Beda E, Short N, Wambura P, Mboera LG, et al. Towards One Health dis-

ease surveillance: The Southern African Centre for Infectious Disease Surveillance approach. Onder-

stepoort J Vet Res. 2012; 79: 1–7.

57. Tumwebaze H, Tumwesigye E, Baeten JM, Kurth AE, Revall J, Murnane PM, et al. Household-Based

HIV Counseling and Testing as a Platform for Referral to HIV Care and Medical Male Circumcision in

Uganda: A Pilot Evaluation. PLoS One. 2012; 7. https://doi.org/10.1371/journal.pone.0051620 PMID:

23272125

58. Bollinger RC, McKenzie-White J, Gupta A. Building a global health education network for clinical care

and research. The benefits and challenges of distance learning tools. Lessons learned from the Hop-

kins Center for Clinical Global Health Education. Infect Dis Clin North Am. 2011; 25: 385–398. https://

doi.org/10.1016/j.idc.2011.02.006 PMID: 21628053

59. Medic Mobile [Internet]. [cited 22 Feb 2018]. Available: https://medicmobile.org/

60. Magpi [Internet]. [cited 22 Feb 2018]. Available: https://home.magpi.com/

61. Blas MM, Brown B, Menacho L, Alva IE, Silva-Santisteban A, Carcamo C. HPV Prevalence in Multiple

Anatomical Sites among Men Who Have Sex with Men in Peru. PLoS One. 2015; 10: e0139524.

https://doi.org/10.1371/journal.pone.0139524 PMID: 26437318
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