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Modulated electron radiation therapy (MERT) has been proven as an effective way 
to deliver conformal dose distributions to shallow tumors while sparing distal criti-
cal structures and surrounding normal tissues. It had been shown that a dedicated 
electron multileaf collimator (eMLC) is necessary to reach the full potential of 
MERT. In this study, a manually-driven eMLC for MERT was investigated. Per-
centage depth dose (PDD) curves and profiles at different depths in a water tank 
were measured using ionization chamber and were also simulated using the Monte 
Carlo method. Comparisons have been performed between PDD curves and profiles 
collimated using the eMLC and conventional electron applicators with similar 
size of opening. Monte Carlo simulations were performed for all electron ener-
gies available (6, 9, 12, 15, 18 and 20 MeV) on a Varian 21EX accelerator. Monte 
Carlo simulation results were compared with measurements which showed good 
agreement (< 2%/1mm). The simulated dose distributions resulting from multiple 
static electron fields collimated by the eMLC agreed well with measurements. 
Further studies were carried out to investigate the properties of abutting electron 
beams using the eMLC, as it is an essential issue that needs to be addressed for 
optimizing the MERT outcome. A series of empirical formulas for abutting beams 
of different energies have been developed for obtaining the optimum gap sizes, 
which can highly improve the target dose uniformity.

PACS numbers: 87.53.Wz, 87.53.Hv
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I.	 Introduction

Some malignant neoplasms are located in close proximity to the patient surface (e.g. head-and-
neck tumors (parotid gland), breast and paraspinal lesions) and can be effectively treated by 
electron beams.(1,2,3) Electron beams have well-defined ranges in water-equivalent tissue and have 
a sharp dose fall-off beyond the 90% depth dose level (usually considered as the therapeutic dose 
level(4)). Thus, electron beams offer distinct advantages for superficial and shallow tumors in 
terms of dose uniformity inside target volume and doses to deeper tissues. Conventional electron 
treatment use cutouts and bolus to achieve conformal dose coverage.(5) Attempts have always 
been made to find a practical method for shaping (6,7) and modulating(8,9,10) electron beams that 
could eliminate the need for cutouts, and thus open the way for modulated electron radiation 
therapy (MERT) as a new treatment modality. MERT utilizes multiple beams with different 
energies that are intensity modulated to deliver optimized dose distributions to the target. In the 
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MERT optimization process, lateral dose conformity is achieved by beam shaping while, along 
the beam direction, the dose conformity is achieved by energy and intensity modulation.(11)

Several studies(12,13,14,15)  on modulating  the energy and intensity of electron beams have 
followed the introduction of clinical accelerators based on magnetically scanned pencil beams, 
and those studies investigated the possibility of using several fluence modulated beams to 
modify the energy deposition with depth in a controllable manner. This method is not par-
ticularly attractive because the lateral spread of the spot beams might be too large at energies 
below 25 MeV, and the width of the pencil beams in the patient might be too large at energies 
above 25 MeV.(16)

Another option for electron beams intensity modulation is to use a multileaf collimator. 
Efforts in this direction can be classified as two categories: investigations to test the feasibil-
ity of utilizing the existing photon multileaf collimator (pMLC), and studies that focused on 
designing an electron specific multileaf collimator. Karlsson et al.(17) and Lee et al.(18) worked 
on pMLC of Varian machines. They investigated the possibility of redesigning a standard treat-
ment head for electron beam collimation. It was shown that by replacing the air atmosphere 
inside the treatment head with helium and by reducing the thickness of the monitor chamber, 
the penumbra width can be significantly reduced and the virtual/effective point source position 
increased. Another practical solution is to reduce the source-skin distance, while maintaining 
sufficient clearance for isocentric treatment.(19) Investigations were also done on characterizing 
electron beams collimated through an existing Siemens pMLC(20) and  the possible modifica-
tion on treatment head for delivery of electron-photon mixed beam radiotherapy.(21,22) It was 
demonstrated that the penumbra obtained using Siemens pMLC can be significantly sharpened 
when moving the secondary foil as high as possible in the treatment head with helium atmo-
sphere. The use of pMLC on a Scanditronix Racetrack microtron(23) was also a subject of many 
studies.(24,25,26,27,28) A race-track microtron with minimized electron scattering and a multileaf 
collimator for electron collimation will facilitate the isocentric technique as a general treatment 
technique for electrons.

Other significant efforts were aimed at addressing the feasibility and implementation of spe-
cific eMLC mounted on a frame of an existing electron applicator.(29) This alternative approach 
is more attractive, as a separate eMLC can be manufactured as an add-on device to existing 
radiotherapy accelerators, whereas the use of the pMLC will likely require a redesign of the 
complete treatment head and likely not be a simple upgradable solution.(30)

Ma el al.(29) was able to show that their prototype manual-driven eMLC could deliver 
modulated electron beams for MERT. The technical designs of the electron specific multileaf 
collimator were explored in several investigations.(18,29,30,31,32,) Tungsten was found to be the 
best material for the eMLC leaves. Hogstrom et al.(30) studied the dosimetry for a retractable 
eMLC, where it was designed with the possibility to retract up to 37 cm from the isocenter. 
Al-Yahya et al.(32) studied the feasibility of using a few leaf electron collimator for shaping any 
irregular field and demonstrated that highly conformal distribution could be generated. 

It is clear that MERT is a promising modality and could be an aid for many patients either 
to treat or improve their quality of life.(11,33) Thus more research efforts are needed to get this 
modality into practice. Our group has shown in a previous paper(34) that an in-house Monte 
Carlo treatment planning system is capable of performing treatment planning and accurate 
dose calculations for MERT using the pMLC of Siemens Primus accelerator to deliver radia-
tion therapy to the intact breast. However, we believe that a multileaf collimator specific for 
electrons will be better and more practical for electron beam collimation. We present here the 
work done on a redesigned prototype eMLC which can be mounted on a Varian accelerator 
(21EX, Trilogy, iX, etc). Thus our main aim is to first test the feasibility of our newly-designed 
prototype eMLC for MERT treatment, and then study some of the problems that would face 
clinical application. 
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The general characteristics of the prototype eMLC will be studied to demonstrate its adequacy 
for treatment. In addition, commissioning of the Monte Carlo simulation was performed, as 
this is an essential step to ensure MERT dose calculation accuracy.  

One simple form of the modulated electron therapy is the utilization of multiple abutted 
electron fields whereby all the fields have a common virtual source position but each of them 
has its own energy and weight so as to conform the therapeutic dose to the target. Segmented 
fields can be planned using existing technology – namely, an appropriate 3D treatment planning 
system. The 3D treatment planning system needs a sufficiently accurate dose calculation and the 
ability to model beam edges accurately. Unfortunately, manufacturers do not provide a key tool, 
which could be useful for manually segmenting the field. It should be possible to automate this 
process by incorporating some basic rules of abutting electron fields into an algorithm.(35)

Many methods have been proposed in the literature to solve the problem of unacceptably 
large dose variations at the junction of the two adjoining fields.(36,37,38) Most of the methods 
utilize a beam penumbra modifier, which is not feasible for our eMLC. A simple and more 
feasible approach is to optimize the gap between the adjacent electron fields.

In this work, investigation is done to find the optimal gap separation that would result in 
less inhomogeneity problem at the junction area for all of the energies available from our linac. 
Investigating the optimal gap between adjacent fields can also provide basic information and help 
achieve the best MERT plan. As the gap size will be confined in the direction perpendicular to 
leaf motion by the limited size of the leaf width which may not allow for choosing the optimal 
gap, this study would give us the upper limitations for the future MERT planning. 

 
II.	 Materials and Methods

A.	T he prototype electron MLC
A prototype manually-driven eMLC was used in this study. It consists of 25 tungsten leaf pairs. 
Each leaf is 2 cm in thickness and 0.6 cm in width. This prototype eMLC was mounted on the 
treatment head of a Varian 21EX linac. The leaves can slide on the frame to form the desired 
shape and be maintained in fixed positions by tightening the screws. The eMLC weights around 
18 Kg. We also have a design for the future motorized eMLC which weights around 32 Kg. 
This system will be comparable in size and weight to the Radionics micro MLC system, which 
has been proven to be practical where it can be attached to the linac gantry without affecting 
the mechanical accuracy. Results for the present eMLC can be compared and contrasted to 
earlier eMLCs. It is most appropriate to compare our results with those of Ma et al,(29) as both 
were designed primarily for MERT. The present eMLC is designed to replace the treatment 
applicators for a Varian Clinac 2100C, whereas the eMLC by Ma et al. is designed to rest in the 
25 cm × 25 cm applicator of the same machine. In the present eMLC, tungsten was chosen as 
the leaf material (whereas Ma et al. used steel). Although our eMLC is ready for MERT treat-
ment delivery, we are not going to use it for treatment as we intend to have a motorized one.  
PDD curves and profiles for all energies available from the Varian 21EX for a regular 10 cm × 
10 cm eMLC field were measured using ionization chamber in a scanning water tank system. 
Measurement was done at 70 cm SSD and with a gap of 5 cm between the lower surface of the 
eMLC and the surface of the phantom. A PTW semiflex ionization chamber (model TN31010, 
PTW, Freiburg, Germany) was used for scanning in water. Depth ionization curve was corrected 
for the effective point of measurement and converted to percentage depth dose according to 
the AAPM TG25.(38) Comparisons were done between the PDD curves and profiles from the 
eMLC and those from a square electron applicator. 

B.	T he Monte Carlo beam simulation and dose calculation
In this study, we used the MCBEAM(39) and the MCSIM(40) Monte Carlo codes for accelerator 
simulation and phantom/patient dose calculation, respectively. We carefully simulated the linac 
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with the data provided by Varian.  In our model, the incoming electron beam was assumed to be 
parallel with a Gaussian space distribution and an energy distribution. The simulated linac head 
includes scattering foil, ion chambers, upper and lower jaws, exiting window and the eMLC. 
The energy cutoffs for electron transport in the accelerator simulation (ECUT and AE) were 
700 keV (kinetic + rest mass), and for photon transport (PCUT and AP) 10 keV. The electron 
transport step length was confined such that the maximum fractional energy loss per electron 
step is 4% (ESTEPE = 0.04). The electron beam emerging from the exit window is usually not 
monoenergetic and is represented by a spectrum of energies which is not precisely supplied by 
the manufacturers. Thus for each of the energies, we first simulated with several monoenergetic 
electron beams. Then an optimization code using the random-creep method was used to derive 
the energy spectrum for the electron beam to match the measured percentage depth doses (PDD). 
The derived spectrum was used in the MCBEAM simulation for generating the phase space 
file. The phase space files were generated at a plane right above the eMLC. All the energies 
available for the 21EX machine (6, 9, 12, 16, and 20 MeV) were simulated. The MCSIM code 
was used to simulate the dose distributions in a water phantom for beams collimated by the 
eMLC using the generated phase space files. Monte Carlo is benchmarked using measurement 
for 10 cm × 10 cm applicator and measurement done with eMLC in place, where regular and 
irregular shapes were formed by positioning leaves of the eMLC. Selected shapes were then 
simulated including simple square field and some shaped beams. Monte Carlo simulated dose 
distributions were compared with these measurements. Matching between actual machine output 
and simulation was done by a factor that was calculated and incorporated in MCSIM code for 
each of the electron beam energies.

C. 	 Abutment of adjoined fields
Simulations were done with different beam energies for two adjoined eMLC fields to test the 
performance of our code in inhomogeneous dose situations. Simulations were validated by 
comparing to film measurements. Films were calibrated under the AAPM TG 25(38) recom-
mendations and were scanned by a spatial resolution of 0.0356 cm. 

One way to solve the problem of abutting fields is to optimize the gap separation between the 
adjacent fields. Investigation was also done to find the optimal gap that should be used for our 
eMLC when adjoining electron fields (eMLC segments). Gaps were determined by achieving 
a uniform dose for two adjoined eMLC fields at a desired depth. Dose distributions and dose 
volume histograms (DVH) were studied to find out the gap that could give less inhomgeneity 
problem concerning cold and hot spots.

 
III.	Res ults & Discussion

A.	 PDDs and profiles for an eMLC (measurement)
Figure 1 shows the measured PDDs for all available energies for 10 cm × 10 cm field using 
applicator compared to one of the same size formed by the eMLC. The PDD for beams shaped 
with the eMLC shows similar results in the buildup region while slight differences after Dmax 
to those from the applicator for all energies. Figure 2 shows the profiles taken at two different 
depths (Dmax and R90 depths) for the applicator and the eMLC. Profiles from the eMLC show 
similar penumbra to that from the applicator for all energies. For the 6 and 9 MeV beams, 
profiles from the eMLC have better flatness compared to that from the applicator. The reason 
for the different flatness at lower energies may be due to the increased in-scatter effect. This 
effect decreases at higher energies. Penumbra is also calculated for different field sizes and is 
plotted as a function of field size in Fig.3. Symmetry and flatness of eMLC collimated beams 
are calculated for all available energies and are tabulated in Table 1. The virtual point source 
location for applicator cutout collimation system was calculated to be approximately 90.2 cm 
away from the isocenter, while it’s approximately 64 cm when the eMLC is attached and the 
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phantom placed at 70 cm SSD. This calculation was needed for matching between the areas of 
fields shaped by cutouts and those shaped by eMLC for the previous comparison. The effective 
SSD was also calculated and was found to be equal to approximately 64 cm for the eMLC setup 
while, for the case of the electron applicator, it was approximately 87 cm.

Fig. 1.  PDD curves for applicator and eMLC of 10 cm × 10 cm field for 6 MeV, 9 MeV, 12 MeV, 16 MeV and 20 MeV 
beams.

Fig. 2.  Measured profiles at two different depths (Dmax and R90) for applicator and eMLC of 10 cm × 10 cm field for 
6 MeV beam.

Table 1. Flatness and symmetry of eMLC collimated beams for all available energies.

	 Energy	 6 MeV	 9 MeV	 12 MeV	 16 MeV	 20 MeV

	 Flatness	 1.7 %	 1.8 %	 1.48 %	 0.6 %	 0.5 %
	Symmetry	 0.05 %	 0.14 %	  0.29 %	 0.66 %	 0.3 %
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B. 	C haracteristics of electron beams collimated by an eMLC
Figure 4 shows the characteristics of 6 MeV and 16 MeV electron beam collimated by the eMLC 
for same given monitor units to test that the leaf shape is distinguishable and is not blurred due 
to electron scattering. In addition, this test evaluates the dose reduction when the leaf pairs 
alternated between open and closed. Film measurements were performed to get profiles in 
the direction shown in Fig. 4(a). It can be seen in Fig. 4(b) that, even when blocked by only 
one leaf, a dose reduction to 52% is achieved for 6 MeV and to 35% for 16 MeV. Figure 4(c) 
shows the effect of using different beamlet widths; it is clear that the designed leaf width for 
this eMLC is appropriate. One of the concerns regarding the application of eMLC in MERT 
was the X-ray component that accompanies all electron beams. Figure 5 shows the X-ray 
component as a function of energy. The X-ray component at 20 MeV electron beam energy is 
relatively high to the extent that may limit the use of the 20 MeV beam for modulated electron 
radiation therapy. Another concern was leakage. However, as is shown in Fig. 6, even with the 
highest energy used the maximum leakage was 3%, while for 16 MeV it was even less than 2%. 
Figure 7 shows the ratio of output measured for the eMLC to those obtained with a 10 cm × 
10 cm applicator electron beam for various electron beam energies. The output measured at 
Dmax depth was higher for beams shaped with the eMLC than those for applicator of the same 
size by 50%. This is mainly due to inverse square law, as the measurement was done at 70 SSD 
in the eMLC case. However, no significant pattern was observed in the variation of the ratio 
of the output of the eMLC to that of applicator. The presented MERT system is used at 70 cm 
SSD. However, it is planned that the future motorized eMLC will be at lower position than the 
current prototype and, as a result, larger SSD will be used. In the present work we only try to 
solve the problems related with the application of the eMLC.

Fig. 3.  Penumbra plotted as a function of energy at different field size (side of square field in cm) formed by eMLC.
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Fig. 4.  Profiles for 6 MeV and 16 MeV (a): the field pattern collimated by the eMLC and the location of profile measure-
ment; (b) profiles at A; (c) profiles at B.
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Fig. 5.  X-ray component versus energy of the electron beam for eMLC.

Fig. 7.  Output factor plotted versus field size (side of square field in cm).

Fig. 6.  Ratio of leakage to 10 cm × 10 cm open field versus energy.
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C.	T he 10 cm × 10 cm  applicator simulation
The purpose of verification of the beam model is to ensure that parameters, such as the inci-
dent beam energy (if used), are correctly “tuned” to produce dose distributions in agreement 
with measurement as stated in task group 105.(41) Calculated PDD curves for a 10 cm × 10 cm 

electron applicator are compared to ionization chamber measurements for energies 6, 9, 12, 
16 and 20 MeV, as plotted in Fig. 8. Measured profiles taken at two different depths, Dmax and 
R90, for all the energies are compared to simulations. 

Figure 9 shows profiles at two different depths for 12 MeV beam. Good agreement was 
achieved between Monte Carlo simulated PDD curves and profiles with measurements.  

 

Fig. 8.  PDD curves from simulation and measurement for 10 cm × 10 cm field using applicator.

Fig. 9.  Measured profiles compared to simulation at two different depths (dmax and R90) for applicator 10 cm × 10 cm 

field for 12MeV beam.
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D. 	T he eMLC simulation
Figure 10 shows calculated and measured PDD curves for the 10 cm × 10 cm field collimated 
by the eMLC for 6, 9, 12, 16, and 20 MeV electron beams. Figure 11 shows comparisons of 
simulated and measured profiles for the same eMLC field. Good agreement (2%/1mm) was 
achieved between Monte Carlo simulations and measurements for PDD curves collimated 
by both electron applicators/cutouts and by the eMLC for all electron energies. The Monte 
Carlo dose distributions resulting from electron fields collimated by the eMLC agree with ion 
chamber and film measurements. Figure 12(a) shows a comparison of the calculated isodose 
distribution for an eMLC shaped field for a 12 MeV beam and experimental measurement done 
by film. Two cross profiles were taken to further verify the agreement between the simulation 
results and measurements. Figures 12 (b) and (c) show the cross profiles at both vertical and 
horizontal directions.

Fig. 10.  PDD curves simulation and measurement for all the energies for opened 10 cm × 10 cm eMLC at 70 cm SSD.

Fig. 11.  Profiles from simulation and measurement at two different depths for eMLC 10 cm × 10 cm defined at 70 cm 
SSD for 16 MeV beam.
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Fig. 12.  Irregularly shaped beam (a): isodose distribution of a pattern shaped by eMLC at 12 MeV beam obtained by 
simulation and film; (b) cross profile in the vertical direction; (c) cross profile in horizontal direction.

(a)

(b)

(c)
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E. 	 Adjoining of two fields 
The ability of our code to detect the inhomogeneity arising from the adjoining of two electron 
beams in the junction area was tested by comparing the simulation results with film measure-
ments for two adjacent beams. Figure 13 shows two adjacent 10 cm × 10 cm fields of 12 MeV 
beam energy showing a hot spot situation. Film measurements validated the simulated results 
and demonstrated the ability of our code to perform accurate dose calculation. Based on the 
Monte Carlo results, we could further optimize the field separation to minimize the inhomo-
geneity effect in the junction area.

Fig. 13.  Simulated and measured profile of two adjacent fields collimated by eMLC with 12 MeV beams: (a) profile before 
optimizing the gap (gap = 0.3 cm); (b) profile after choosing an optimized gap (gap = 0.6cm). 

(b)

(a)



17    Eldib et al.: Dosimetric characteristics of an electron multileaf collimator	 17

Journal of Applied Clinical Medical Physics, Vol. 11, No. 2, Spring 2010

F.	 The optimal field gap
Dose distributions inside a phantom for two adjoined electron fields were investigated for differ-
ent gaps and different electron energies. As the electron beam from a linac is always divergent, 
in the adjoined field there must be a point at a specific depth where beyond this point the area 
tends to be hot and, prior to this point, tends to be cold, depending on the gap size between the 
fields. Increasing the gap size will further increase the cold area while decrease the hot area, 
and vice versa. Thus by choosing an optimal gap we can compromise this effect. Dose distri-
bution and dose volume histogram for abutting beams were evaluated; the optimal gap is the 
one that would result in less inhomogeneity within the specified target area which is covered 
by the 90% dose line. Gaps were then evaluated by achieving the best dose distributions and 
the sharpest target DVH curve fall-off. Figure 14 shows dose distribution for abutting fields 
for 6 MeV beams. Figure 15 shows the DVH for different gap sizes between adjoined electron 
beams for a specified target in the phantom. Table 2 shows the gap sizes that gave the best dose 
distributions and DVHs for all the energies available of the Varian 21EX linac at 70 cm SSD. If 
these gaps are used, a uniform profile can be obtained at Dmax of each corresponding energy. 

Figure 16 shows the gap size required to get a flat profile at depth equal to half the range of 
the electron beam as a function of energy. It is shown that as energy increases, the gap size needs 
to be increased (which may be ascribed to the change in penumbra). As we already know, the 
penumbra of the electron beam increases with energy; therefore, a larger gap size is required 
to get the required matching. 

In clinical practice, source to skin distances are different for different cases. As penumbra 
also increases with increasing SSD, this means that the gap size should also increase with an 
extended SSD. Figure 17 shows profiles taken at Dmax for 6 MeV electron beam at 70 cm and 
75 cm SSD. Gap size as a function of energy and SSD for gaps chosen to get a flat profile at 
depth of 3 cm in the phantom are shown in Fig. 18. As we expected, the optimal gap is larger 
with larger SSD and higher energies. For each certain energy, the gap size shows a linear re-
lationship with the SSD. As an example, for 9 MeV, 12 MeV and 16 MeV beams, gap sizes in 
the case of 70 cm SSD can be calculated by the following equations, respectively:

Gap size (9MeV) = 0.032  × SSD -1.56
Gap size (12MeV) = 0.024  ×  SSD -1.06
Gap size (16MeV) = 0.024  ×  SSD -1.07

It should be mentioned that this is just a simple example for solving the problem of abutting 
electron fields that could be useful in the simplest form of MERT by manually segmenting 
the fields utilizing the existing planning systems. Similar linear equations can be derived for 
other energies at different depths and with different SSDs, and can be incorporated into the 
planning system to compromise the problem of inhomgeneity for segmented field treatment. 
In the previous example, we did not include the complicated situation as it can be handled in 
our in-house Monte Carlo-based treatment planning system under development.

As shown in Table 2, the smallest value tabulated for the optimal gap is 0.4 and the highest is 
0.7 cm; in between these two ranges, the gap size varies depending on the energy combination. 
This would suggest that the eMLC leaf width should allow for this variation in order to resolve 
and compromise for the inhomogeneity arising from abutting of field in MERT plane, and would 
aid the optimization process. In the Lee et al. study,(33) the authors pointed out that, in order to 
provide the maximum utility at both high and low energies, a 5 mm leaf width was the ideal 
leaf width for the eMLC. Based on their findings, they concluded that a leaf width of less than 
10 mm at 100 cm SSD is not necessary for defining the shape of a low energy field, and leaves 
of less than 5 mm are not necessary for defining the field shape of any energy. However, based 
on the results in this study, leaves less than 5 mm width are useful in resolving the variation of 
the required gap size with different energies. Thus it may be preferable to have leaves of smaller 
width but limiting their use only for setting gaps between the abutting fields.
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Fig. 14.  Dose distribution for two abutting 6 MeV beams with different separation gap sizes: (a) 0.3 cm; (b) 0.4 cm; 
(c) 0.5 cm.

(a)

(b)

(c)
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Fig. 15.  DVHs for two adjacent fields on a specified target with different gap sizes between the fields: (a) 6 MeV; 
(b) 9 MeV.

(a)

(b)
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Fig. 16.  Gap size that results in flat profile at depth position equal to half the range of the electron beam as a function of 
the beam energy.

Fig. 17.  Measured profiles at Dmax for 6 MeV electron beam at 70 and 75 SSD.

Table 2. Optimal gap separation between adjacent electron beams for different energies at 70 cm SSD that would 
result in uniform profile at Dmax for each of the energies.

	 Energy	 6 MeV	 9 MeV	 12 MeV	 16 MeV	 20 MeV

	 6 MeV	 0.4	 0.4	 0.45	 0.5	 0.4
	 9 MeV	 0.4	 0.56	 0.5	 0.55	 0.45
	 12 MeV	 0.45	 0.5	 0.6	 0.65	 0.5
	 16 MeV	 0.5	 0.55	 0.65	 0.65	 0.6
	 20 MeV	 0.4	 0.45	 0.5	 0.6	 0.7
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IV.	C onclusions

The prototype eMLC mounted on the treatment head can provide adequate beam collima-
tion for the MERT. There is no significant change in PDDs, and profiles for different electron 
beams collimated with the eMLC compared to that from the normally used electron applicator 
at 100 cm SSD. The good agreement between the measured PDDs from a square field shaped 
by the eMLC and an electron applicator in the buildup region illustrated that the eMLC will 
not lead to higher surface dose. 

We have shown that Monte Carlo simulations are capable of accurately modeling the electron 
beam delivered by the eMLC. For each electron beam energy, an optimum gap can be chosen 
to minimize the dose inhomogeneity arising from adjoining two electron fields, which will 
facilitate the design of the leaf sequence for MERT beam delivery using an eMLC.
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