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Ebola virus (EBOV) infections continue to pose a global public
health threat, with high mortality rates and sporadic outbreaks
in Central and Western Africa. A quantitative understanding of
the key processes driving EBOV assembly and budding could
provide valuable insights to inform drug development. Here, we
use a computational model to evaluate EBOV matrix assembly.
Our model focuses on the assembly kinetics of VP40, the matrix
protein in EBOV, and its interaction with phosphatidylserine
(PS) in the host cell membrane. It has been shown that
mammalian cells transfected with VP40-expressing plasmids are
capable of producing virus-like particles (VLPs) that closely
resemble EBOV virions. Previous studies have also shown that
PS levels in the host cellmembrane affects VP40 associationwith
the plasmamembrane inner leaflet and that lower membrane PS
levels result in lower VLP production. Our computational find-
ings indicate that PS may also have a direct influence on VP40
VLP assembly and budding, where a higher PS level will result in
a higher VLP budding rate and filament dissociation rate. Our
results further suggest that the assembly of VP40 filaments
follow the nucleation-elongation theory, where initialization
and oligomerization of VP40 are two distinct steps in the as-
sembly process. Ourfindings advance the current understanding
of VP40 VLP formation by identifying new possible mechanisms
of PS influence on VP40 assembly. We propose that these
mechanisms could inform treatment strategies targeting PS
alone or in combination with other VP40 assembly steps.

Ebola virus (EBOV) was first identified in 1976 with two
different outbreaks in Africa, where 284 and 318 people were
infected with 53% and 88% mortality, respectively (1, 2). Since
then, almost 30 knownEBOVoutbreaks have occurred, together
causingmore than 30,000 cases and 13,000 deaths (https://www.
cdc.gov/vhf/ebola/history/distribution-map.html). Recent out-
breaks in Uganda, Guinea, and the Democratic Republic of
Congo illustrate the continued threat from this deadly infection.

Some therapies for EBOV disease (EVD) have shown promise
in preclinical animal models (3–8). Experimental treatments
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were also tested in humans during the multicountry outbreak in
2014 to 2016 including monoclonal antibody cocktails (9, 10),
antiviral drugs (11–14), and other therapies (15–21). Antibody
cocktails and antiviral drugs have also been administered in the
most recent EBOV epidemic in the Democratic Republic of
Congo and, together with supportive care, reduced fatality rates
(22, 23). However, most of these investigational treatments were
given as Monitored Emergency Use of Unregistered and Inves-
tigational Interventions (MEURI) (22). Two monoclonal anti-
body therapies were recently approved for the treatment of EVD,
but mortality remains high even with these treatments (more
than 30%), and side-effects can be severe (24–26). Developing
effective and safe EBOV therapies is challenging, in part, due to
our limited understanding of key mechanisms of protein–
protein and lipid–protein interactions in the EBOV life cycle.

Experimental EBOV studies are challenging because EBOV
research is limited to facilities with biosafety level (BSL)-4
infrastructure. To enable EBOV life cycle studies in lower
safety level laboratories, subsets of EBOV genes have been
inserted into plasmids and expressed separately or together in
transfected cells. Matrix protein VP40 is the main component
of the EBOV matrix and is critical for EBOV assembly and
budding. VP40, when expressed independently of the other six
EBOV proteins, has been shown to form virus-like particles
(VLPs) with similar size, shape, cell attachment, and entry
properties as EBOV virions (27–30). These noninfectious
VP40 VLPs therefore represent a useful tool for studying
EBOV assembly and budding processes in vitro in BSL-2
conditions.

This VP40 system has generated key insights into VP40
assembly. VP40 is known to form homodimers in the cyto-
plasm through N-terminal domain interactions, abrogation of
which halts plasma membrane (PM) localization of VP40 and
budding of VLPs (31). VP40 dimers bind to the cell membrane
through interactions between VP40 C-terminal domains and
phosphatidylserine (PS) (32). VP40 membrane dimers further
assemble into hexamers and larger oligomers in the growing
virus filaments (31, 33). There is evidence that the assembly
and budding of VP40 VLPs is dependent on the level of PS in
the host cell membrane (32, 34), suggesting that PS levels or
VP40–PS interactions could be a drug target to disrupt EBOV
reproduction.
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Influence of PS on VP40 assembly: ODE-based modeling of EBOV
Membrane PS levels have been shown to affect VP40
membrane binding (34), as well as impact the relative number
of VP40 oligomers and VLPs produced over 48 h (34, 35).
However, it remains unclear if the impact of PS on VP40
membrane association is able to account for the observed
impacts on VP40 oligomer levels and VLP production or if
additional PS-dependent mechanisms exist (Fig. 1). Further-
more, the dynamics of VP40 filament growth have not been
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reported, making it difficult to predict the long-term impacts
of disrupting VLP assembly by targeting PS. These questions
are critical for the development of EBOV treatment but diffi-
cult to answer using experimental approaches alone. It is not
always possible to experimentally uncouple individual steps in
the VLP assembly process (e.g., VP40 membrane binding and
oligomerization) or to obtain high temporal- and spatial-
resolution data to quantify VP40 dynamics.
d1

PS 

Oligomer size

Filament stabilization

PS 

DE-model structure.Ourmodel incorporates VP40dynamics spanningVP40
ciation (k2, black dashed line), but it remains unclear if this is enough to explain
oduction under different PS concentrations (34, 35). In this work, we test if PS
lament growth and VLP production using our “preliminary”model. To explore
e complex models by including impacts of PS on filament stabilization (k4,n0),
hed lines) in our “stabilization,” “hexamer,” “filament,” and “budding” models,
ential equation; PS, phosphatidylserine; VLP, virus-like particle.



Influence of PS on VP40 assembly: ODE-based modeling of EBOV
Computational models are complementary to experimental
approaches. Computational models have been applied to
evaluate viral infection dynamics in populations (36, 37),
physiological disease progression and treatment efficacy (38,
39), viral replication, and cellular immune responses (40, 41).
For EBOV, computational models have been applied on both
population (42–44) and physiological (39, 45–48) levels. In
contrast, subcellular models for EBOV assembly are not
currently available. However, emerging experimental data and
a more detailed understanding of the EBOV replication cycle
(34, 35) create an opportunity for a quantitative, computa-
tional characterization of EBOV assembly.

In this study, our goal is to identify potential mechanisms by
which membrane PS levels affect VP40 VLP production. To-
ward this goal, we build computational models that represent a
variety of biological hypotheses (Fig. 1). We then evaluate the
ability of each of these computational models to reproduce
experimental data. Through this evaluation against experi-
mental data, the models will help identify the most likely
biological hypotheses and guide future experimental studies.

We develop subcellular-level ordinary differential equation
(ODE)–based models of EBOV VP40 assembly and budding.
The models are built and calibrated using experimental data
from VP40 studies (34, 49). We evaluate the performance of
each computational model by comparing it to both qualitative
and quantitative experimental observations. Model outputs
and predictions include the dynamics of VP40 oligomer
accumulation and filament growth, as well as the impact of PS
on these processes.

Our work provides insights into the dynamics and robust-
ness of VP40 oligomerization into VLPs, quantifies the influ-
ence of individual assembly steps on VLP production, and
identifies potential mechanisms for PS influence on VLP
production. These insights inform development of VP40-
targeted and PS-targeted therapies for EVD.

Results

A novel ODE-based model of EBOV VP40 VLP assembly and
budding

We first aim to determine if the known impact of PS on
VP40 membrane association is sufficient to produce the
experimentally observed changes in VP40 oligomer levels and
VLP production. We therefore develop our “preliminary”
model (Table 1), which includes the known influence of PS
level on the dissociation constant (KD2) of VP40 dimer with
the host cell membrane (32, 34).
Table 1
Model construction

Included mechanism Preliminary

PS influence on VP40 membrane association √
Filament stabilization
PS influence on filament stabilization
PS influence on hexamer formation
PS influence on filament growth
PS influence on budding rate
This “preliminary” model spans VP40 monomer production
to VLP budding. VP40 monomers are produced and dimerize.
VP40 dimer binds to the host cell membrane at a PS-
dependent rate. Membrane bound VP40 dimers further
combine to form hexamers. Hexamers serve as the building
blocks for longer VP40 oligomers that form filaments. Fully
developed filaments bud to form VLPs (Fig. 1).

The experimental data that we use to evaluate our
computational models are described in detail in Experimental
procedures, but the key observations are summarized here:

(1) Lower PS levels are associated with lower oligomer ratio.
(2) Transfected cells produce approximately 1 × 105 VLPs per

cell 24 h after transfection.
(3) The relative frequency of oligomers decreases from hex-

amers to 42-mers, and this decrease is more pronounced at
lower PS levels.

(4) VLP production is reduced at lower PS levels, and this
reduction is sustained over 48 h after transfection.

Our initial analysis aims to determine if the known impact
of PS on VP40 membrane association is sufficient to produce
the observed changes in VP40 oligomer levels and VLP pro-
duction (34, 35). Our “preliminary” model (Table 1) therefore
only includes the known influence of PS level on the dissoci-
ation constant (KD2) of VP40 dimer binding to cell membrane
(32, 34). Our result indicates that the “preliminary” model is
unable to reproduce the experimentally measured VLP pro-
duction and oligomer frequencies simultaneously. The exper-
imentally observed decrease in oligomer frequencies from
hexamer to 42-mer can only be captured in the model when
most VP40 have not bound to membrane, leading to no
detectable VLP production (Fig. S1A). Conversely, when VLP
production can be observed, the frequencies from hexamer to
42-mer become very similar (Fig. S1B).

These findings indicate that (a) our “preliminary” model is
missing a key mechanism that would enable decreasing olig-
omer frequencies with oligomer size while producing VLPs
and (b) PS impact on VP40 dimer membrane association alone
is not sufficient to explain observed PS impacts on VLP pro-
duction and oligomer frequencies.

Filament stabilization is necessary to reproduce
experimentally measured oligomer frequencies while
producing VLPs

To address the inability of the “preliminary”model to match
experimental results for VLP production and oligomer
Model name

Stabilization Hexamer Filament Budding

√ √ √ √
√ √ √ √
√ √ √ √

√
√

√

J. Biol. Chem. (2022) 298(7) 102025 3



Influence of PS on VP40 assembly: ODE-based modeling of EBOV
frequencies simultaneously, we introduce a filament stabiliza-
tion mechanism.

We hypothesize that the physical structure and stability of a
growing filament would be very different from an oligomer
consisting of only a few hexamers. We therefore propose that
VP40 hexamer association with existing oligomers would
become stronger as the growing VP40 filament becomes
larger. Mathematically, we represent this stabilization of the
growing filament by decreasing the reverse rate constant of
oligomerization (k4,n’, Fig. 1) as the oligomer grows.

Addition of this stabilization mechanism enables the model
to reproduce both decreasing oligomer frequencies and VLP
production (Fig. S2, A and B). However, without direct influ-
ence of PS on the stabilization step, the model is unable to
reproduce the experimental differences in oligomer fre-
quencies among PS groups (Fig. S2B). The comparison of this
A

B

C

E

D

Figure 2. Comparison between computational results from the “stabiliz
differences between simulated and experimentally measured values: A, oligom
D, oligomer frequency at 24 h for three different PS levels (14.39%, 16.52%, and
Simulation data represent top five fits. Sample sizes of each experimental dat
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model against the experimental data therefore indicates that
PS influence on membrane association is insufficient to
explain the observed impact of PS on oligomer frequencies.
Thus, our results suggest that PS level could have a direct
influence on filament stabilization.

To test this possibility, we construct the “stabilization”
model (Table 1) that includes filament stabilization as well as
direct PS influence on this stabilization, where higher PS level
leads to higher dissociation rate of hexamer from the growing
filament. The “stabilization”model successfully reproduces the
difference in oligomer ratio between the low and high PS
groups (Fig. 2A), relative oligomer frequency among PS groups
(Fig. 2D), and VLP production (Fig. 2B). The model slightly
overestimates VP40 budding ratio compared to experimental
data (Fig. 2C). Since this model can reproduce most of the
experimental observations, this indicates that both
ation” model and experimental data. Model fit is evaluated based on
er ratio at 24 h. B, VLP production at 24 h. C, VP40 budding ratio at 48 h.
20%). E, relative VLP production at 24 and 48 h. Error bar indicates the SEM.
a are shown in Table S13. PS, phosphatidylserine; VLP, virus-like particle.



Influence of PS on VP40 assembly: ODE-based modeling of EBOV
stabilization and the influence of PS on this stabilization
process are required.

Considering VLP assembly dynamics, our “stabilization”
model predicts that the concentrations of monomer and dimer
were increasing toward a steady state over time, while con-
centrations of hexamer and higher oligomers show fluctua-
tions (Figs. 3A and S3). The fluctuations are caused by the
dependence of the reverse rate constant ðk0

4;iÞ on filament size.
A

B

D

Figure 3. Model predicted system dynamics of best fit in the “stabilization”
A, time course of VP40 monomer and oligomers. The upper subpanel is on line
cytoplasmic VP40 ratio. C, time course of VLP production. D, time course of o
Since this reverse rate constant decreases as the filament size
increases, the transition of VP40 into smaller oligomers be-
comes out of balance with the transition of VP40 into the
larger oligomers. Since larger oligomers are more stable than
smaller oligomers in filament growth, VP40 temporarily pref-
erentially accumulates either in oligomers that are close to the
size of a full filament or the hexamer pool. Further, the
decrease in reverse rate constant ðk0

4;iÞ with filament size
C

model. Using the calibrated “stabilization”model, we predict the following:
ar scale and the lower subpanel is on log scale. B, time course of membrane/
ligomer ratio. VLP, virus-like particle.
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Influence of PS on VP40 assembly: ODE-based modeling of EBOV
means that equilibrium between smaller oligomers is estab-
lished faster than equilibrium between larger oligomers. The
variable size distribution of oligomers, plus the difference in
equilibration time, together cause the wave-like patterns in
filament growth.

Our model further indicates that dimer is the predominant
form of VP40 in cytoplasm (Figs. 3A and S3), which is aligned
with experimental observations (50). Although the concen-
tration of cytoplasmic VP40 (monomer and dimer) is much
higher than that of VP40 oligomers on the cell membrane, the
overall amount of VP40 bound to the membrane is higher than
the amount of VP40 in the cytoplasm due to the size and
number of the oligomers (Fig. 3B). This is also aligned with
experimental observations (34). These observations provide
qualitative validation of our model predictions.

The “stabilization” model reproduces most of the experi-
mental observations and captures the impact of PS on the
oligomer ratio (Fig. 3D). However, the impact of PS on VLP
production cannot be reproduced with this model (Fig. 3C).
For the top five fits, model predictions show either identical
VLP production among PS groups or differences due to fluc-
tuations in time, and the impact of these fluctuations decreases
with time (Fig. S4). As a result, the relative VLP production
data is not well predicted from this model (Fig. 2E). The reason
is that while VP40 monomer and cytoplasmic dimer concen-
trations change quickly with PS level, the number of mem-
brane VP40 oligomers does not dramatically change (Fig. S3).
Thus, these results indicate that our “stabilization” model is
still missing key PS-related mechanisms. To systematically
explore other potential PS-dependent mechanisms, we build
three additional models: “hexamer,” “filament,” and “budding”
models (Table 1). In the subsequent section, we describe
addition of potential PS-dependent mechanisms in these
models and evaluate the ability of these mechanisms to
reproduce experimental data.
Figure 4. Model predicted VLP production dynamics of the “budding” m
different PS levels. VLP productions for each PS concentration using the “buddi
particle.
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Direct PS effect on VLP budding rate is required to reproduce
longer term differences in experimentally measured VLP
production

We build three additional extended models that include the
influence of PS on VP40 hexamer formation (k3, “hexamer”
model), filament growth (k4, “filament” model), and VLP
budding (k5, “budding” model). We calibrate each of these
models independently to experimental data. The ability of each
model to reproduce the experimentally measured relative VLP
production at 24 and 48 h indicates the feasibility of the
relevant PS-influenced mechanisms.

When PS affects hexamer formation (k3, “hexamer” model)
or filament growth (k4, “filament” model), the difference
among PS levels remains small and mainly depends on fluc-
tuations and the time point where VLPs starts budding
(Figs. S5 and S6). No longer-term (48 h) effect on relative VLP
production is observed. Thus the “hexamer” and “filament”
model cannot fully reproduce the experimental data of relative
VLP production, which indicates these mechanisms are still
insufficient to represent the impact of PS on VLP production
(Figs. S7 and S8). In contrast, when VLP budding (k5,
“budding” model) is directly impacted by PS, consistent dif-
ferences are observed over longer periods for each VLP
budding curve (Fig. 4). This “budding” model was the only one
that could match experimentally measured relative VLP pro-
duction (Fig. 5E), while not losing accuracy in other pre-
dictions (Fig. 5, A–D).

To quantify these observations and determine how well each
model matches the experimental data, we determine the “cost”
for each model. “Cost” represents the difference between
model predictions and experimental data (a lower cost in-
dicates that the model matches the experiments more closely).
We define the cost as the sum of squared fold-change differ-
ences between experimental data and our simulation pre-
dictions (Equation 23). The average cost for the “budding”
odel. Each panel represents one of the top five fits, and colors represent
ng”model are separated and different. PS, phosphatidylserine; VLP, virus-like
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model is the lowest (22.0, Fig. 6, Tables S1 and S3) while the
averages for the other three models are similar, indicating that
the “budding” model matches the experimental data best.

All of our models assume that VP40 hexamers are the
building units of VP40 assembly (27, 28, 34, 35, 49, 51–53).
However, recent work indicates that the building block for
VP40 VLPs can be dimers instead of hexamers (33). To assess
the impact of this hypothesis, we modify our “budding” model
to represent a dimer assembly system (Fig. S9). The pre-
dictions are similar to our hexamer assembly “budding” model
(Fig. S10), indicating that our conclusions are independent of
our assumptions about the specific building block of VP40
VLPs.

To validate our predictions before 24 h, we compare our
simulations to experimentally measured VP40 membrane
localization at both 8 h and 24 h. Though there are some
A

B

C

E

D

Figure 5. Comparison between computational results from the “budding”
between simulated and experimentally measured: A, oligomer ratio at 24 h. B, V
at 24 h for three different PS levels (14.39%, 16.52%, and 20%). E, relative VL
represent top five fits. Sample sizes of each experimental data are shown in T
differences between the absolute values of the simulations
and experimental data (Fig. S11A), our simulations correctly
predict that the membrane localization is nearly identical
between 8 h and 24 h (Fig. S11B). Original data for
membrane localization experiments are given in Tables S18
and S19.

Thus, our results show that the “budding” model is the only
one that can reproduce all of our experimental data (Figs. 5
and S11). Taken together, our results indicate that (a) fila-
ment stabilization contributes to progressively decreasing
oligomer frequencies in VP40 oligomers and the successful
production of VLPs, (b) the difference in oligomer frequency is
dependent on the membrane PS levels affecting filament sta-
bilization, and (c) a direct influence of PS on mature filaments
budding from the PM is important for the observed impacts of
PS levels on VLP production.
model and experimental data. Model fit is evaluated based on differences
LP production at 24 h. C, VP40 budding ratio at 48 h. D, oligomer frequency
P production at 24 and 48 h. Error bar indicates the SEM. Simulation data
able S13. PS, phosphatidylserine; VLP, virus-like particle.
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Figure 6. Average cost of “stabilization,” “hexamer,” “filament,” and
“budding”models. Average costs for the top five fits are compared among
models using ANOVA and there are statistically significant differences (p-
value < 0.001) in cost among those models (Table S2). Least significant
difference (LSD) is conducted to determine statistically significant pairwise
differences, and statistical differences are identified between the “budding”
model and other models (Table S3).

Influence of PS on VP40 assembly: ODE-based modeling of EBOV
Sensitivity analysis identifies key mechanisms that can inform
treatment development

With this “budding” model that can reproduce all of our
experimental data, we next use global sensitivity analysis
to determine which parameters are the main drivers of
VLP production in the context of this complex system.
To quantify the contribution of individual steps in VP40
assembly to VLP production and the influence of PS on
the system, we use partial rank correlation coefficients
(PRCCs) (54). PRCC measures the correlation between
individual parameters and model outputs while correcting
for the effects of variations in other parameters. The rela-
tionship between seven parameters (r1, k1, k20, k3, k4, k4,10,
and k5) and four outputs (VLP production, oligomer ratio,
relative VLP production, and VP40 budding ratio) are
calculated.

The main output of interest is VLP production. Four key
parameters (r1, k4, k4,10, and k5) are identified to have sig-
nificant positive PRCCs with VLP production at all PS levels
(Table S6). Since r1 and k5 represent the “entry” and “exit” of
VP40 in the system, respectively, their importance is ex-
pected. Filament growth parameters (k4 and k4,10) that drive
the process of VLP production are also significantly corre-
lated. However, it is surprising that k4,10, a reverse rate
constant has a positive correlation coefficient with VLP.
Local sensitivity analysis reveals that increasing k4,10 leads to
a significant increase in concentration of hexamer (Fig. S12).
As a result, it creates a strong hexamer pool that can over-
come the increase in the reverse rate constant and facilitate
filament growth. This counterintuitively suggests that the
decrease of reverse constant rate for filament growth could
disrupt VLP production.

PRCC results for relative VLP production among different
PS groups identify r1, k20, k4,10, and k5 as significant under low
PS (14%) conditions at 24 h (Table S7). At 48 h, the pa-
rameters r1, k20, k4, k4,10, and k5 are significantly positively
8 J. Biol. Chem. (2022) 298(7) 102025
correlated with relative VLP production at low PS levels
(Table S8). While r1, k4, k4,10, and k5 are also positively
correlated absolute VLP production, it suggests that targeting
these parameters in combination with PS-targeted treatment
may have synergistic effects in EBOV therapy.

Oligomer ratio is a metric of VP40 membrane binding and
oligomerization. Since it represents the distribution of VP40
oligomers, any changes in the system might have an influence
on it. As a result, almost all parameters are significantly
correlated with the oligomer ratio (Table S9). PRCC results
for VP40 budding ratio are similar to VLP production
(Tables S6 and S10), as they both indicate the budding effi-
ciency of VP40 VLPs.

Taken together, our sensitivity analysis indicates that the
VLP assembly process is robust to disruptions in stability of
filaments by allowing levels of VP40 hexamers to compensate
for increases in the reverse rate constants for filament growth
(k4,10). Results also suggest that parameter influences can be
different for different PS levels, possibly identifying oppor-
tunities for combination therapy development.
Discussion

The dynamics of VP40 oligomer assembly into EBOV ma-
trix remains unknown. While membrane PS level is known to
affect VP40 membrane association and VLP production (34),
the exact mechanisms of PS influence are still unclear. Using
in vitro BSL-2 models (VP40 VLPs), integrated with compu-
tational modeling, we provide mechanistic insights into the
role of PS in VP40 assembly into VLPs. We generate these
insights by developing the first intracellular model describing
EBOV VP40 assembly and budding dynamics.

Our simulations indicate that the rate constant for initiali-
zation of VP40 oligomerization is different from that of
continuous oligomerization and that the growing filament
structure stabilizes as it grows. While this stabilization effect
has not been reported for VP40 filaments, our findings are
consistent with the nucleation-elongation theory that has been
established for other oligomers. For oligomerization of tubular
or helical structures from single substrates, the initialization
and elongation of the oligomerization are two different steps,
and elongation is considered the faster step (55, 56).
Nucleation-elongation mechanisms have been confirmed for
microtubules (57, 58) and amyloid plaques (59–62). Our re-
sults therefore suggest that this nucleation-elongation theory
may also apply to VP40 oligomerization and can inform
treatment strategies that target either nucleation or elongation
steps.

Our prediction of preferential amplification of existing fil-
aments (filament stabilization) is also consistent with struc-
tural studies showing VP40 to exist in a patchwork of
assemblies at the PM inner leaflet (63, 64). These studies
demonstrate that actin and VP40 diffused together and VP40
moved in a ballistic motion on these filaments in the absence
of actin polymerization inhibitors (65). When actin polymeri-
zation is inhibited, VP40 exhibits constrained diffusion at the
PM and VP40-enriched filaments emanating from the PM are
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significantly reduced (65). This transport mechanism of VP40
to sites of VLP assembly, in combination with our predicted
nucleation-elongation kinetics of VP40 filament growth, would
drive robust and effective VP40 assembly and budding.

One key finding of our study is that sustained differences in
relative VLP production between PS groups can only be
computationally reproduced when PS is directly affecting VLP
budding. Furthermore, PS influence on filament stabilization is
necessary for our models to reproduce relative oligomer fre-
quency differences among PS groups. These two influences of
PS (on VLP budding and filament stabilization) have not
previously been reported. Our results indicate that PS might
affect multiple steps in the viral budding process apart from
the previously identified VP40 membrane association (34).
Thus, disruption of PS–VP40 interactions could be a prom-
ising drug target.

Sensitivity analysis indicates that production of VLP is also
highly dependent on VP40 production, VP40 membrane as-
sociation, filament assembly, and VLP budding steps. Inhibit-
ing those steps will decrease VLP production as well as relative
VLP production at low PS level. Thus, while these steps could
be good targets alone (66) (e.g., using graphene (67)), a com-
bination with PS targeting therapies such as fendiline (35,
68–70), staurosporine (71, 72), or bavituximab (73, 74) may
have additional treatment efficacy.

Our model results show fluctuations in oligomer concen-
tration, oligomer ratio, and mature VLP production for some
parameter combinations. Biological evidence also exists for
fluctuations in elongating structures, for example, in as-
sembly of microtubules (75). Future experiments (e.g.,
real-time imaging using total internal reflection microscopy
as well as fluorescence correlation spectroscopy of VP40 at
the PM interface and/or on supported lipid bilayers) can
verify the existence of fluctuating dynamics in VP40 assem-
bly. The phenomenon suggests the possibility of noise in
experimental data from single time points, especially at single
cell levels.

As with all computational models, some limitations apply
to our model and analysis. We have not explicitly included
transcription and translation processes, which may decrease
our model-predicted time to steady state. The effects of
diffusion or transportation are also not included in the
model, and our rate constants thus represent effective rate
constants. Our model currently does not include VP40
octamer rings, since it was not required for VLP production
in previous studies (29, 31). Our model also successfully re-
produces experimental data without VP40 octamers, which
supports this prior conclusion. However, VP40 octamer is
believed to play an unknown but important role in EBOV
replication life cycle (29), which can be included in future
models as more data emerge. Our model is based on and
calibrated to the VP40 VLP system, and therefore, any im-
pacts of the other EBOV proteins will need to be progres-
sively incorporated as we and others work to translate our
findings to live EBOV dynamics.

Another limitation is that experimental data are collected
from different conditions, time points, and methods, leading
to unavoidable differences between datasets. In some ways,
this can be viewed as a strength as VP40-derived VLPs have
been generated and used by many laboratories from different
cell lines (HEK293, PSA-3, HUH7.5, A549, HeLa, CHO-K1,
and others) (34, 76). Furthermore, the diversity in the
data (Table S13) is exactly why computational models are a
useful data integration tool. Overall, this study is focused on
relative cost of model fits to determine the mechanisms
needed to reproduce experimentally observed phenomena
and trends.

In conclusion, we have built the first subcellular-level ODE-
based model of the EBOV VP40 VLP system and integrated
our model to data from in vitro VP40 VLP studies. Our
computational approach enables complementary analyses that
propose that PS may have direct influence on VP40 filament
oligomerization, stabilization, and budding. Our combined
experimental and computational approaches will enable
further identification of key EBOV infection mechanisms and
evaluation of treatment strategies.
Experimental procedures

ODE-based model construction

The structure of the hexamer-assembly based model is
summarized in Figure 1. ODEs for the process are presented in
Equations 1–8. Total simulation time of the model is 48 h.

dA
dt

¼ r1−2k1A
2þ2k

0
1B−d1A (1)

dB
dt

¼ k1A
2−k

0
1B−k2BC

0þk
0
2D (2)

dC
dt

¼ r2−d2C−k2BC
0þk

0
2D (3)

dD
dt

¼ k2BC
0−k

0
2D−3k3D

3þ3k
0
3E1 (4)

dE1
dt

¼ k3D
3−k

0
3E1−2k4E

2
1−k4E1

Xn−1

i¼2
Ei þ 2k

0
4;1E2 þ

Xn

i¼3
k

0
4;iEi

(5)

dEi
dt

¼ k4E1Ei−1 − k
0
4;i−1Ei − k4E1Ei þ k

0
4;iEiþ1ð1< i< nÞ (6)

dEn
dt

¼ k4E1En−1−k
0
4;nEn−k5En (7)

dF
dt

¼ k5En (8)

Initial conditions:

Að0Þ¼ 0

Bð0Þ¼ 0

Cð0Þ ¼ 6:33×107×PSð0Þ=20
Dð0Þ¼ 0

Eið0Þ¼ 0 ð1≤ i ≤ nÞ
Fð0Þ¼ 0
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PSð0Þ¼ 14%; 14:39%; 16:52%; 20%; 30% respectively

A: VP40 monomer in cytoplasm (nM).
B: VP40 dimer in cytoplasm (nM).
C: total PS (nM).
C0: PS available to interact with cytoplasmic VP40 dimer

(nM, see Equation 12).
D: VP40 dimer on cell membrane (nM).
E(i): developing matrix protein consists of i VP40 hexamers

(nM).
i: number of hexamers in developing filament.
n: number of hexamers in a mature filament. n = 770 in our

model.
F: budded VLP (nM).
PS: total PS (%).
PS level will be updated by the concentration of C through

Equation 9.

PS ¼ C
6:33 × 107

× 20 (9)

The dimer-assembly based model excluded the assembly of
hexamer as a separate process (Fig. S9), and ODEs for the
process are shown in Equations S1–S7 (See supporting
information).

Influence of PS on VP40 dimer binding to membrane

Data from a surface plasmon resonance (SPR) experiment
on VP40–PS affinity are curve fitted to derive an equation for
KD as well as available PS as a function of PS concentration in
the membrane during the membrane-binding process (35). KD

and PS available for the binding process are calculated through
the following steps. We consider the following reversible
binding reaction:

C0 þB↔D

B: VP40 dimer in cytoplasm (nM).
C0: PS available to interactwith cytoplasmicVP40 dimer (nM).
D: VP40 dimer on cell membrane (nM).
At steady state:

k2 × ðC0 −DÞ×B ¼ k
0
2×D (10)

D¼ C0×B
k2

0

k2
þB

¼ C0×B
KD2þB

(11)

KD2: equilibrium constant for VP40 dimer membrane
binding (Table 2).

KD2 and C0 are fitted through Equation 11 using the SPR
data (Table S11). Fitted values for KD2 and C0 at each PS level
are included in Table S4.

Those SPR data are subsequently fitted into empirical
Equations 12 and 13 to enable us to calculate C0 and KD2

values at different PS levels in our simulation.
10 J. Biol. Chem. (2022) 298(7) 102025
C0 ¼ g×PS2þh (12)

KD2 ¼ 1

l×PS2þm
(13)

Fitted values of g, h, l, and m are included in Table 2.
Influence of PS on filament stabilization

Filament stabilization is implemented by allowing the
reverse rate constant to decrease as oligomerization increases
until reaching a constant (nonzero) value. To account for PS
influence on filament stabilization, the ratio of reverse rate
constant of ith oligomer to hexamer is defined as f ði;PSÞ in
Equation 14.

k4;i
0

k4;1
0 ¼ f ði;PSÞ¼ fqðPSÞ× expfsðPSÞ×iþfoðPSÞ (14)

i: number of hexamers in developing filament.
To include the influence of PS on this step, relative hexamer

frequency data (transformed from the average of three repli-
cates of oligomer frequency data) (35) is used to determine
foðPSÞ, fqðPSÞ, and fsðPSÞ.

However, the frequency changing itself is not really the
reverse rate constant for oligomerization. We only wish to have
a trend of how k4,i0 decreased with oligomer size, not absolute
values of how fast they decrease. Therefore, another parameter
y is introduced to calculate a modified i in Equation 15.

fiðyÞ¼ y × ði− 1Þþ1 (15)

Combining Equations 13 with 14 we obtain Equation 15:

f ði;PSÞ¼ fqðPSÞ× expfsðPSÞ×fiðyÞþfoðPSÞ (16)

Values of foðPSÞ, fqðPSÞ, and fsðPSÞ are then estimated by
fitting Equation 16 to experimental relative oligomer
frequency data at the PS levels that are measured (Table S12).
To estimate foðPSÞ, fqðPSÞ. and fsðPSÞ at all PS levels, we define
their relationship with PS level by Equations 16–18, where t1–3
and u1–3 are fitted using measured PS levels and corresponding
values of foðPSÞ, fqðPSÞ, and fsðPSÞ (Table 2).

foðPSÞ¼ t1
PS

þu1 (17)

fqðPSÞ¼ t2
PS

þu2 (18)

fsðPSÞ¼ t3
PS

þu3 (19)

Combining Equations 14 and 17–19, we get Equation 20.

k4;i
0 ¼

� t2
PS

þ u2
�
× exp

�
t3
PSþu3

�
×y×ðði−1Þþ1Þ þ

� t1
PS

þ u1
�
×k4;1

0

(20)



Table 2
Model parameters

Parameter Value Lower bound Upper bound

k1 Calibrated 5 × 10−4/(nM s) 5 × 10−2/(nM s)
KD1 504

k10 k1 × KD1
k2 k20/KD2
KD2 Calculated according to PS, l, and m (Equation 13).
k20 Calibrated 2.5 × 10−6/s 2.5 × 10−4/s
k3 Calibrated0

Calibrated and calculated according to PS and x (Equation 22)1
7 × 10−7/(nM2 s) 7 × 10−5/(nM2 s)

KD3 2004

k30 k3 × KD3
k4 Calibrated0

Calibrated and calculated according to PS and x (Equation 22)2
1.5 × 10−4/(nM s) 1.5 × 10−2/(nM s)

k4,10 Calibrated 7 × 10−2/s 7/s
k4,i0 Calculated according to PS, i, y, t1–3, and u1–3 (Equation 20)
k5 Calibrated0

Calibrated and calculated according to PS and x (Equation 22)3
7 × 10−6/s 7 × 10−4/s

r1 Calibrated 0.2 nM/s 20 nM/s
r2 d2 × C(0) (nM).
d1 2.25 × 10−5 (78)
d2 2.59 × 10−5 (79)
n 770 (80, 81)
x Calibrated1,2,3 0 3.33
y Calibrated 3 7
g 35.2, fitted
h 1.48 × 104, fitted
l 9.20 × 10−6, fitted
m 4.52 × 10−4, fitted
t1–3 Fitted and calculated according to y
u1–3 Fitted and calculated according to y

0: ‘Stabilization’ model.
1, 2, 3: “Hexamer,” “Filament,” and “Budding” models.
4: Data from Dr Stahelin (available on request).

Influence of PS on VP40 assembly: ODE-based modeling of EBOV
The value of parameter y will be estimated during cali-
bration (Fig. 7 and Table 2), and the estimation of t1–3 and
u1–3 will be repeated for each calibration step. Finally we
calculate k4,i0 by t1–3, u1–3, y, PS level, and i through
Equation 20.

When stabilization is not influenced by PS level, Equa-
tion 20 is transformed into Equation 21

k4;i
0 ¼ 1:22×exp−0:234×iþ0:0298×k4;1

0
(21)
Influence of PS on VP40 assembly and budding

Additional influences of PS on VP40 assembly and budding
process are explored in three extended models using Equa-
tion 22

k¼ kwt×

�
1þ x ×

�
PS
20

− 1

��
(22)

KD2: equilibrium constant for VP40 dimer membrane
binding (Table 2).

k: involved parameter k3, k4, or k5 changing with PS level in
“hexamer,” “filament,” or “budding” model separately.

kwt: involved parameter k3, k4, or k5 under 20% PS in
“hexamer’, “filament,” or “budding” model separately.

Calibrated values can be found in Tables S14–S17.
Experimental data used for model calibration and validation

We have five types of data under five different PS level
available for model calibration (Table 3).
(1) VP40 oligomer ratio from PSA-3 and PSA-3 with PS
supplementation groups. The oligomer ratio is defined as
the ratio of VP40 hexamers or larger oligomers relative to
dimers and monomers (34).

(2) VLP production number per cell from HEK293 cells at
24 h (35).

(3) Relative oligomer frequency from HEK293, HEK293
treated with 1 μM or 5 μM of fendiline (35), which was
transformed from number and brightness (N&B) data and
then averaged. Relative oligomer frequency is defined as
the frequency of each VP40 oligomer, from membrane
dimer to 42-mer, relative to the sum of oligomers (from
membrane dimer to 42-mer). Concentration of larger
oligomers was not experimentally detectable.

(4) Relative VLP production from HEK293, HEK293 treated
with 1 μM or 5 μM of fendiline (35). Relative VLP produc-
tion from PSA-3 group (34). Relative VLP production is
defined as the amount of VLP in each group relative to WT
PS levels.

(5) VP40 budding ratio from HEK293 cell line (49). VP40
budding ratio is defined as the ratio of VP40s in VLPs to
VP40s in cell.

Details of data are included in Table S13.
Validation data include VP40 PM localization, which is

defined as the percentage of membrane VP40 from dimer to
42-mer in the detectable VP40s including cytoplasmic
VP40s. The data are generated from live cell-imaging ex-
periments, performed at 8 h and 24 h post-transfection of
WT enhanced green fluorescence protein-VP40 (EGFP-
VP40) into HEK293 cells as previously described (35).
J. Biol. Chem. (2022) 298(7) 102025 11



Pre-calibration fitted: g, h, l, m

Calibrated: k1, k2′, k3, k4, k4,1′, k5, r1, x, y

In-calibration fitted: t1-3, u1-3

In-calibration calculated: k1′, k2, k3, k3′, k4, 

k4,i′, k5

Known: KD1, KD3, d1, d2, n

Pre-calibration calculated: KD2, r2,

Pre-knowledge from literature

SPR Data

Calibration data

Oligomer frequency data

Calibration

Parameters determined

Good 

fit?

Y

N

Initials

sampling

Local 

search

Figure 7. Parameterization process. All parameters can be organized into six categories, and most of them are determined in the calibration cycle. The in-
calibration calculations of k3, k4, and k5 are only conducted in “hexamer,” “filament,” and “budding” models separately, and they will only undergo the first
calibration process for the “stabilization” model.

Influence of PS on VP40 assembly: ODE-based modeling of EBOV
HEK293 transfected cells were stained with Hoechst 3342
nuclear stain and a wheat germ agglutinin (Invitrogen Alexa
Fluor 647) PM stain. Imaging was performed on a Nikon
confocal microscope and image analysis was performed us-
ing Image J (imagej.nih.gov) to determine the percent PM
localization for each time point. At least 24 cells were
imaged per time point over three independent experiments
on three different days.
Parameter estimation and calibration

Model parameters are described in Table 2. The determi-
nation of parameters is outlined in Figure 7. Since there are
limited data available on the value of rate constants from direct
measurements, we calibrate the rate constants through
available experimental data from literature and our own work.
The model is implemented in MATLAB and solved using
“ode15s.”
12 J. Biol. Chem. (2022) 298(7) 102025
We calibrate our model using the available data (Table S13)
to identify parameters that minimize the cost calculated by
Equation 23.

cost¼
XN

j¼1

0
@
0
@max

�
pj; ej

�

min
�
pj; ej

�−1
1
A×wj

1
A

2

(23)

N: total number of experimental data points
ej: jth experiment data
pj: jth model prediction
wj: weight assigned to jth data point (Table S5)
Calibration is done using MATLAB 2019b, where we use

constrained nonlinear multivariable function solver (“fmin-
con”) for optimization and Latin hypercube sampling
(“lhsdesign”) for sampling initial guesses (77). The sampling
for r1, k1, k20, k3, k4, k4,10, and k5 are in log scale, while for x and
y are linear scale. For each model, 50 initial guesses are
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Influence of PS on VP40 assembly: ODE-based modeling of EBOV
generated. These initial guesses are used to initialize 50 inde-
pendent optimizations and identify 50 parameter sets.
Lower bounds and upper bounds used to sample initial guesses
for each parameter are included in Table 2. The top five fits
(out of 50) with lowest cost function values are analyzed
(Tables S14–S17).
Sensitivity analysis

PRCC is used to perform global sensitivity analysis (54) to
quantify the impact of r1, k1, k20, k3, k4, k4,10, and k5 on
various model outputs, including: VLP production, oligomer
ratio, relative VLP production among PS groups, and VP40
budding ratio. PRCC ranks each parameter and target output
and calculates the partial correlation coefficient between
them while taking other parameter variations into account.
PRCC is done with MATLAB 2019b, where we use partial
correlation (“partialcorr”) for coefficient values calculation.
Sampling range and method for r1, k1, k20, k3, k4, k4,10, and k5
is the same as calibration (Table 2). Empirical parameters “x”
and “y” are fixed at 3.2 and 5, respectively, in order to focus
our analysis on physiological parameters. Each parameter is
sampled 500 times, and PRCCs are calculated for each model
separately. p Values lower than 0.05 are regarded as
significant.

Local sensitivity analysis is performed by fixing all param-
eters at values from the top fit of each model and varying the
parameter of interest within two orders of magnitude.
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