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Objective: Graph theory applications are commonly used in connectomics research
to better understand connectivity architecture and characterize its role in cognition,
behavior and disease conditions. One of the numerous open questions in the field is
how to represent inter-individual differences with graph theoretical methods to make
inferences for the population. Here, we proposed and tested a simple intuitive method
that is based on finding the correlation between the rank-ordering of nodes within
each connectome with respect to a given metric to quantify the differences/similarities
between different connectomes.

Methods: We used the diffusion imaging data of the entire HCP-1065 dataset of
the Human Connectome Project (HCP) (n = 1,065 subjects). A customized cortical
subparcellation of HCP-MMP atlas (360 parcels) (yielding a total of 1,598 ROIs) was
used to generate connectivity matrices. Six graph measures including degree, strength,
coreness, betweenness, closeness, and an overall “hubness” measure combining all
five were studied. Group-level ranking-based aggregation method (“measure-then-
aggregate”) was used to investigate network properties on population level.

Results: Measure-then-aggregate technique was shown to represent population
better than commonly used aggregate-then-measure technique (overall rs: 0.7 vs
0.5). Hubness measure was shown to highly correlate with all five graph measures
(rs: 0.88–0.99). Minimum sample size required for optimal representation of population
was found to be 50 to 100 subjects. Network analysis revealed a widely distributed set of
cortical hubs on both hemispheres. Although highly-connected hub clusters had similar
distribution between two hemispheres, average ranking values of homologous parcels of
two hemispheres were significantly different in 71% of all cortical parcels on group-level.
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Conclusion: In this study, we provided experimental evidence for the robustness,
limits and applicability of a novel group-level ranking-based hubness analysis technique.
Graph-based analysis of large HCP dataset using this new technique revealed striking
hemispheric asymmetry and intraparcel heterogeneities in the structural connectivity of
the human brain.

Keywords: graph theory, connectome, network, population, hub, parcellation, hubness, hemispheric asymmetry

INTRODUCTION

Human brain operates as a confined, compact and complex
dynamic network. Understanding the structure and dynamics
of this global network is essential to understand how human
brain has evolved to perform highly sophisticated functions, as
well as to reveal how brain pathologies lead to neuropsychiatric
manifestations by disrupting that network, which, in turn, could
pave the way for novel interventions to modulate the pathological
subnetworks to provide treatments for these conditions (van den
Heuvel and Sporns, 2013; Herbet and Duffau, 2020).

Advancements in basic neuroscience and imaging techniques
have provided us with unprecedented opportunities to study the
brain. Large imaging data sets accessible to all researchers, new
data analytical tools and research collaborations accelerated
discovery in the field of human network neuroscience
(Van Essen et al., 2012).

It has been shown that the complex structure of the brain can
be represented mathematically as a graph (Hagmann et al., 2008).
Graph theoretical methods have gained attention for examining
cortical and subcortical connections, networks, subnetworks and
transient “meta networks.” In their seminal article, Hagmann
et al. (2008) have shown that it is possible to determine a
structural core for the brain network and they illustrated how
it is possible to model complex brain networks with graphs,
understand its network features, find nodes exhibiting hubness
property, uncover connection pathways and even alternative
pathways. Later research has also shown that it is possible to
understand how the energy economy is optimized within this
network (Bullmore and Sporns, 2012). Other studies have also
shown that different brain areas act as hubs (van den Heuvel and
Sporns, 2013; Khaniyev et al., 2020).

There is now an emerging concept of “minimal common
brain,” consisting of most fundamental tracts and connections
(Herbet and Duffau, 2020). Early studies (Hagmann et al., 2008)
were successful in identifying hub regions and other important
regions which have central roles in signal transmission between
different parts of the brain. These studies, however, were suffering
from low sample size and high variability. To the best of our
knowledge, the findings of Hagmann et al. (2008) have not been
systematically reproduced on a different, larger dataset that can
represent the population better. Adding to that, it is still an open
question how best to represent inter-individual differences with
graph theoretical methods.

Although graph theory has been successfully utilized in many
network neuroscience studies including healthy subjects as well
as those with neurological disorders, keeping the aforementioned
shortcomings in mind, we aimed to confirm and/or challenge

some of the previous findings in the field with a large dataset
and a consistent methodology. At the center of our investigation
lies the identification of hub regions in the connectomes of
1,065 healthy subjects included in the Human Connectome
Project (HCP) dataset. To quantify the differences/similarities
between different connectomes, we proposed a simple intuitive
method that is based on finding the correlation between the
rank-ordering of nodes within each connectome with respect to
a given metric. Using this simple approach, we measured and
compared the effectiveness of different aggregation methods in
representing the population. Finally, we made use of the proposed
approach to measure and reveal the level of asymmetry between
hemispheres and the heterogeneities within some brain areas,
thereby challenging some of the existing assumptions regarding
the interhemispheric symmetry and intraparcel homogeneity
with respect to hubness property.

MATERIALS AND METHODS

DTI Data Acquisition and Tractography
MRI Dataset Specifications
We used HCP-1065 dataset for human tractography. The
minimally-preprocessed data (Glasser et al., 2013) from the
Human Connectome Project (Q1–Q4 release, 2015) were
acquired by Washington University in Saint Louis and University
of Minnesota (Van Essen et al., 2012). The diffusion MRI scans
were conducted on a Siemens 3T Skyra scanner using a 2D
spin-echo single-shot multiband EPI sequence with a multi-band
factor of three and monopolar gradient pulse. The sequence
applied a TR of 5,500 ms and a TE of 89.50 ms with 1.25 mm
isotropic spatial resolution. A Multi shell diffusion MRI sampling
technique was used (Caruyer et al., 2013; Sotiropoulos et al.,
2013) and the b-values were 1,000, 2,000, and 3,000 s/mm2

respective to the shells. The total number of diffusion sampling
directions was 90, 90, and 90 for each of the shells in addition
to six b0 images. Original data were then pre-processed in
accordance with the minimal preprocessing pipelines of the HCP
to achieve spatial artifact/distortion removal, surface generation,
cross-modal registration, and alignment to the MNI standard
space (Glasser et al., 2013). The preprocessed data were corrected
for eddy current and susceptibility artifacts.

Pre-processing of Diffusion Imaging and
Tractography
DSI studio was used for pre-processing and reconstruction of
diffusion imaging and tractography. The in-plane resolution of
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images were 1.25 mm. The slice thickness were 1.25 mm. The
b-table was checked by DSI Studio through an automatic quality
control routine to ensure its accuracy (Schilling et al., 2019). The
diffusion data were reconstructed in the MNI space using q-space
diffeomorphic reconstruction (Yeh and Tseng, 2011) to obtain
the spin distribution function (Yeh et al., 2010). A diffusion
sampling length ratio of 1.25 was used. The output resolution
were 1 mm isotropic. The restricted diffusion was quantified
using restricted diffusion imaging (Yeh et al., 2017).

Fiber Tractography
Deterministic fiber tracking method provided by DSI Studio
was used for fiber tractography (Yeh et al., 2013). Tracking
parameters were set as follows; Otsu threshold was set to 0.6,
fractional anisotropy threshold determines threshold for fiber
termination and is used as a mask to filter out background
voxels, it was determined automatically by Otsu threshold and
set to 0.6, turning angle was assigned to 0 to do a random
selection between 15 and 90 degrees. This threshold also acts
as a criterion for fiber termination, above which DSI studio
terminates the fiber if two consecutive moving directions have
crossing angle. Step size defines moving distance in each
tracking interval, the unit is in millimeters and was set to 0 in
order to make a random selection between 0.5 and 1.5 voxel
distance. Smoothing parameter determines the moving direction
with regard to previous propagation vector. Smoothing was
set to zero so the propagation direction was independent of
previous incoming direction. Minimum and maximum lengths
of fibers were set to 30 and 300 mm, respectively. Tracts
were created from 1,000,000 seeds for every subject, and an
average of 500,000 tracks were created for each subject. For
a handful of subjects (n = 5), we ran the tractography with
different numbers of seeds (up to 20,000,000) and observed
very similar results with respect to the hubness ranking beyond
1,000,000 seeds.

Normalization to Montreal Neurological Institute
Space
The Montreal Neurological Institute (MNI)–International
Consortium for Brain Mapping ICBM 152 space has been
created in response to the need for a system that provides an
organized and manageable means for collecting, comparing and
rapidly searching for data, hypothesis generation and testing
novel theories in brain sciences, respecting the brain anatomy
(Maziotta et al., 2001). It provides a template brain to which
target brain can be warped into, by means of linear or non-
linear computational methods. In our study, we used q-space
diffeomorphic reconstruction method to register our target
brains to ICBM-152 space, as proposed previously (Yeh and
Tseng, 2011) in order to overcome known difficulties associated
with diffusion tensor imaging such as crossing fibers problem
(Alexander et al., 2002) and partial volume problem (Alexander
et al., 2001; Fritzsche et al., 2010).

Atlas Selection
We first used the AAL2 atlas (Tzourio-Mazoyer et al., 2002)
to identify cortical regions (parcels) and subsequently create

subparcellations for graph analysis. However, the network
analysis results showed a distinct asymmetry between
hemispheres that pointed to a technical artifact involving
midline standardization. Troubleshooting process revealed that
standard MNI space coordinates of the AAL2 atlas have a slight
midline shift in the left to right direction which causes some
medial cortical areas of the left hemisphere to be included in the
right hemisphere erroneously (Figure 1). Thus, we selected a
more detailed and newer parcellation atlas (HCP-MMP) derived
based on the HCP dataset itself (Glasser et al., 2016). Although
a similar trend was also observed for the HCP-MMP atlas, the
magnitude of the shift was significantly smaller in HCP-MMP
compared to that in AAL2 atlas (Figure 1).

FIGURE 1 | Midline crossing in two different parcellation atlas. While
midsagittal plane according to MNI space violated left medial hemispheric
cortex in the AAL2 atlas, this effect was minimal, if any, in HCP-MMP atlas.
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Sub-Parcellation
HCP-MMP atlas consists of 360 distinct parcels (180 in each
hemisphere) with vastly different sizes. The largest parcel
(7,103 mm3) in HCP-MMP atlas is approximately 30 times bigger
in volume than the smallest parcel (236 mm3). To alleviate this
heterogeneity in sizes, we further split each parcel into smaller
spatially contiguous regions of interests (ROIs). We clustered
voxels within each parcel using a simple k-means clustering
algorithm that minimizes the average distance between the
voxels within the same cluster. With this approach, parcels (360
in total) were divided into smaller subparcels or ROIs (1,598
in total), which were more homogenous in size (Figure 2).
Homogenization of sizes via sub-parcellation made a fair node-
by-node comparison possible with respect to various network
measures in the subsequent analyses. However, since their
homology between two hemispheres is not dictated by the
algorithm to produce the sub-parcellation within the same parcel
of each hemisphere, we used parcels instead of ROIs to assess
interhemispheric differences. When switching from ROIs to
parcels, we took into account the median ranking of subparcels
(ROIs) within a given parcel.

It is worth mentioning that the total number of ROIs (1,598)
was not deliberately chosen. As we applied k-means clustering
to each parcel’s voxels separately, we needed to predefine the
number of clusters (k) for the algorithm to run. Considering
the sizes of the smallest parcels (<400 voxels), we decided not
to divide them up further. For the rest of the parcels, the
number k was determined by dividing the total number of voxels
in that parcel by 400 and taking the integer quotient. e.g., if
the total number of voxels in a parcel was 3,000, then the
k= (3,000/400)= 7 was chosen.

Construction of Structural Connectivity Networks
To construct the structural connectivity networks, first each
ROI generated in the sub-parcellation step was represented with
a node. Then, each pair of nodes whose corresponding ROIs
were the two endpoints of at least one fiber connection in the
tractography step was connected with an edge. To be able to
provide a direct comparison with the results from Hagmann et al.
(2008), we adopted the following formula from their study to
calculate the weight, wij, of an edge between the nodes i and j:

wij = nij ∗
(
1/Lij

)
∗ (2/(Vi + Vj))

where nij is the number of fibers whose two endpoints are nodes
i and j, Lij is the mean length of those fibers, and Vi (Vj) are the
total number of voxels in the ROIs corresponding to the nodes i
and j, respectively. From this weighted network, we also obtain
a binary unweighted network by connecting all pairs of nodes
which have an edge between them in the weighted graph with
a single edge of unit weight. In the above formula, the correction
term 1/Lij is used because the tractography algorithm used by DSI
Studio introduces a bias which causes a higher fraction of false
positive tracts for the longer fibers. And the other normalization
term [2/(Vi+Vj)] is used to correct the slight differences in the
sizes of the ROIs obtained by sub-parcellation.

Comparative Network analysis: In the literature, there are
two levels of analysis comparing brain connectivity networks:
(i) global (network-level) comparison, (ii) local (node-level)
comparison (Meskaldji et al., 2013). On global level analysis,
for each graph-theoretical measure studied (such as global
efficiency, clustering coefficient, small-worldedness), a single
value is computed for a given network. Although this approach
may give us a rough idea about how similar two distinct networks
are, the drawback is that two very different networks may have
exactly the same value with respect to the measure used, which
may falsely be interpreted as the two networks being identical.
To alleviate this problem, a local (node-level) analysis may
be preferred, where for each graph-theoretical measure studied
(such as degree, strength, coreness, efficiency, centrality), a single
value is computed for each node. In order to quantify the
similarity/dissimilarity of two networks via local analysis, one
needs to conduct multiple pairwise node-by-node comparisons
and aggregate the results from individual comparisons in a
mathematically rigorous way (Meskaldji et al., 2013). We propose
a simple ranking-based approach to quantify the similarity of any
two networks with the same number of nodes. First, we separately
rank the nodes in each network using a given node-level graph-
theoretical measure (including well-known measures such as
degree, coreness, centrality as well as customized measures such
as hubness). For example, if the degree values for five ROIs are
(50, 20, 30, 40, 10), then the ranking vector is (1, 4, 3, 2, 5) where
ROI#1 is the top-ranking ROI with respect to the degree measure.
To compare two ranking vectors obtained in this way, we use the
Spearman correlation coefficient:

ρ = 1−
6
∑

d2
i

n(n2 − 1)

where
ρ : Spearman’s rank correlation coefficient (rs).
di:difference between the two ranks of each observation.
n: number of observations.
Spearman correlation of two ranking vectors can take values

between −1 and 1 and the closer it is to 1, the more similar the
two networks are in terms of the considered graph-theoretical
measure. This way, similarity of two networks is quantified in
a standardized way by a single value derived from multiple
node-level values.

Hubness Measure
One of the important problems of the network neuroscience
domain is to identify the regions in the human brain that play
a hub role and act as an intermediary to transmit signals between
different regions. Hagmann et al. (2008), in their seminal paper,
rigorously investigated the hubness property of different regions
in the human brain cortex using graph-theoretical measures.
They argue that a hub region must be highly connected and
topologically centrally located. To that end, they use the following
graph-theoretical measures of a node as a proxy to determine the
extent the node exhibits hubness property:

• Degree of a node is the number of edges that
are incident to it.
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FIGURE 2 | Methodological workflow of the study. We acquired the minimally-preprocessed diffusion MRI data from HCP1065 dataset (n = 1,065 subjects). Then,
we performed whole-brain tractography for each subject using DSI Studio software. We adopted HCP-MMP atlas (360 parcels) for cortical parcellation. However, in
order to minimize the effect of parcel size, we created subparcels (ROIs) within the original parcel boundaries to obtain ROIs of similar sizes (n = 1,598 ROIs). Then,
the 1,598 × 1,598 connectivity matrix (CM) for each subject was generated. After that, two different methods for group-level analysis (ATM and MTA) were employed
in parallel. Whereas more conventional ATM (aggregate-then-measure) technique generates an average CM for the population first (“aggregate”) and ranks ROIs with
respect to given graph metric afterward (“measure”), MTA (measure-then-aggregate) technique creates separate connectivity matrices, ranks the ROIs with respect
to the given graph metric for each subject first (“measure”), and then averages them across subjects (“aggregate”) to have a representation of the large population.
Ranking approach is also illustrated in table located on the bottom right of the figure.
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• Strength of a node is the total weight of the edges that
are incident to it.
• Coreness is a measure to identify tightly interlinked nodes

within a network. A k-core is a maximal subset of nodes,
all of which are connected to at least k other nodes in the
subset. The coreness of a node is k if it belongs to the k-core
but not to the (k+1)-core.
• Betweenness of a node is the fraction of the unweighted

shortest paths among all pairs of nodes that pass
through the node.
• Closeness of a node is the reciprocal of the sum of the

unweighted shortest path distances between the node and
all other nodes.

Hagmann et al. (2008) compute the hubness rank of each node
in a connectome network by an elaborate method combining the
ranks with respect to the aforementioned measures. In this study
we opted for using a simpler approach of averaging the ranks with
respect to each measure which provided very similar hubness
ranks to those obtained by Hagmann et al. (2008)’s method.

Group-Level Aggregation
Traditional approach to calculating the group-level rankings
of nodes with respect to the graph-theoretical measures is
to first obtain an aggregate connectome for the group by
averaging the connectivity matrices of all subjects within the
group and then calculating the values of network measures for
each node in the aggregated connectome (Figure 2). In this
study, we call this approach “Aggregate-then-Measure” (ATM).
An alternative approach is to first calculate the values of the
network measures for each individual connectome and then
aggregate them by averaging the values for each node across
individuals within the group. We call this approach “Measure-
then-Aggregate” (MTA). One of the contributions of this study is
to illustrate that the latter approach generates aggregate rankings
with a significantly higher representative power compared to
the former.

RESULTS

We compiled our experimental findings into two main sections
each with a different focus.

Section I: Methodological Insights for
Connectome Network Analysis at
Population Level
Result 1: An Alternative Aggregation Method for
Robust Representation of Population Connectomics
In studies involving connectivity data from multiple subjects, an
important step is to determine how to aggregate the data from
different subjects in such a way that the resulting group-level
aggregated data better represents the population with respect to
a given metric (e.g., degree, strength, etc.). To this end, we tested
the representation power of two different approaches:

• Aggregate-then-Measure: First aggregate the individual
connectomes into a single group connectome, then rank

the nodes/ROIs with respect to the given metric to get the
group-level ranking (Ranking_ATM).
• Measure-then-Aggregate: First rank the ROIs with respect

to the given metric FOR EACH subject, independently, then
average the ranking of each ROI across subjects to get the
group-level-ranking (Ranking_MTA).

To check the representation power of the above
approaches, we calculated the Spearman ranking correlation of
Ranking_ATM and Ranking_MTA with each individual ranking
in the population. Figure 3 clearly illustrates that with respect
to all network measures (except for strength, where the two
approach ties), the ranking obtained by Measure-then-Aggregate
approach has significantly higher correlation, on average, with
the individual subjects compared to Aggregate-then-Measure
approach. For example, with respect to degree, the group-level
ranking obtained by Measure-then-Aggregate has, on average,
approximately 0.7 correlation with the individual rankings of
the subjects; whereas the average correlation of the group-level
ranking obtained by Aggregate-then-Measure approach is only
about 0.5.

We conclude from Figure 3 that when the end goal is to
make inference about a population by using the connectome
data from a number of subjects (not necessarily requiring
to obtain a group-level connectome explicitly), it is more
appropriate to first calculate the network measure of interest
from each subject’s connectome and then take an average of
that measure instead of first finding the aggregate connectome
and then calculating the measure of interest for the aggregate
connectome. The Measure-then-Aggregate approach produces
significantly more representative rankings for the population
compared to the Aggregate-then-Measure approach which is
the method many studies use in the literature (Simpson et al.,
2012; Gleichgerrcht et al., 2015; Wang et al., 2015; Yeh et al.,
2018; Aggarwal and Gupta, 2019; Hallquist and Hillary, 2019;
Domhof et al., 2021).

Result 2: An Overall Hubness Measure Combining
Different Graph Measures
After determining which aggregation method should be used
for representing the population best, we wanted to compare
how different graph measures correlate with each other on
the group-level. We used five graph measures and an overall
hubness measure which we derived by averaging these five
graph measures. We conducted pairwise correlation analysis
of these six graph measures (Figure 4). In these analyses,
correlation values (rs) were between 0.72 and 0.99, highest
correlations were between degree-hubness: 0.99, closeness-
hubness 0.94, coreness-hubness 0.93 pairs. When the overall
hubness measure is excluded, the first three correlations
are coreness-degree: 0.95, closeness-degree: 0.92 ve closeness-
coreness 0.88.

We observed that most of the graph measures are very highly
correlated with each other. Considering the insight that when
using highly-correlated variables to infer a dependent variable
(hubness, in our case), one needs to pay close attention to how
the variables are weighted, we pose the question whether it
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FIGURE 3 | Comparison between two population-averaging techniques. Measure-then-aggregate (MTA) technique fare significantly better than
aggregate-then-measure (ATM) technique to represent network properties of population.

FIGURE 4 | Pair-wise correlation analysis of six graph measures using group-level ranking-based analysis technique.

makes sense to assume all graph measures are equally weighted
in determining hubness. To properly answer this question,
however, a more in-depth analysis is needed which is out of the
scope of this paper.

Result 3: Minimum Number of Subjects to Study
Connectomics on Population Level
To illustrate the effect of sample size in the representation
power of a randomly drawn sample, we conducted the following
computational analysis. For each ns = {1, 2, 5, 10, 20, 50,
100, 200, 500, 1,000}, we first draw a random sample of
size ns from the population of n = 1,065 subjects. Then,
we calculate the sample-averaged hubness ranking and find

its Spearman correlation with the population-averaged hubness
ranking. Assuming the population-averaged ranking is our
ground truth, we would like to achieve as high correlation
as possible.

We calculated the Spearman correlation of the population-
averaged hubness ranking with the sample-averaged hubness
ranking of 100 different samples for each ns = {1, 2, 5, 10, 20,
50, 100, 200, 500, 1,000} value and plot resulting correlation
coefficients against the sample size (Figure 5). We observe that
at around ns = 50, the sample-averaged hubness ranking gets
sufficiently close to the population-averaged hubness ranking
(mean rs = 0.99, range: 0.988–0.992). Increasing the sample size
beyond ns = 50 does not seem to add much value in terms
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FIGURE 5 | Effect of sample size on the representative power for population. Representative power increases with sample size up to 50 subjects, however, beyond
n = 50, little gain is observed since the plateu is reached at > 99% accuracy.

of the accuracy of the hubness ranking (e.g., for ns = 100,
mean rs = 0.995, range: 0.994–0.996). However, below ns = 50,
the quality of the sample-averaged hubness ranking seems to
decrease significantly and vary depending on the specific sample
chosen. For example, for ns = 5, the Spearman correlation of
sample-averaged hubness ranking with the population-averaged
hubness ranking is 0.896 for one sample and 0.926 for another.
Based on these findings, 50 to 100 randomly selected subjects are
required to have a sufficiently high representation power.

Section II: The Results of
Population-Based Network Analysis of
Brain Hubs
Result 4: Mapping Cortical Hubs Identified From
Population-Based Network Analysis
After methodological optimization, we produced heatmaps of
average rankings of the cortical ROIs for each graph measure
(Figure 6). Although heatmaps for individual graph measures
slightly differ from one another, there is a considerable overlap
between them as expected from their intercorrelation. We used
the overall “hubness” graph measure to characterize highly
consistent cortical hubs on population level. As visualized in the
Figure 6, almost entire medial surface of the left hemisphere,
medial temporo-occipital region of the right hemisphere,
bilateral superior frontal gyri, ventral premotor areas, pars
opercularis of inferior frontal gyri, right posterior temporal
regions appear to be hub regions. We also identified the ROIs in
the top 20% of ranking for all five graph measures. A total of 131
ROIs with similar numbers between two hemispheres (65 ROIs
in the Right, 66 ROIs in the Left) were found. Clustering of those
ROIs revealed critical cortices with hubness property (Figure 7).

Result 5: Hemispheric Asymmetry of Homologous
Brain Regions in Network Measures
One of the distinct features of the heat maps was hemispheric
asymmetry. While certain homologous regions (parcels) ranked

similarly across two hemispheres, others did not. We next
investigated how similar was the ranking of homologous regions
between two hemispheres by using correlation analysis. Overall,
correlation coefficient between two hemispheres was 0.64. Next,
we asked how the rankings of individual homologous parcels
differ between two hemispheres. In the first set of experiments
we defined a 5% margin as an acceptable difference between
rankings on population level. This analysis revealed that, out
of 180 homologous parcels, 52 were not different between
hemispheres (yellow), whereas 75 has right (blue), 53 had left
(red) hemispheric dominance (i.e., had significantly (p < 0.01)
higher ranks in one hemisphere than another) (Figure 8). In
the second experiment, we checked whether the median hubness
ranking of a parcel has an impact on the level of asymmetry
between two hemispheres, but could not find any significant
correlation (rs = 0.03).

Result 6: High Level of Heterogeneity Within Cortical
Parcels
The last part of the study focused on characterizing heterogeneity
within individual cortical parcels. Here, we showed that even
with a very detailed and well-studied cortical parcellation atlas
like HCP-MMP, there is a high level of heterogeneity within
parcels when graph features are concerned. In the Figure 9,
top 10 parcels of each hemisphere are shown with box-plots
representing individual rankings of ROIs within each parcel.
Each boxplot represents the variance in the population-level
hubness ranking (obtained by using MTA approach) of ROIs
within the given parcel (shown in x axis). As clearly visible
from box-plots, some parcels have very high level of intraparcel
heterogeneity (for example Medial_Area_7P_L, Area_44_L,
Parahippocampal_Area_1_L, Second_Visual_Area_L,
Anterior_Agranular_Insula_Complex_R, Inferior_6-
8_Transitional_Area_R, Area_anterior _47r_R) with ranks
within the same parcel ranging from top 10% to bottom 10% (see
Medial_Area_7P_L).
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FIGURE 6 | Ranking heatmaps of cerebral cortex for different graph measures on population-level. High rank regions (with lower ranking values) are depicted in red
color; low rank regions (with higher ranking values) are depicted in blue color.

DISCUSSION

The Human Connectome Project has transformed neuroscience
research and provided researchers with an enormous support
for the acquisition, analysis, visualization, mining and sharing of
connectome-related data (Marcus et al., 2011; Van Essen et al.,
2012). Different groups across the globe can now use this open-
access big data to generate new information on human brain
connectivity. In addition, new methodologic approaches provide
novel insights into the analysis and interpretation of this data.

In this study, we have introduced and tested a new mathematical
(or computational) approach to analyze network characteristics
of human brain connectome on group or population level
with a different perspective. In the first set of findings, we
provided experimental evidence for the robustness, limits and
applicability of this new averaging technique based on ranking
of individuals in certain graph measures. In the second section,
we presented the novel findings and insights on the graph-
based analysis of large HCP dataset using this new technique.
This analysis revealed striking hemispheric asymmetries and
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FIGURE 7 | Distribution of highly-connected hub clusters. Cortical regions ranking on top 20% in all five graph measures on population-level are depicted.
Subparcels (ROIs) regarded as highly-connected hubs are clustered using corresponding HCP-MMP cortices.

intraparcel heterogeneities in the structural connectivity of the
human brain. We will discuss in the following sections each main
finding of this study.

First, we compared the two principal averaging methods
for graph-based connectome analysis of multiple subjects to
identify the optimal approach for more accurate representation
of the population. A more traditional approach for group-
level or population-level brain networks is to build a single
composite or aggregate graph by simply averaging graph metrics
of each individual, and then investigating network measures
based on this new aggregate graph (Simpson et al., 2012;
Gleichgerrcht et al., 2015; Wang et al., 2015; Yeh et al., 2018;
Aggarwal and Gupta, 2019; Hallquist and Hillary, 2019; Domhof
et al., 2021). However, this approach does not account for
intersubject variability and thus may lead to significant deviation
from the ground truth of the population. To overcome this
pitfall, we proposed and tested a practical yet robust alternative
approach. Instead of “aggregate-then-measure” approach, we
adopted a reverse approach, namely “measure-then-aggregate”
approach. For this, we first extracted graph rankings of each
individual separately, and then averaged the corresponding
rankings of all subjects (Figure 2). Indeed, this approach

resulted in significantly higher correlations with the individual
rankings, thus demonstrating higher representative power for
population-level connectomics studies. This approach can be
used by other researchers in the field of network neuroscience
as an alternative or complementary to more sophisticated or
computationally demanding statistical approaches existing in the
literature (Aggarwal and Gupta, 2019).

Second, we investigated how the classical graph metrics are
intercorrelated with one another when the structural connectivity
of the human brain is concerned. It is no surprise that node
degree has the highest correlation index with all five fundamental
network measures (i.e., degree, strength, efficiency, coreness,
betweenness) tested in this study. This finding echoes what is
already known in neuroscience literature. The degree, which
accounts for the total number of connections a node makes
(Meskaldji et al., 2013), is one of the most common measures
of centrality or hubness (Rubinov and Sporns, 2010). It is
intuitive that high-degree nodes are interacting, structurally
and/or functionally, with many other nodes in the network and
thus play a crucial role in the system’s dynamics (Rubinov and
Sporns, 2010; Bullmore and Bassett, 2011). However, there are
other important characteristics of the network that may not
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FIGURE 8 | Distribution of HCP-MMP parcels in two hemispheres based on the significance of average ranking differences. If a given homologous parcel is ranked
significantly different between two hemispheres, it is depicted in either blue (R dominant/high rank) or red (L dominant/high rank). Yellow color indicates no significant
difference in ranking between homologous parcels of two hemispheres.

FIGURE 9 | Box-blots representing subparcel rankings within top 10 parcels for hubness measure in each hemisphere. Each boxplot represents the variance in the
population-level hubness ranking (obtained by using MTA approach) of ROIs within the given parcel (shown in x axis). Therefore, the variance of population-level
hubness ranking within parcels consisting of a single ROI (such as Area_V6A_L, Posterior_Infero Temporal_complex_L, etc.) is zero. Distinct intraparcel heterogeneity
is clearly visible in other parcels.
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be reflected by the degree itself and require the inclusion of
other measures. Thus, we decided to average all five fundamental
measures to obtain an overall “hubness” measure. By doing
this, we aimed to find with higher accuracy (or probability)
the hub regions of the brain that rank high in the order most
consistently across all cortical regions and across all subjects
of a given population. It appears that this overall “hubness”
measure is indeed highly correlated (rs > 0.9) with all graph
measures tested. Although we are aware of the fact that such
averaged metrics may mask more subtle or focal effects occurring
in specific subsets of nodes as pointed out in the previous
literature (Fornito et al., 2013), we think that it is still relevant for
computational simplification and neuroscientific interpretation
(Fornito et al., 2013).

Third, we sought to identify the minimum number of subjects
required for accurate representation of population to account for
interindividual variability in the studies of human connectome
networks. Taking the HCP1065 dataset as the ground truth
(i.e., population), we calculated correlations of randomly selected
samples with the population average. We showed that a sample
size of 100 subjects may be sufficient to represent the population
with a margin of error as low as 1%. We think that this
information might be useful for the future studies in determining
the sample size and optimizing resources for data acquisition
and analysis. The number of subjects used in similar studies in
the connectome literature spans anywhere from a few to several
hundred subjects (Farahani et al., 2019). In light of the present
study, we think that some of these studies with smaller sample
sizes should be cautiously interpreted or need to be supported
with larger studies (Hagmann et al., 2008).

After the methodological optimization, we present our
findings with regard to network properties of human structural
connectome using this ranking-based approach. As clearly
seen from the heatmaps, brain regions with high probability
of hubness function are distributed over the entire cerebral
cortex, but preferentially located in the medial surfaces of the
hemispheres. On the other hand, lateral hemispheric surface has
also important anatomical hub regions such as pars opercularis of
inferior frontal gyrus, insula, and temporo-occipital area. These
findings derived from a large dataset of subjects are mostly in
line with the previous literature (Hagmann et al., 2008; Iturria-
Medina et al., 2008; Bullmore and Sporns, 2009; van den Heuvel
and Sporns, 2013). In addition, the present study revealed some
previously underrecognized areas as hub regions such as cuneus
and pars opercularis. Further in-depth graph theory applications
could better delineate the importance of these regions within
global and local networks. The fifth finding of the study was the
striking asymmetry between two hemispheres. There are previous
studies focused mostly on structural asymmetry of certain
regions (Barrick et al., 2005; Otsuka et al., 2008; Dubois et al.,
2009). Also, a limited number of studies have tried to explain
hemispheric asymmetry using the connectome network (Shu
et al., 2015). Although some homologous areas seem to share
hubness function in both hemispheres, there are several parcels
that rank considerably different between two hemispheres. This
finding is in contrast with the previous literature that emphasizes
hemispheric symmetry (Li et al., 2013). One might think that

this finding could be due to a methodological artifact. To test
this potential problem, we checked the MNI space coordinates
of two parcellation atlases (AAL2 and HCP-MMP). Indeed, the
sagittal midline crosses medial gyri more on the left hemisphere
than the right when AAL2 atlas was used. But, when the HCP-
MMP atlas was chosen, which was created as a comprehensive
parcellation scheme based on actual HCP datasets, this midline
crossing was much less evident. Therefore, we thought that
using HCP-MMP atlas and having the entire set of subjects
from the HCP-1065 dataset would overcome this technical
problem. Yakovlevian torque could also be another explanation
for this hemispheric asymmetry (Toga and Thompson, 2003).
Nevertheless, if this finding is not just a result of a technical or
methodological artifact; then it is worth more attention in the
future brain connectivity studies. These ranking discrepancies
of homologous brain regions in terms of graph measures could
potentially point to an intrinsic distinct wiring, and could explain
differential functional specialization of two hemispheres (i.e.,
hemispheric dominance).

Finally, we found considerable intraparcel heterogeneity
similar to the hemispheric asymmetry. Even with the HCP-
MMP atlas, which is considered as one of the most robust and
comprehensive of all available atlases, some parcels have a high
level of heterogeneity within their boundaries. Since the HCP-
MMP atlas has parcels with diverse voxel sizes (30x difference
between the smallest and the largest), we created subparcels
within each of 180 parcels to obtain nearly 1,600 subparcels with
similar sizes. This granularity scale was chosen to optimize spatial
resolution and computational workload. Previous studies showed
that parcellation technique and scale influence the network
topology in some properties such as small-worldness (Zalesky
et al., 2010). Romero-Garcia et al. (2012) found that statistical
power of small-world properties decreases with highly grained
scales, and cortical scale of around 600 regions represents the
best trade-off between small-worldness and resolution of the
cortical scale. Moreover, the spatial location of highly connected
brain hubs (Bullmore and Bassett, 2011) and the relation
between nodal characteristics and region size (Wang et al., 2009)
were shown to be dependent on the atlas used (de Reus and
van den Heuvel, 2013). Our findings indicate that intraparcel
regional connectivity differences deserve more attention and
possibly account for differential functional specialization of
subregions within the same cortical parcels. As our results
indicate significant intraparcel heterogeneities within structural
connectome network, they question the generalizability of even
the most robust parcellation atlases at population level (Eickhoff
et al., 2018; Salehi et al., 2020). Also our intraparcel heterogeneity
finding will likely give rise to new questions on the redefinition of
eloquent brain regions.

Besides its several strengths such as the use of a large-
scale, validated dataset, rigorous methodological optimization
and new computational approach to study connectomics, our
study has certain limitations, too. First of all, this study is
solely based on structural connectivity data and does not
account for functional connectivity. Second, this study utilized a
deterministic tractography tool (DSI studio), however, it may be
worth conducting similar analyses using different tractography
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algorithms (such as MRtrix3, which is uses probabilistic fiber
tracking method) and different formulas to define the edge
weights (such as SIFT2 in MRtrix3) and compare the results with
the ones obtained in this study. Third, this study included only
cortico-cortical connections but not cortico-subcortical ones.
The parcellation atlas used here (HCP-MMP) as well as the
intention for direct comparison with previous studies precluded
the incorporation of subcortical structures, which could provide
more accurate and complete picture of the structural connectivity
network of the brain. Fourth, we have taken into account only
five node-based graph metrics but not other global or local
network properties. Fifth, group-level ranking-based analysis
takes into account averages of relative rankings of graph measures
but not absolute values, which may either mask or exaggerate
actual connectivity patterns depending on individual differences.
Sixth, even though it seems a consistent finding supported by
objective data, there is still a chance that hemispheric asymmetry
found in our study could be a result of artifact or technical
error that was not appreciated in the context of experimental
design of the present study. Further studies are needed to
overcome the abovementioned limitations, validate our findings
and reveal underlying differential connectivity patterns within
two hemispheres. It is likely that there are important differences
in fiber densities and trajectories of white matter tracts that
may underlie this hemispheric asymmetry and intraregional
heterogeneities. On the other hand, this study presents hints as
to how the perspective of optimization theory can offer answers
to existing network neuroscience questions. Thus, the use of data
science and optimization applications can open new research
avenues in network neuroscience.

CONCLUSION

Advances in imaging and computational technologies have led to
the explosion of connectomics data in the field of neuroscience.
Despite numerous data analytical tools and approaches used in
the field, there is still need for novel methodological approaches

to better analyze and interpret big data of human brain
connectomics. In this study, we have introduced and tested a
novel mathematical approach to analyze network characteristics
of human connectome on population level with a different
perspective. First, we provided experimental evidence for the
robustness, limits and applicability of this new population-
averaging technique based on the hubness ranking of different
nodes across the subjects of a given population. Second,
we presented the novel findings and insights on the graph-
based analysis of large HCP dataset using this new technique,
which revealed striking hemispheric asymmetries and intraparcel
heterogeneities in the structural connectivity of the human brain.
Further investigations are warranted to confirm these findings
and elaborate their implications for neuroscience.
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