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Abstract: Inorganic nanocrystal solar cells have been tagged as the next generation of synthesizers that
have the potential to break new ground in photovoltaic cells. This synthetic route offers a safe, easy and
cost-effective method of achieving the desired material. The present work investigates the synthesis
of inorganic PbS sensitizers through a molecular precursor route and their impact on improving the
conversion efficiency in photovoltaic cells. PbS photosensitizers were deposited on TiO2 by direct
deposition, and their structure, morphologies and electrocatalytic properties were examined. The X-ray
diffraction (XRD) confirms PbS nanocrystal structure and the atomic force microscopy (AFM) displays
the crystalline phase of uniform size and distribution of PbS, indicating compact surface nanoparticles.
The electrocatalytic activity by lead sulfide, using N-di-isopropyl-N-octyldithiocarbamato (OCT)
without hexadecylamine (HDA) capping (OCT-PbS) was very low in HI-30 electrolyte, due to its
overpotential, while lead sulfide with OCT and HDA-capped (OCT-PbS/HDA) sensitizer exhibited
significant electrocatalytic activity with moderate current peaks due to a considerable amount of
reversibility. The OCT-PbS sensitizer exhibited a strong resistance interaction with the electrolyte,
indicating very poor catalytic activity compared to the OCT-PbS/HDA sensitizer. The values of
the open-circuit voltage (VOC) were ~0.52 V, with a fill factor of 0.33 for OCT-PbS/HDA. The better
conversion efficiency displayed by OCT-PbS/HDA is due to its nanoporous nature which improves
the device performance and stability.

Keywords: semiconductor; molecular precursor; thermal-decomposition; electrochemistry;
photovoltaic cells

1. Introduction

Research into clean energy has been one of the main concerns of material scientists. The release of
environmental pollutants, such as CO2, through the use of fossil fuels, has heightened the need for
renewable solar energy. The amount of sunlight energy released on a daily basis is more than sufficient
if the absorbed photons are completely utilized [1]. Apart from the need for new materials for clean
energy, more effort is placed on the synthetic pathways that will deal with the shortfall in the solar cells’
poor conversion efficiency. Limitations, like defects on the nanomaterial surface through impurities
emanating from capping agents and lack of control over the particle size, impede composite transport
of the charge carriers [1,2]. This has placed a great deal of emphasis on the fabrication process of
photovoltaic cells that will result in better conversion efficiency than the ideal dye sensitizer solar cells
(DSSC) (see Figure 1), which have been used over the past two decades. The emergence of quantum

Molecules 2020, 25, 1919; doi:10.3390/molecules25081919 www.mdpi.com/journal/molecules

http://www.mdpi.com/journal/molecules
http://www.mdpi.com
https://orcid.org/0000-0002-0434-9635
https://orcid.org/0000-0001-9136-9302
https://orcid.org/0000-0002-9912-311X
http://www.mdpi.com/1420-3049/25/8/1919?type=check_update&version=1
http://dx.doi.org/10.3390/molecules25081919
http://www.mdpi.com/journal/molecules


Molecules 2020, 25, 1919 2 of 11

dots (QDs) sensitizer has found great relevance in the formation of many cells, such as inorganic cells,
organic cells, solution-process colloidal solar cells and dye-sensitized solar cells [1,3–7]. Their unique
size distribution and spectra properties enable them to absorb the entire visible spectrum, resulting in
an improved power conversion efficiency. The use of metals or semiconductors that will produce a
smaller bandgap and good optical properties is a major prerequisite.
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Figure 1. Schematic illustration of ideal dye sensitizer solar cells (DSSC).

Inorganic nanocrystal solar cells have been tagged as the next generation of sensitizers that have
the potential to break new ground, using semiconductors such as PbS [8]. The adoption of PbS QDs
is linked to their near-infrared region properties and excellent photosensitivity, which have made
them a better nanomaterial for photovoltaic cells [8,9]. Their direct bandgap of 0.41 eV, high dielectric
constant and large exciton Bohr radius (18 nm), have also contributed to their wide application in the
production of various items such as photonics, photographic equipment, thermoelectric devices, solar
cells and optical fields [10–14]. As diverse applications of PbS QDs in various fields continue to rise,
their formation pathways have become a major concern for the material scientist. Various synthetic
routes for the fabrication of PbS QDs have been well-documented, such as chemical bath deposition,
UV rays, thermal decomposition, microbes and the sonochemical approach [10,15–18]. These have
given rise to various shapes, sizes and morphologies of PbS QDs. Therefore, inorganic nanocrystals
are seen as having a major advantage because, with the aid of a few compounds, they offer a safe, easy
and cost-effective route to form the desired PbS QD. The interesting chemical properties obtained from
the use of dithiocarbamate complexes account for their applications in various fields. In addition to
their wide application in the realm of materials science, they offer different arrays of anisotropic and
isotropic nanomaterials [19–21]. In addition to their wide application, dithiocarbamate complexes offer
a clean, nanometric dimension with no impurities when they undergo thermal decomposition [22].
The thermolysis of these metal complexes is one of the easiest and most cost-friendly techniques
available for the fabrication of nanoparticles with tunable shapes, minimal defects in structure and
narrow size distribution through the aid of capping agents [23,24]. Thermolysis offers various
benefits such as controlled conditions, good morphology, purity, environmental friendliness and
size distribution [25]. Capping agents, such as hexadecylamine (HDA), trioctylphophine (TOP) and
trioctylphophine oxide (TOPO), offer excellent surface passivation, stability and better morphology
with organic solvents for nanoparticles [26]. The injection of HDA capping agent provides better
particle size and morphology that will enhance the efficiency of the fabricated cells [27]. This work
employed molecular precursor techniques to fabricate the photosensitizer with the aid of HDA capping
agents, in order to control the structural properties, size distribution and morphologies. Direct
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deposition was used to coat electrodes with the photosensitizer by immersing them in a solution for a
period of time.

2. Results and Discussion

2.1. X-Ray Diffraction

The XRD patterns of OCT-PbS/HDA and OCT-PbS photosensitizers are illustrated in Figure 2.
Furthermore, the phase structure and purity of OCT-PbS/HDA and OCT-PbS were examined by the
XRD analysis. The 2θ values at 19.05, 26.03, 27.03, 34.05, 38.05, 48.07, 52.03, 55.06, 62.04, 66.04, 79.02
and 81.06◦ are for OCT-PbS. The peak values at 27.03, 31.01, 34.06, 38.05, 52.02, 55.05, 62.05, 66.05,
79.01 and 81.09◦ are for OCT-PbS/HDA. They both correspond to their crystalline planes of card file
No. JCPDC-5-0592 with the diffraction peaks corresponding to (200), (111), (220), (311), (222), (400),
(331), (420) and (422) Miller indices. These peaks affirm the PbS QD structure and further confirm the
AFM analysis as evidence of successful fabrication of crystalline PbS QDs. The structural disorder
emanating from the lattice strain is due to shifts in the diffraction lines. These shifts are typical
reflections associated with incorporation into the crystal lattice [28–32].

Molecules 2020, 25, x FOR PEER REVIEW 3 of 12 

 

size distribution and morphologies. Direct deposition was used to coat electrodes with the 78 
photosensitizer by immersing them in a solution for a period of time. 79 

2. Results and Discussion  80 

2.1. X-Ray Diffraction 81 

The XRD patterns of OCT-PbS/HDA and OCT-PbS photosensitizers are illustrated in Figure 2. 82 
Furthermore, the phase structure and purity of OCT-PbS/HDA and OCT-PbS were examined by the 83 
XRD analysis. The 2θ values at 19.05, 26.03, 27.03, 34.05, 38.05, 48.07, 52.03, 55.06, 62.04, 66.04, 79.02 84 
and 81.06° are for OCT-PbS. The peak values at 27.03, 31.01, 34.06, 38.05, 52.02, 55.05, 62.05, 66.05, 85 
79.01 and 81.09° are for OCT-PbS/HDA. They both correspond to their crystalline planes of card file 86 
No. JCPDC-5-0592 with the diffraction peaks corresponding to (200), (111), (220), (311), (222), (400), 87 
(331), (420) and (422) Miller indices. These peaks affirm the PbS QD structure and further confirm the 88 
AFM analysis as evidence of successful fabrication of crystalline PbS QDs. The structural disorder 89 
emanating from the lattice strain is due to shifts in the diffraction lines. These shifts are typical 90 
reflections associated with incorporation into the crystal lattice [28–32].  91 

 92 

Figure 2. The X-ray diffraction (XRD) spectra of (a) OCT-PbS and (b) OCT-PbS/HDA nanoparticles. 93 

2.2. HRTEM 94 

The HRTEM images of OCT-PbS and OCT-PbS/HDA as seen in Figure 3 display crystalline sizes 95 
for OCTPbS between 3.16–5.95 nm and OCT-PbS/HDA within 1.82–2.44 nm, with d-spacing of 2.438 96 
and 3.623 nm, respectively. This is consistent with the previous report on d-spacing for PbS [33,34]. 97 
The lattice fringe pattern of both materials can be attributed to their polycrystalline nature. The SAED 98 
of OCT-PbS and OCT-PbS/HDA indicated a pattern with grain running in various planes, affirming 99 
polycrystalline nature typical of the phenomenon of PbS nanoparticles. 100 

  101 

111
220

311

222
400

331
420

422

0

100

200

300

0 20 40 60 80

In
te

n
si

ty
 (

a.
 u

.)

2θ (degree)

PbSa

111
220

311

222
400

331
420

422

0

100

200

300

0 20 40 60 80

In
te

n
si

ty
 (

a.
 u

.)

2θ (degree)

PbS/HDA

a b 

b 

Figure 2. The X-ray diffraction (XRD) spectra of (a) OCT-PbS and (b) OCT-PbS/HDA nanoparticles.

2.2. HRTEM

The HRTEM images of OCT-PbS and OCT-PbS/HDA as seen in Figure 3 display crystalline sizes
for OCTPbS between 3.16–5.95 nm and OCT-PbS/HDA within 1.82–2.44 nm, with d-spacing of 2.438
and 3.623 nm, respectively. This is consistent with the previous report on d-spacing for PbS [33,34].
The lattice fringe pattern of both materials can be attributed to their polycrystalline nature. The SAED
of OCT-PbS and OCT-PbS/HDA indicated a pattern with grain running in various planes, affirming
polycrystalline nature typical of the phenomenon of PbS nanoparticles.

Molecules 2020, 25, x FOR PEER REVIEW 3 of 12 

 

size distribution and morphologies. Direct deposition was used to coat electrodes with the 78 
photosensitizer by immersing them in a solution for a period of time. 79 

2. Results and Discussion  80 

2.1. X-Ray Diffraction 81 

The XRD patterns of OCT-PbS/HDA and OCT-PbS photosensitizers are illustrated in Figure 2. 82 
Furthermore, the phase structure and purity of OCT-PbS/HDA and OCT-PbS were examined by the 83 
XRD analysis. The 2θ values at 19.05, 26.03, 27.03, 34.05, 38.05, 48.07, 52.03, 55.06, 62.04, 66.04, 79.02 84 
and 81.06° are for OCT-PbS. The peak values at 27.03, 31.01, 34.06, 38.05, 52.02, 55.05, 62.05, 66.05, 85 
79.01 and 81.09° are for OCT-PbS/HDA. They both correspond to their crystalline planes of card file 86 
No. JCPDC-5-0592 with the diffraction peaks corresponding to (200), (111), (220), (311), (222), (400), 87 
(331), (420) and (422) Miller indices. These peaks affirm the PbS QD structure and further confirm the 88 
AFM analysis as evidence of successful fabrication of crystalline PbS QDs. The structural disorder 89 
emanating from the lattice strain is due to shifts in the diffraction lines. These shifts are typical 90 
reflections associated with incorporation into the crystal lattice [28–32].  91 

 92 

Figure 2. The X-ray diffraction (XRD) spectra of (a) OCT-PbS and (b) OCT-PbS/HDA nanoparticles. 93 

2.2. HRTEM 94 

The HRTEM images of OCT-PbS and OCT-PbS/HDA as seen in Figure 3 display crystalline sizes 95 
for OCTPbS between 3.16–5.95 nm and OCT-PbS/HDA within 1.82–2.44 nm, with d-spacing of 2.438 96 
and 3.623 nm, respectively. This is consistent with the previous report on d-spacing for PbS [33,34]. 97 
The lattice fringe pattern of both materials can be attributed to their polycrystalline nature. The SAED 98 
of OCT-PbS and OCT-PbS/HDA indicated a pattern with grain running in various planes, affirming 99 
polycrystalline nature typical of the phenomenon of PbS nanoparticles. 100 

  101 

111
220

311

222
400

331
420

422

0

100

200

300

0 20 40 60 80

In
te

n
si

ty
 (

a.
 u

.)

2θ (degree)

PbSa

111
220

311

222
400

331
420

422

0

100

200

300

0 20 40 60 80

In
te

n
si

ty
 (

a.
 u

.)

2θ (degree)

PbS/HDA

a b 

b 

Figure 3. High-resolution transmission electron microscope (HRTEM) images of (a) OCT-PBS and
(b) OCT-PbS/HDA nanoparticles.
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2.3. Atomic Force Microscopy

The surface roughness of the OCT-PbS and OCT-PbS/HDA photosensitizers is indicated by the
AFM images (see Figure 4). The AFM results for OCT-PbS/HDA indicate that the molecular precursor
route with the HDA capping improves the surface roughness: with TiO2 photoanode, it is compact
and smooth. These results can be linked to the densification and reorganization of the crystallites of
the OCT-PbS/HDA film. The photosensitizers exhibited particle size of 0.654 µm for OCT-PbS/HDA
and 1.69 µm for OCT-PbS, depicting a regular crystal growth rate. The height clusters of both samples
depicted an insignificant change around 0.328 and 1.35 µm, which connotes smaller nanocrystals [35].
The images displayed small spherical nanocrystals with uniform distribution and size in the crystalline
phase in both samples, indicating compact nanoparticles [32] and in further agreement with the
XRD results.
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Figure 4. (a–c) Height profile and two-dimensional (2D) and three-dimensional (3D) atomic force
microscopy (AFM) images of OCT-PbS/HAD nanoparticles. (d–f) Height profile and 2D and 3D AFM
images of OCT-PbS nanoparticles.

2.4. Cyclic Voltammetry

In order to evaluate electrocatalytic abilities and the reaction kinetics of PbS/HDA and PbS
photosensitizers, the cyclic voltammetry (CV) measurements were adopted with three-electrode
systems [36]. The observed CV curves are displayed in Figure 5. In an ideal QDSC, photoexcited
electrons from the photosensitizer are injected into the conduction band, and the oxidized
photosensitizer is reduced by ions in the electrolyte [37]. The electrocatalytic activity displayed
by OCT-PbS/HDA was very low in HI-30 electrolyte due to its overpotential, irreversibility [38] and
physisorption. The OCT-PbS sensitizer exhibited significant electrocatalytic activity with stronger
current peaks due to a considerable amount of reversibility [39].
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Figure 5. Cyclic voltammetry (CV) spectra of (a) OCT-PbS/HDA and (b) OCT-PbS nanoparticles.

2.5. Electrochemical Impedance Spectroscopy Results

Figure 6 shows the EIS measurement. The hemisphere of high-frequency at 100 kHz is for the
resistance of charge transport at the counter electrode/electrolyte interface (R1). At low frequencies, the
impedance related to the charge transport at the TiO2/PbS/electrolyte interface is R2. This study focused
only on the R2 to compare the effect of the HDA capping agent on the charge transfer and transport at the
TiO2/PbS/electrolyte interfaces. The impedance at low frequencies can be pinpointed using R2. When
the R2 is lower, the charge transfer is faster at the photosensitzer/electrolyte interface. OCT-PbS/HDA
indicated a very poor catalytic activity, which can be linked to the injection of HDA. On the other hand,
the OCT-PbS sensitizer displayed lower charge transfer at the photosensitzer/electrolyte interface. This
can be linked to the particle size of OCT-PbS sensitizer, which promotes the charge transport speed of
the solar cell. This further affirmed the CV and AFM result [40,41]. However, R2 is also considered as a
resistance of charge recombination at the interfaces of TiO2/QDs/electrolytes. Decreases in R2 can boost
the charge recombination and shorten electron lifetime, which causes the performance of the solar cell
to deteriorate.
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Figure 6. Electrochemical impedance spectroscopy (EIS) spectra of OCT-PbS/HDA and OCT-PbS
nanoparticles.
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2.6. Bode Plot Results of Metal Sulfides Nanoparticles

According to the EIS diagrams, shown in Figure 7, the electron lifetime before the recombination
(Tr) can be estimated with Equation (1) using the Bode plot.

[Tr = 1/(2πf max)] (1)

The OCT-PbS exhibited a Tr value of 57 ms. This indicates an increase in electron lifetime and a
backreaction reduction of the electron with the injected HI-30 electrolyte. The suppressing of charge
recombination implies the longer lifetime of the charge carrier. This leads to better electron collection
at the FTO substrate. Based on this study, we can conclude that OCT-PbS displays superior ability
compared to OCT-PbS/HDA. Further, the complete coverage of photosensitizers on a photoanode
surface is directly linked to their ability to inhibit the charge recombination back to the electrolyte
redox couple [42].
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Figure 7. Bode plot spectra of (a) OCT-PbS/HDA and (b) OCT-PbS nanoparticles.

2.7. UV−Vis

Figure 8 reveals the absorption spectra of OCT-PbS and OCT-PbS/HDA recorded in the wavelength
region from 315 to 535 nm. This implies a low absorbance in the UV region for OCT-PbS and high
absorbance in the visible region for OCT-PbS/HDA. The maximum absorption of OCT-PbS is found at
366 nm, and the absorption is found to be 455 nm for OCT-PbS/HDA. The absorption corresponds to
an electron excited by a photon of energy, whereby the electron can jump from a lower energy to a
higher energy state. The high absorption displayed by Oct-PbS/HDA in the visible region indicates
the blue shift. This may be due to quantum confinement. This enables QDSCs to trap the photon
energy in the entire UV-Vis spectral region. Wavelengths similar to those obtained in this study for
OCT-PbS/HDA have been reported as produced by the recombination of excitons shallowly trapped in
electron–hole pairs by [32,43].Molecules 2020, 25, x FOR PEER REVIEW 7 of 12 

 

 170 

Figure 8. UV−Vis image of OCT-PBS and OCT-PbS/HDA nanoparticles. 171 

2.8. J–V Results 172 

Table 1 and Figure 9 illustrate the current-voltage (J−V) characteristics of the QDSSCs of OCT-173 
PbS/HDA and OCT-PbS photosensitizers under illumination. A reasonably high short-circuit current 174 
density (JSC) of 11 mA/cm2 was observed in the OCT-PbS/HDA QDSSCs, compared to that of the OCT-175 
PbS cells. The nanoporous nature of OCT-PbS/HDA may be related to the high value of JSC, due to its 176 
fabrication by the single-source precursor technique. The values of the open-circuit voltage (VOC) 177 
(~0.52 V) and efficiency (1.89) for OCT-PbS/HDA proved that the addition of HDA resulted in 178 
improved solar cell parameters. The TiO2 nanoparticle photoanode, with broad size variation and 179 
far-field and near-field effect, led to enhancement of JSC in OCT-PbS/HDA photosensitizer. This also 180 
exhibited high absorption of light in the whole visible spectrum. Secondly, recombination was 181 
reduced when PbS nanoparticles functioned as electron scavengers [44,45]. The higher electron 182 
density in the TiO2 conduction band could be linked as a factor for higher Voc value of OCT-PbS/HDA 183 
(0.52 V) compared to that of OCT-PbS (0.48 V), which elevated the Fermi level [37]. The FF of QDSSC 184 
is usually attributable to the charge transfer resistance at the counter electrode, electron transport 185 
resistance through the photoanode, total series resistance of the cell and ion transport resistance [46]. 186 
The higher FF of the OCT-PbS (0.74) compared to OCT-PbS/HDA (0.33) was due to the considerable 187 
improvement in charge transfer at the counter electrode/electrolyte interface, which reduced the 188 
concentration gradients in the electrolyte, internal resistances and the recombination rate, as 189 
confirmed by the EIS results [47]. 190 

Table 1. Current-voltage (J−V) curve characteristics of OCT-PbS/HDA and OCT-PbS nanoparticles. 191 

Dye Photoanode Electrolyte CEs JSC (mA/cm2) VOC (V) FF η (%) 

OCT-PbS/HDA TiO2 HI-30 Pt 11 0.52 0.33 1.89 

OCT-PbS TiO2 HI-30 Pt 2.4 0.48 0.74 0.85 

 192 

0

2

4

6

8

10

12

315 365 415 465 515

A
b

so
rb

an
ce

wavelength nm

OCT-PbS

OCT-PbS/HDA

Figure 8. UV−Vis image of OCT-PBS and OCT-PbS/HDA nanoparticles.



Molecules 2020, 25, 1919 7 of 11

2.8. J–V Results

Table 1 and Figure 9 illustrate the current-voltage (J−V) characteristics of the QDSSCs of
OCT-PbS/HDA and OCT-PbS photosensitizers under illumination. A reasonably high short-circuit
current density (JSC) of 11 mA/cm2 was observed in the OCT-PbS/HDA QDSSCs, compared to that of
the OCT-PbS cells. The nanoporous nature of OCT-PbS/HDA may be related to the high value of JSC,
due to its fabrication by the single-source precursor technique. The values of the open-circuit voltage
(VOC) (~0.52 V) and efficiency (1.89) for OCT-PbS/HDA proved that the addition of HDA resulted in
improved solar cell parameters. The TiO2 nanoparticle photoanode, with broad size variation and
far-field and near-field effect, led to enhancement of JSC in OCT-PbS/HDA photosensitizer. This also
exhibited high absorption of light in the whole visible spectrum. Secondly, recombination was reduced
when PbS nanoparticles functioned as electron scavengers [44,45]. The higher electron density in
the TiO2 conduction band could be linked as a factor for higher Voc value of OCT-PbS/HDA (0.52 V)
compared to that of OCT-PbS (0.48 V), which elevated the Fermi level [37]. The FF of QDSSC is usually
attributable to the charge transfer resistance at the counter electrode, electron transport resistance
through the photoanode, total series resistance of the cell and ion transport resistance [46]. The higher
FF of the OCT-PbS (0.74) compared to OCT-PbS/HDA (0.33) was due to the considerable improvement
in charge transfer at the counter electrode/electrolyte interface, which reduced the concentration
gradients in the electrolyte, internal resistances and the recombination rate, as confirmed by the EIS
results [47].

Table 1. Current-voltage (J−V) curve characteristics of OCT-PbS/HDA and OCT-PbS nanoparticles.

Dye Photoanode Electrolyte CEs JSC (mA/cm2) VOC (V) FF η (%)

OCT-PbS/HDA TiO2 HI-30 Pt 11 0.52 0.33 1.89
OCT-PbS TiO2 HI-30 Pt 2.4 0.48 0.74 0.85Molecules 2020, 25, x FOR PEER REVIEW 8 of 12 

 

 193 

Figure 9. J−V curve characteristics of (a) OCT-PbS/HDA and (b) OCT-PbS nanoparticles. 194 

3. Materials and Methods  195 

3.1. Material  196 

All materials were purchased from commercial sources and used without further purification. 197 
The complete test kits containing fluorine-doped tin oxide (FTO) as glass substrate of TiO2, platinum 198 
FTO, HI-30 electrolyte iodide, masks, gaskets, chenodeoxycholic acid (CDC) and a hot seal were 199 
purchased from Solaronix Company (Aubonne, Switzerland). Additionally, water, oleic acid (OA), 200 
methanol, hexadecylamine (HDA), bis(N-diisopropyl-N-octyldithiocarbamato) (OCT) Pb(II) 201 
complexes were obtained from Merck (Johannesburg, South Africa). 202 

3.2. Synthesis of OCT-PbS/HDA and OCT-PbS Nanoparticles 203 

Nanoparticles were fabricated according to methods in the literature [48]: 0.20 g of bis(N-204 
diisopropyl-N-octyldithiocarbamato) Pb(II) complex was dissolved in 4 mL oleic acid (OA) and 205 
injected into 3 g of hot hexadecylamine (HDA) at 360 °C. An initial temperature of 20–30 °C was 206 
attained for the mixture. The reaction was stabilized at 360 °C, and the process lasted for 1 h. The 207 
process was allowed to drop to 70 °C, signifying the completion of the process, and about 50 mL of 208 
methanol was used to remove excess OA and HDA. Centrifugation was used to separate the 209 
flocculent precipitate, which was redispersed with toluene. Low air pressure was used to remove 210 
solvent, giving rise to metal sulfides of OCT-PbS/HDA nanoparticles. Synthesis of OCT-PbS 211 
nanocrystals was obtained according to the study by a co-worker [49], using (PerkinElmer TGA 4000 212 
thermogravimetric Analyser, San Jose, CA, USA ). A portion of 25 mg of the complex was loaded into 213 
an alumina pan and weight changes were recorded as a function of temperature for a 10 °C min−1 214 
temperature gradient between 30–900 °C. A purge gas of flowing nitrogen at a rate of 20 mL min−1 215 
was used. At temperatures between 360 and 900 °C, the complex end-product was converted into the 216 
residue of OCT-PbS nanoparticles from the TGA.  217 

3.3. Fabrication and Assembling of Solar Cells 218 

Quantum dot solar cells (QDSC) were prepared with 2 × 2 cm2 FTO-glass plates of platinum and 219 
TiO2 electrodes, purchased from (Solaronix), with 6 × 6 mm2 active areas of TiO2 screen-coated. Dye 220 
loading for sensitization was done using 10 mL of warm water with OCT-PbS/HDA and OCT-PbS. 221 
Co-adsorbents (co-adsorbent/dye), using chenodeoxycholic acid (CDC), were added. The mediating 222 
solution was a commercial HI-30 electrolyte solution (Solaronix, Aubonne, Switzerland), with content 223 
of iodide species at 0.05 M. The TiO2 thin film was soaked in a solution of photosensitizers for 24 h. 224 
The two substrates, one coated with TiO2 loaded with photosensitizers and the other with platinum, 225 
were held together using polyethylene and a soldering iron. A syringe was used to inject the HI-30 226 
electrolyte (iodide). 227 

3.4. Physical Measurements 228 

0

5

10

0 0.2 0.4 0.6

C
u

rr
en

t 
d

en
si

ty
  

(m
A

/c
m

2 )

Voltage (V)

OCT-PbS/HDA

0

1

2

3

0 0.1 0.2 0.3 0.4 0.5

C
u

rr
en

t 
d

en
si

ty
  

(m
A

/c
m

2 )

Voltage (V)

OCT-PbSb  
a 

Figure 9. J−V curve characteristics of (a) OCT-PbS/HDA and (b) OCT-PbS nanoparticles.

3. Materials and Methods

3.1. Material

All materials were purchased from commercial sources and used without further purification.
The complete test kits containing fluorine-doped tin oxide (FTO) as glass substrate of TiO2, platinum
FTO, HI-30 electrolyte iodide, masks, gaskets, chenodeoxycholic acid (CDC) and a hot seal were
purchased from Solaronix Company (Aubonne, Switzerland). Additionally, water, oleic acid (OA),
methanol, hexadecylamine (HDA), bis(N-diisopropyl-N-octyldithiocarbamato) (OCT) Pb(II) complexes
were obtained from Merck (Johannesburg, South Africa).

3.2. Synthesis of OCT-PbS/HDA and OCT-PbS Nanoparticles

Nanoparticles were fabricated according to methods in the literature [48]: 0.20 g of bis(N-
diisopropyl-N-octyldithiocarbamato) Pb(II) complex was dissolved in 4 mL oleic acid (OA) and injected
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into 3 g of hot hexadecylamine (HDA) at 360 ◦C. An initial temperature of 20–30 ◦C was attained for the
mixture. The reaction was stabilized at 360 ◦C, and the process lasted for 1 h. The process was allowed
to drop to 70 ◦C, signifying the completion of the process, and about 50 mL of methanol was used to
remove excess OA and HDA. Centrifugation was used to separate the flocculent precipitate, which was
redispersed with toluene. Low air pressure was used to remove solvent, giving rise to metal sulfides of
OCT-PbS/HDA nanoparticles. Synthesis of OCT-PbS nanocrystals was obtained according to the study
by a co-worker [49], using (PerkinElmer TGA 4000 thermogravimetric Analyser, San Jose, CA, USA ).
A portion of 25 mg of the complex was loaded into an alumina pan and weight changes were recorded
as a function of temperature for a 10 ◦C min−1 temperature gradient between 30–900 ◦C. A purge gas
of flowing nitrogen at a rate of 20 mL min−1 was used. At temperatures between 360 and 900 ◦C, the
complex end-product was converted into the residue of OCT-PbS nanoparticles from the TGA.

3.3. Fabrication and Assembling of Solar Cells

Quantum dot solar cells (QDSC) were prepared with 2 × 2 cm2 FTO-glass plates of platinum and
TiO2 electrodes, purchased from (Solaronix), with 6 × 6 mm2 active areas of TiO2 screen-coated. Dye
loading for sensitization was done using 10 mL of warm water with OCT-PbS/HDA and OCT-PbS.
Co-adsorbents (co-adsorbent/dye), using chenodeoxycholic acid (CDC), were added. The mediating
solution was a commercial HI-30 electrolyte solution (Solaronix, Aubonne, Switzerland), with content
of iodide species at 0.05 M. The TiO2 thin film was soaked in a solution of photosensitizers for 24 h.
The two substrates, one coated with TiO2 loaded with photosensitizers and the other with platinum,
were held together using polyethylene and a soldering iron. A syringe was used to inject the HI-30
electrolyte (iodide).

3.4. Physical Measurements

An X-ray diffractometer (Cambridge, United Kingdom) was employed to evaluate the structural
pattern of the samples; the diffraction structure results were recorded between 10 to 90◦ at intervals of
0.05◦. A JEOL JEM 2100 high-resolution transmission electron microscope (JEOL Inc., Pleasanton, CA,
USA) (HRTEM) operating at 200 KV with selected area electron diffraction (SAED) patterns was used.
The surface roughness of the OCT-PbS/HDA and OCT-PbS FTO substrates were identified through the
use of atomic force microscopy (JPK NanoWizard II AFM, JPK Instruments, Berlin, Germany) in contact
mode and a scan rate of 0.8 Hz. Electrochemical studies were evaluated by Metrohm 85,695 Autolab
with Nova 1.10 software (Metrohm Johannesburg, South Africa (Pty) Ltd.). A platinum electrode
was adopted as a counter electrode. TiO2 was used as the anode, while HI-30 iodide electrode was
utilized as a reference electrode. Cyclic voltammetry (CV) was performed at scan rates between 0.05
to 0.35 V s−1 with an increment of 0.05 V s−1. Electrochemical impedance spectroscopy (EIS) was
carried out in the frequency range of 100 kHz to 100 mHz. Current–voltage (J−V) parameters were
collected through a Keithley 2401 source meter and a Thorax light power meter (RS Components (SA),
Johannesburg, South Africa). A Lumixo AM1.5 light simulator was employed, and the lamp was fixed
at 50 cm high to avoid illumination outside of the working area. To avoid cell degradation, temperature
was kept below 60 ◦C, and the light power density was kept at 100 mW/cm−2 (AM1.5). A PerkinElmer
Lambda 25 UV−Vis spectrophotometer was employed to carry out observations of optical absorption
properties at room temperature (PerkinElmer, Inc. Waltham, MA, USA).

4. Summary and Conclusions

In summary, the fabrication of inorganic PbS sensitizers through the molecular precursor route
and their application in photovoltaic cells were investigated in this study. PbS photosensitizers
deposited on TiO2 by direct deposition revealed the structure, morphologies and electrocatalytic
activity of a typical PbS nanocrystalline structure and displayed uniform size-distribution. The SAED
of OCT-PbS and OCT-PbS/HDA confirmed the polycrystalline nature of both materials. The AFM
results of OCT-PbS/HDA suggested that the injection of the HDA capping agent improved the surface
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roughness of the materials with TiO2 photoanode. Electrocatalytic activity of OCT-PbS was enhanced
in HI-30 electrolyte compared to the OCT-PbS/HDA sensitizer and exhibited significant electrocatalytic
activity. The OCT-PbS/HDA sensitizer exhibited a strong resistance interaction with the electrolyte,
indicating poor catalytic activity, compared to the OCT-PbS sensitizer. The better conversion efficiency
displayed by OCT-PbS/HDA proved its superiority as a good sensitizer, and this is strongly linked to
its nanoporous nature and electrocatalytic activity. The addition of an HDA capping agent has made a
great improvement to the conversion efficiency of OCT-PbS/HDA.
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