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Introduction: Electrical contact mapping provides a detailed view of conduction
patterns in the atria during atrial fibrillation (AF). Identification of repetitive wave front
propagation mechanisms potentially initiating or sustaining AF might provide more
insights into temporal and spatial distribution of candidate AF mechanism and identify
targets for catheter ablation. We developed a novel tool based on recurrence plots
to automatically identify and characterize repetitive conduction patterns in high-density
contact mapping of AF.

Materials and Methods: Recurrence plots were constructed by first transforming
atrial electrograms recorded by a multi-electrode array to activation-phase signals and
then quantifying the degree of similarity between snapshots of the activation-phase
in the electrode array. An AF cycle length dependent distance threshold was applied
to discriminate between repetitive and non-repetitive snapshots. Intervals containing
repetitive conduction patterns were detected in a recurrence plot as regions with a high
recurrence rate. Intervals that contained similar repetitive patterns were then grouped
into clusters. To demonstrate the ability to detect and quantify the incidence, duration
and size of repetitive patterns, the tool was applied to left and right atrial recordings
in a goat model of different duration of persistent AF [3 weeks AF (3 wkAF, n = 8)
and 22 weeks AF (22 wkAF, n = 8)], using a 249-electrode mapping array (2.4 mm
inter-electrode distance).

Results: Recurrence plots identified frequent recurrences of activation patterns in all
recordings and indicated a strong correlation between recurrence plot threshold and
AF cycle length. Prolonged AF duration was associated with shorter repetitive pattern
duration [mean maximum duration 3 wkAF: 74 cycles, 95% confidence interval (54–94)
vs. 22 wkAF: 41 cycles (21–62), p = 0.03], and smaller recurrent regions within repetitive
patterns [3 wkAF 1.7 cm2 (1.0–2.3) vs. 22 wkAF 0.5 cm2 (0.0–1.2), p = 0.02]. Both
breakthrough patterns and re-entry were identified as repetitive conduction patterns.
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Conclusion: Recurrence plots provide a novel way to delineate high-density contact
mapping of AF. Dominant repetitive conduction patterns were identified in a goat model
of sustained AF. Application of the developed methodology using the new generation of
multi-electrode catheters could identify additional targets for catheter ablation of AF.

Keywords: atrial fibrillation, mapping, recurrence plots, repetitive conduction patterns, mechanisms

INTRODUCTION

During atrial fibrillation (AF) electrical conduction patterns in
the atria are divers, variable, and often complex. The complexity
of these wave front patterns, i.e., the number of waves that
propagate through the atria during each AF cycle, typically
increases with AF duration (Allessie et al., 2010). Catheter
ablation of AF aims at isolation of triggers for AF and at
elimination of a dominant electrical mechanism that initiates
or sustains AF. Current success rates of various approaches
to catheter ablation of AF in patients show that there is
a need to systematically identify additional targets besides
the pulmonary veins (PV), especially in patients undergoing
redo procedures after initially successful PV isolation. Several
candidate mechanisms, associated detection algorithms, and
ablation strategies have been proposed and applied in the last
few decades, but this has not yet led to significantly improved
long-term ablation outcome (Verma et al., 2015; Wong et al.,
2015).

Proposed candidate sources of AF often show a high degree
of repetitiveness. Repetitive focal patterns of activation detected
in high-density mapping have been reported in patients with
persistent AF (Holm et al., 1997; Lee et al., 2015), but others
found repetitive focal events to be rare (de Groot and Allessie,
2019). Highly repetitive microreentrant sources were found using
optical mapping, both in sheep (Mandapati et al., 2000) and in a
small diverse set of human explanted hearts (Hansen et al., 2015),
but also using panoramic contact mapping (Swarup et al., 2014).
Other studies suggest more unstable spatiotemporal behavior of
reentrant circuits, driven by an underlying stochastic process
of wave generation (Dharmaprani et al., 2019) or clustered
at the borders of fibrotic atrial regions (Haïssaguerre et al.,
2016). Repetitive AF sources were also identified in several
anatomical locations with a more general approach based on high
electrogram morphology similarity and short AF cycle length
(Ravelli et al., 2012, 2014).

Repetitive conduction is also to be expected in the vicinity of
such local drivers. A local source may not always conduct 1:1
to its vicinity but this region is nonetheless expected to exhibit
repetitive conduction patterns driven by the source. The presence
of repetitive patterns in a region of the atria may furthermore
reveal a structure-function relationship at that site, impacted by
atrial anatomy (Hansen et al., 2015; van Hunnik et al., 2018)
or by structural remodeling associated with AF (Verheule et al.,
2010; Maesen et al., 2013). A repetitive pattern may also be the
precursor to (spontaneous) termination of AF (Ortiz et al., 1993),
or give an indication of the overall state of atrial conduction,
i.e., the dynamics of linking of conduction between consecutive
activations in different atrial regions (Gerstenfeld et al., 1992).

Therefore techniques to reliably identify repetitive conduction
patterns can be very instrumental, particularly in the light of
recent advances toward electro-anatomical mapping tools with
increased spatiotemporal resolution.

In this paper we introduce a method to analyze the incidence
and characteristics of repetitive conduction patterns in contact
mapping of AF using a recurrence plot, a well-established
technique to study the dynamics of complex non-linear systems
(Marwan et al., 2007). We demonstrate the ability of this
novel computational tool to detect and quantify repetitive
conduction patterns in high-density epicardial mapping in a
goat model of AF.

MATERIALS AND METHODS

High-Density Contact Mapping in a Goat
Model of AF
In this study we made use of a retrospective dataset, comprised
of baseline measurements from a drug provocation study in two
groups of 8 goats, in which AF was induced by left atrial burst
pacing and maintained for either 3 weeks (3 wkAF) or 22 weeks
(22 wkAF). High-density contact mapping was performed
during an open-chest experiment, using a 249-electrode circular
mapping array (2.4 mm inter-electrode distance, sampling
frequency 1039 Hz). One-minute recordings of unipolar atrial
electrograms were made simultaneously on the right atrial (RA)
and left atrial (LA) epicardial wall. Further experimental details
can be found in van Hunnik et al. (2018). The study protocol was
approved by the local ethics committee and complied with the
Dutch and European directives.

Recurrence Plot Construction to
Visualize Repetitive Pattern Incidence
Recurrence plots provide a general way to visualize and analyze
the temporal behavior of complex non-linear dynamical systems
(Marwan et al., 2007). It requires the definition of a phase-space
trajectory of the dynamical system and a distance function that
measures the similarity or distance between any pair of time
points on the trajectory. A recurrence then occurs when the
distance between two points in time is below a certain threshold.
The recurrence rate RR is defined as the fraction of detected
recurrences over all comparisons.

We adapted this general definition of recurrence plots to
the analysis of atrial electrograms and conduction patterns. The
approach is illustrated in Figure 1 on a recording of beats that
were regularly paced from four cardinal directions. First, unipolar
atrial electrograms were transformed to activation-phase signals
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FIGURE 1 | Recurrence plot construction. Block diagram and example of recurrence plot reconstruction for a recording of a paced rhythm. Unipolar electrograms
were annotated, converted to activation-phase signals and used to create activation phase snapshots. Next, the distances δi,j between all pairs of snapshots (i,j)
were used to construct a distance matrix. The distance threshold δmax was computed based on the maximum recurrence rate per AF cycle RRmax (default
RRmax = 1) and applied to the distance matrix to construct a recurrence plot. Consecutive recurrences were eroded, removing false positives from the recurrence
plot. HD, high density; LA, left atrium; PCL, pacing cycle length.

by local activation time annotation, employing a previously
published algorithm that assigns local atrial deflections to
maximize the likelihood of atrial deflection intervals given an
estimated AF cycle length distribution (Zeemering et al., 2012).
Activation-phase signals (in the range [−π, π)] were constructed
by linear interpolation, taking the local activation time as the
moment of phase inversion. The phase-space was then defined

as the snapshot of the activation-phase of all mapping array
electrodes at individual time points. This snapshot can be
interpreted as still frame of the local conduction pattern at a
given time point. The distance δi,j between two time points i
and j on the phase-space trajectory was determined based on the
phase angle difference at every electrode, by taking the average
of the cosine of each difference, transformed back to a fraction
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of the activation-phase duration of a single AF cycle (2π). This
distance measure was chosen so that the range of differences
between two snapshots [(−2π, 2π)] was mapped appropriately:
maximum similarity occurred at differences (0, −2π, and 2π),
while maximum dissimilarity occurred at π and −π. This also
meant that the distance between two snapshots was always
symmetric. The resulting distance measure ranged from 0 (two
snapshots that were completely in phase) to 0.5 (two snapshots
that were half an AF cycle length out of phase).

This transformation of electrograms to activation-phase
snapshots, also known as the phase-space embedding, together
with the distance function was subsequently used to create a
distance matrix in which all activation-phase snapshots within a
recording were compared. The distance matrix was transformed
to a recurrence plot by imposing an adaptive maximum distance
threshold δmax. The distance threshold δmax can be interpreted
as the maximum degree to which two snapshots were allowed
to be out of phase for a recurrence to occur. This threshold was
computed by requiring the recurrence plot to have a recurrence
rate that corresponded to a maximum recurrence rate per AF
cycle RRmax. Default value for RRmax was set to 1, equivalent
to the recurrence rate per AF cycle that would occur if a
single conduction pattern were repeating for the whole length
of the recording. The resulting δmax and recurrence rate of the
recurrence plot therefore depended on the AF cycle length, the
number of time points in the recording, and the distribution
of distances in the distance matrix. A formal definition of
the distance matrix, recurrence plot construction, and distance
threshold computation is provided in the section “Distance
Matrix and Distance Threshold Computation” of Supplementary
Methods. Note that this choice for the threshold constituted a
sensitive detection of recurrences, which on the one hand ensured
that completely regular patterns were detected correctly, but on
the other hand also caused false positive recurrence detections
(also known as false nearest neighbors in recurrence plot analysis)
in recordings with a lower degree of regularity.

Recurrence Plot Analysis to Detect
Repetitive Patterns
Recurrence plots were analyzed to detect the incidence and
duration of repetitive patterns. There are a few general features of
a recurrence plot that are worth mentioning here. A recurrence
plot is always symmetric as it compares all pairs of snapshot
within a recording in both directions of time, past and future.
The main diagonal represents the comparison of a snapshot with
itself and hence is always recurrent. A repeating conduction
pattern will form a sequence of consecutive recurrences, i.e., if
two activation-phase snapshots are similar, these two snapshots
will also be similar when shifted equal (small) amounts in time.
This phenomenon is visible in a recurrence plot as a diagonal
line (Marwan et al., 2007). A conduction pattern that repeats
consistently for several consecutive AF cycles will show up in
the recurrence plot as a square block of diagonal lines around
the main diagonal. Due to the sensitive detection of recurrences,
diagonal lines may exhibit some “thickness” when the distance
between consecutive activation-phase snapshots still falls within

the imposed threshold, which leads to aforementioned false
positive recurrences. In our analysis this effect was removed
by eroding the recurrence plot, effectively replacing consecutive
horizontal or vertical snapshot recurrences by a single recurrence
at the time point with minimum distance.

The resulting eroded recurrence plot was then used to detect
intervals that contained repetitive patterns, as illustrated in
Figure 2. These intervals were detected by an algorithm that
traversed the main diagonal of a recurrence plot and computed
the recurrence rate per AF cycle in square blocks of increasing
duration around the diagonal at each time point. Recurrence rate
was again normalized to the AF cycle length, so that a value
of 1 indicated a single recurrence occurring each AF cycle on
average. For each time point we stored the duration of the interval
that was formed by the square block in the recurrence plot with
the maximum recurrence rate. Intervals that contained repetitive
patterns were defined as local maxima in the interval duration,
with a minimum recurrence rate per AF cycle RRmin. The default
value of RRmin was set to 0.9, corresponding to an average of
0.9 recurrences per AF cycle, to account for short-lasting pattern
interruptions and small deviations in AF cycle length. In case of
two identified intervals with more than 50% overlap in time, the
interval with the longest duration was selected.

Clustering of Similar Repetitive Patterns
To investigate which identified intervals on the main diagonal
of the recurrence plot containing repetitive patterns represented
similar or distinct activation patterns, patterns were grouped
based on the cross-recurrence rate between intervals. Cross-
recurrence rate between two intervals was determined by
computing the recurrence rate in the rectangular block in the
recurrence plot formed by the respective intervals. The resulting
interval similarity matrix, describing the cross-recurrence rate
between all pairs of intervals containing repetitive patterns,
was clustered using agglomerative hierarchical clustering, a
commonly used clustering technique that builds a tree of linked
pairs of most similar intervals using a bottom-up approach
(Hastie et al., 2009). Groups of similar patterns were extracted
from the hierarchical cluster tree using the same recurrence rate
threshold RRmin applied in the detection of repetitive patterns.

Repetitive Pattern Visualization
Repetitive (clustered) patterns were visualized by computing
the average of activation-phase snapshots corresponding to
recurrences on a vertical line within the corresponding intervals
in the recurrence plot. The average activation-phase snapshot was
converted to an average activation time map using the estimated
AF cycle length, setting the earliest activation time to zero. To
identify spatial regions within the mapping array that contributed
most to the recurrent behavior of the average pattern, a heat map
was constructed that indicated the average recurrent activation-
phase distance δ

p
k for a pattern (p) for each electrode (k) separately

(see section “Average Pattern Activation-Phase Distance” in
Supplementary Methods). The size of the most recurrent region
was defined as the area covered by electrodes with an average
activation-phase distance below the computed adaptive distance
threshold δmax, or a fixed time difference threshold 1t, after
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FIGURE 2 | Repetitive pattern detection. Intervals containing repetitive patterns were detected by traversing the main diagonal of the recurrence plot and computing
the duration of the square block surrounding the diagonal with the maximum recurrence rate at each time point. Intervals with peak duration and a recurrence rate
above a minimum recurrence rate per AF cycle RRmin (0.9) were selected. In the four detected intervals the average activation time map was constructed,
representing the original four pacing directions. For each pattern a heat map was constructed that indicated the average recurrent activation-phase distance δ

p
k for a

pattern (p) for each electrode (k) separately. From this heat map the pattern size was computed by determining the area of the electrodes with δ
p
k < δmax. In this

example of a paced rhythm the repetitive patterns were very consistent: almost all electrodes contributed to the repetitive pattern with an average activation-phase
distance below the distance threshold. HD, high density; LA, left atrium; PCL, pacing cycle length.

converting the average activation-phase distance per electrode to
a time difference by multiplying δ

p
k by the AF cycle length.

Statistics
Based on the recurrence plot analysis we determined for
each individual recording the adaptive distance threshold δmax,
the number and duration of intervals containing repetitive
patterns and clusters of similar patterns, and the size of
most recurrent region. Sensitivity analysis was performed to
assess the effect of the thresholds RRmax and RRmin on
the detection of repetitive patterns (see section “Sensitivity
Analysis” in Supplementary Methods). Differences between 3
and 22 wkAF and LA and RA were tested using mixed ANOVA,
employing a significance threshold of 0.05. Correlations between
parameters were computed using Spearman’s rank correlation
coefficient, controlling for AF group and atrium. Algorithms
for recurrence plot construction and repetitive pattern detection
were implemented in MATLAB (2019). Statistical tests were

performed using R (R Core Team, 2019) and the package
emmeans (Lenth, 2020).

RESULTS

Application to High-Density Recordings
of AF
The procedure of electrogram activation-phase and snapshot
distance matrix computation, recurrence plot construction and
repetitive pattern detection was applied to recordings during AF
in the goat model. The result of this automated analysis scheme
in simultaneous left and right atrial recordings in a single animal
is illustrated in Figure 3. Intervals containing repetitive patterns
are indicated as red square blocks around the diagonal. For both
atria, the detected intervals were clustered into groups of similar
patterns, of which the three clusters with the longest combined
duration (in AF cycles) are shown. For each clustered pattern the
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FIGURE 3 | Example of repetitive pattern detection in simultaneous left (LA) and right (RA) atrial recordings. For both locations the recurrence plot and interval
detection (red blocks) are depicted. Those intervals are shown that belong to the three clustered patterns with longest duration (in cycles). Cross-recurrence
between intervals belonging to the same cluster is indicated in blue in the recurrence plot. The average activation pattern for each pattern is illustrated, together with
the heat map of the average activation-phase distance per electrode.

average activation time map was determined together with the
heat map of the average activation-phase distance per electrode.
In this case the right atrium showed a repetitive pattern for
many cycles (227), a wave entering from the northeast of the
mapping area, alternated with a different pattern (71 cycles),
again a wave entering the field of view, but now from the
southeast. The third pattern resembled the first, but the distance
heat map indicated a more variable pattern at the entrance point
of the wave. In contrast, at the same time in the left atrium,
the three most prevalent patterns were short lasting, with 32,
28, and 27 cycles, respectively. Here the first pattern represented
two peripheral waves that collided in the center of the mapping
area, and the second and third repetitive focal/breakthrough
waves at distinct locations. The heat maps of the patterns in
the left atrium indicated a more variable or unstable pattern
compared to the right.

Sensitivity Analysis of RRmax and RRmin
First, we varied RRmax between 0.25 and 2, around the default
value of 1, and quantified the effect on the recurrence plot
construction: the distance threshold δmax and the recurrence

rate of the eroded recurrence plot. We also evaluated the
effect of RRmax on the detection of repetitive patterns (keeping
RRmin fixed at the default value 0.9): number of intervals,
maximum duration of an interval, maximum pattern duration
and pattern size (using the adaptive distance threshold δmax
that is determined by the choice of RRmax). We repeated
this analysis for a range of fixed δmax. Results show that
most parameters are moderately affected by changes in RRmax.
Recurrence plot parameters show an approximately linear
response (Supplementary Figures 1A,B), while the parameters
related to the detection of repetitive patterns show either a
linear (maximum interval and pattern duration), a weak biphasic
(number of intervals), or almost no response (pattern size)
(Supplementary Figure 2). In contrast, using a range of fixed
δmax [0.1, 0.25] that corresponded to the range of observed values
for the δmax computed from RRmax, we observed a much stronger,
non-linear response in the eroded recurrence plot recurrence
rate (Supplementary Figure 1C) and the pattern detection
parameters (Supplementary Figure 3). Supplementary Figure 4
provides an example of recurrence plot construction and
repetitive pattern detection for varying values of RRmax.
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FIGURE 4 | Recurrence detection results in 3 and 22 wkAF goats. (A) Correlation between AF cycle length (AFCL) and the adaptive distance threshold δmax, and
maximum pattern duration per recording in AF cycles. (B) Variety of number of detected intervals containing a repetitive interval and clustered patterns compared to
the total recording coverage. Only clustered patterns with a combined duration exceeding 10 AF cycles were included. (C) Average size of the most recurrent
pattern region within each recording, computed using the adaptive distance threshold δmax (left) and a fixed maximum time difference 1t (10 ms) applied to the
average activation time difference between pattern recurrences (right).

Second, we varied RRmin between 0.5 and 1.5, while keeping
RRmax fixed at RRmax = 1. Results show that choices for RRmin
close to the default value 0.9 do not change the qualitative
interpretation of the results of the pattern identification, most
notably for the maximum duration of patterns and the pattern
size (Supplementary Figure 5).

Repetitive Patterns in a Goat Model of
Different AF Duration
Using RRmax = 1 and RRmin = 0.9, repetitive pattern detection
was performed in all recordings at baseline in the two groups of
3 and 22 wkAF goats to investigate the incidence of repetitive

patterns and to detect any potential differences in recurrence
characteristics associated with AF duration and atrium. Our main
results are summarized in Figure 4. The computed distance
threshold δmax was strongly correlated with the AF cycle length
(correlation −0.62, p< 0.01, Figure 4A). The maximum duration
(in number of AF cycles) of clustered patterns was longer
in 3 wkAF than in 22 wkAF (mean maximum duration 74
cycles [95% confidence interval (54–94) vs. 41 (21–62) cycles,
p = 0.03]. In Figure 4B we illustrated the diversity in the
number of intervals that contained repetitive patterns, as well
as the total duration of these intervals during a recording. We
observed a wide variety of interval incidence and prevalence,
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FIGURE 5 | Examples of AF mechanisms detected using recurrence analysis. Two conduction patterns associated with candidate AF mechanisms are depicted: an
intermittent, unstable local re-entry within the mapping area (left) and a repetitive focal/breakthrough wave (right). Intervals containing recurrent patterns are
indicated in red blocks, while cross-recurrences between clustered intervals are indicated in blue. The average activation pattern for each pattern is illustrated,
together with the heat map of the average activation-phase distance per electrode and the average conduction direction during the pattern duration.

from recordings that showed a low number of intervals that
covered only a small portion of the recording duration, to
recordings with a small to large amount of intervals that
covered almost the entire recording. The number of patterns,
where multiple intervals could be grouped into one clusters
representing a single pattern, compared to the total coverage of
the recording showed similar diversity. Here we only included
clusters of patterns where the total duration of the combined
intervals exceeded 10 AF cycles. The average size of the most
recurrent region per recording (Figure 4C) was slightly smaller
in the right atrium [mean size LA 10.9 cm2 (10.0–11.4) vs. RA
9.5 cm2 (8.8–10.3), p = 0.03], when computed based on the
number of electrodes with an average activation-phase distance
below the adaptive distance threshold δmax. Pattern region size
was much smaller when applying a fixed maximum activation
time difference threshold 1t of 10 ms between recurrences in
detected patterns. Here, differences were found between 3 and
22 wkAF [3 wkAF 1.7 cm2 (1.0–2.3) vs. 22 wkAF 0.5 cm2 (0.0–
1.2), p = 0.02]. Sensitivity analysis of 1t indicated that this

difference in regions with low average temporal dissociation
was consistent for values of 1t between 10 and 30 ms
(Supplementary Figure 5B).

Examples of Mechanisms Detected by
Recurrence Analysis
In Figure 5 we show two examples to illustrate how this method
can detect and visualize candidate AF source patterns. These
were selected recordings from the same study in goats, but
during infusion of different dosages of the antiarrhythmic drug
used. The first example shows a recording that started with a
peripheral wave entering from the east (pattern 2), but then
switched to a local re-entry within the mapping area (pattern
1). Pattern 2 returned after a while, but was intermitted by
other, less stable and frequent patterns. Then pattern 3 arose,
again a local re-entry within the mapping area, comparable to
pattern 1, but following a slightly different trajectory. Finally
pattern 1 reappeared, followed by pattern 3. The dominant
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conduction direction per electrode for each of the patterns
confirmed their interpretation. The second example shows an
extreme case of a repetitive focal/breakthrough wave, where
the most spatiotemporal stable pattern (pattern 1) appeared
intermittently for a total of 191 cycles. In this example the other
intermittent patterns (patterns 2 and 3) were very similar to
pattern 1, and only differed slightly in the variation of the radial
spread of activation, as indicated by the activation-phase distance
heat maps. The dominant conduction direction per electrode for
each of the patterns highlights this radial spread originating from
the site of the focus/breakthrough activation.

DISCUSSION

We developed a method to automatically identify repetitive
patterns of conduction in high-density mapping of AF. This
method can be used to detect the incidence of time intervals
containing repetitive patterns, to group intermittent intervals
that exhibit similar repetitive patterns, and to visualize these
distinct patterns to interpret the mechanism the conduction
pattern represents. As an application, repetitive conduction
patterns were identified in HD mapping recordings in a goat
model of sustained AF, where we identified repetitive patterns
in almost all recordings. We also show that the maximum
duration of repetitive patterns and the size of the regions
containing the most dominant repetitive pattern decreased with
prolonged AF duration.

Recurrence Analysis as a Tool to Identify
Repetitive Patterns During AF
Recurrence analysis has been applied to investigate AF
characteristics in invasive measurements, based on single
electrode bipolar electrogram morphology. Recurrence plots
were used to assess the degree of organization present during
AF (Censi et al., 2000). Recurrence quantification analysis
was applied to detect complex fractionated atrial electrograms
(Navoret et al., 2013), to quantify the dynamics of beat-to-beat
deflection morphology similarity at several locations in the left
and right atrium (Ng et al., 2014), and to distinguish spiral wave
reentry from multiple wavelets in bipolar electrograms (Hummel
et al., 2017). Recurrence plots derived from consecutive AF
cycle lengths from an electrogram recorded in the coronary
sinus suggested that the underlying AF process is deterministic,
rather than stochastic (Aronis et al., 2018). Also alternative
methods for the detection of local bipolar electrogram regularity
were proposed, again using electrogram morphology, but
also by integrating electrogram coupling to quantify local
organization (Faes and Ravelli, 2007), or by quantifying the
repetitiveness of the pattern of complex fractionated atrial
electrograms using frequency domain parameters (Ciaccio
et al., 2011). The use of a single electrode and bipolar
electrograms, however, limits the amount of spatiotemporal
information that can be incorporated in the assessment of
the dynamics of the underlying recurrent conduction pattern.
In our approach we aimed to not only include temporal
dynamics, but also detailed local spatial coherence, by analyzing

electrograms from a high-resolution grid of electrodes. Our
approach further relies on unipolar electrograms that are
insensitive to the direction of conduction. We adopted an
activation-phase representation of the electrograms to enable
the computation of the distance, or difference, between two
snapshots of conduction in time. Other approaches may
also be chosen to arrive at this phase-space representation
of the conduction patterns, for instance methods that rely
on the Hilbert transform of the filtered electrogram (Kuklik
et al., 2015). Caution should be applied, however, when
interpreting the resulting averaged activation-phase patterns,
as these approaches tend to blur the true underlying activation
patterns, which can lead to the elimination of conduction block
(Podziemski et al., 2018).

Interpretation and Implications of the
Adaptive Recurrence Threshold
In our approach we adopted an adaptive distance threshold to
transform the distance matrix that describes the difference in
activation-phase between each pair of snapshots, to a recurrence
plot, that only contains the moments in time when two
conduction patterns are sufficiently in phase. The choice for a
recurrence plot threshold has to be made carefully: applying a too
restrictive threshold will not identify existing recurrences and can
lead to the detection of many short, interrupted intervals; a too
tolerant threshold will lead to many false positive recurrences,
that obscure the underlying structure of the recurrence plot
(Marwan, 2011). There are several approaches to choosing a
recurrence threshold (Zbilut et al., 2002). We used the a priori
knowledge of the AF cycle length to choose a threshold that
led to a number of recurrences that was to be expected if the
underlying pattern was completely regular and repetitive for
the whole duration of the recording. In the case of AF this
threshold was often too tolerant, which led to sensitive, but not
specific detection of recurrent snapshots. The post processing
of the resulting recurrence plot, together with the constraints
imposed on the detection of repetitive patterns, ensured that
these false positives detections were disregarded. Sensitivity
analysis indicated that this approach to compute an adaptive
distance threshold is a relatively robust choice compared to
setting a fixed distance threshold: a small change in RRmax led
to relatively small and predictable change in δmax and associated
pattern detection results, whereas changes in a fixed δmax, that
was applied to all recordings, led to much more pronounced and
unpredictable changes in pattern detection results.

A higher recurrence threshold that still leads to the detection
of intervals that contain repetitive intervals can indicate two
things: either repetitive patterns are more variable, but still stand
out from other intervals with even more disorganized activity,
and/or the spatial region within the mapping area where the
repetitive pattern is localized is smaller. The application of our
method on the goat model data revealed that the threshold is
strongly associated with the AF cycle length. This correlation
indicated less stable or smaller repetitive patterns in recordings
with shorted AF cycle lengths, which corroborates the findings
of Schuessler et al. (1992) where in a cholinergic model of
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AF the shortening of the effective refractory period (and cycle
length) resulted in an increased number of wave fronts and local
re-entry circuits.

Repetitive Patterns in AF
Applying the developed methodology to recordings in a goat
model of AF, we found that there was a large diversity both in the
number of repetitive patterns as well as in the total duration of
the recording covered by repetitive patterns. Stability of patterns,
however, seemed to decrease with AF duration, with a lower
maximum pattern duration in 22 wkAF. The size of the region
within the mapping area responsible for the recurrent behavior
did also decrease with AF duration (using a fixed threshold
of 10ms for the maximum allowed activation time difference
between recurrences). This suggests that, while repetitive patterns
are still present, the size of the repetitive process becomes smaller
with prolonged AF duration. This is largely in line with findings
in a comparable goat model of AF (Verheule et al., 2010).
Interestingly we observed switching between different repetitive
patterns in several of the examples (Figures 3, 5). This suggests
the existence of different states of the atrial conduction during AF,
and sudden transitions between these states, as also observed in
simulations of AF (Iravanian and Langberg, 2017; Marcotte and
Grigoriev, 2017).

In this study we analyzed mapping data from the epicardium
of both atria. Since conduction during AF is a 3D process,
signals measured simultaneously on the endocardial wall may
show some degree of uncoupling (Eckstein et al., 2013; Gutbrod
et al., 2015; de Groot et al., 2016). Independent epi-endocardial
repetitive patterns might point to separate drivers in the two
layers. It would be of great interest to further investigated whether
epi-endocardial coupling occurs during episodes of repetitive
activity. Furthermore, electrode array resolution has been shown
to significantly impact AF driver identification (Roney et al.,
2017). Computation modeling of AF can help to investigate the
effect of 3D conduction, dissociation and mapping device on
pattern detection, providing that the model incorporates the 3D
nature of the atrial anatomy and bundle structure, and exhibits
epi-endocardial dissociation to an extent that 3D conduction
patterns can be simulated [see for instance (Gharaviri et al.,
2020)].

Recurrence Analysis to Identify and
Target AF Sources
The detection of AF sources during an AF ablation is a possible
extension of the current approach. The examples in Figure 5
show that our approach – in principle – can detect and visualize
local candidate mechanism that may drive or initiate AF (e.g.,
a local re-entry or a repetitive focal/breakthrough wave). In
patients, ablation of such driver sites may restore sinus rhythm
or prevent AF recurrence. As a future perspective, during an
ablation procedure, several regions of the atria could be mapped
sequentially and repetitive patterns can then be reconstructed
for each region. With the use of a common reference, or
spatial overlap between asynchronous recordings at different
sites, repetitive patterns can be “stitched” together to form a

more complete picture of whole atrial repetitive conduction.
A similar approach was recently demonstrated in the RADAR
trial (Choudry et al., 2020), where a catheter placed in the
coronary sinus (CS) served as the common reference. A potential
limitation of that specific setup is that intervals containing
repetitive patterns were detected using only the electrograms
from the CS catheter. In contrast, identification of repetitive
patterns at partially overlapping sites also enables the detection
of candidate AF drivers that do not lead to repetitive electrogram
morphology in the CS. Multi-site identification of repetitive
patterns will, however, require recordings with longer duration
than currently acquired during an ablation procedure, together
with a sufficient incidence and duration of repetitive patterns.

LIMITATIONS

The result of the recurrence plot construction and repetitive
pattern detection were dependent on the chosen phase-space
embedding (local activation-phase computation) and recurrence
rate thresholds RRmax and RRmin. Optimal embedding and
threshold values were not investigated in this study. Sensitivity
analysis of RRmax and RRmin indicated that results obtained in
the goat model of AF were moderately insensitive with respect
to the exact choice for these thresholds. Recordings evaluated
in this study were from a goat model of AF, where although
AF was persistent, the amount of structural remodeling was
most likely limited and the differences between groups subtle.
A similar study in patients in different stages of AF (paroxysmal
and persistent) is needed to investigate the relationship between
AF duration and associated structural remodeling and repetitive
pattern incidence and size.
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