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Tourette syndrome (TS) is a childhood onset disorder characterized by motor and

vocal tics and associated with multiple comorbid symptoms. Over the last decade,

the accumulation of findings from TS patients and the emergence of new technologies

have led to the development of novel animal models with high construct validity. In

addition, animal models which were previously associated with other disorders were

recently attributed to TS. The proliferation of TS animal models has accelerated TS

research and provided a better understanding of the mechanism underlying the disorder.

This newfound success generates novel challenges, since the conclusions that can

be drawn from TS animal model studies are constrained by the considerable variation

across models. Typically, each animal model examines a specific subset of deficits and

centers on one field of research (physiology/genetics/pharmacology/etc.). Moreover,

different studies do not use a standard lexicon to characterize different properties of

the model. These factors hinder the evaluation of individual model validity as well as the

comparison across models, leading to a formation of a fuzzy, segregated landscape of

TS pathophysiology. Here, we call for a standardization process in the study of TS animal

models as the next logical step. We believe that a generation of standard examination

criteria will improve the utility of these models and enable their consolidation into a

general framework. This should lead to a better understanding of these models and

their relationship to TS, thereby improving the research of the mechanism underlying this

disorder and aiding the development of new treatments.
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TOURETTE SYNDROME AND THE BASAL GANGLIA

Tourette syndrome (TS) is a neurodevelopmental disorder characterized by vocal and motor tics
in the form of rapid, repetitive, non-rhythmic vocalizations or movements (American Psychiatric
Association, 2013). The standard pharmacological treatment consists of the administration
of antipsychotic drugs which act mainly as D2 dopamine receptor antagonists. However,
this treatment has significant side effects and is typically not sufficient for complete tic
suppression (Eddy et al., 2011). Unlike other motor disorders, tics are not completely
involuntary. More than 90% of all TS patients report experiencing premonitory urges
preceding the tic. These patients describe tics as voluntary actions which alleviate these
uncomfortable urges (Leckman et al., 1993). While tics are the defining symptom of TS, most
patients (>90%) suffer from additional symptoms classically associated with other disorders,
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such as attention deficit hyperactivity disorder (ADHD) and
obsessive-compulsive behavior and disorder (OCD), each
affecting roughly half of the patients (Freeman et al., 2000).
Genetic factors were found to play a role in TS etiology (Price
et al., 1985; Bertelsen et al., 2016). Nevertheless, most of the
identified genes are rare, and to date no gene is known to have
a major effect on TS etiology (Godar et al., 2014). The underlying
pathophysiology of TS is currently unknown. Many different
systems, brain regions and neuronal circuits are considered likely
candidates, with most current studies linking the disorder to
abnormalities in the cortico-basal ganglia (CBG) pathway.

The basal ganglia are a group of interconnected nuclei forming
partially closed loops leading from most cortical areas back to
frontal cortical areas. The loops are functionally divided into
domains based on the cortical regions which send their input to
the BG. The domains include the motor, associative (executive),
and limbic areas. The role of the CBG pathway in TS has been
hypothesized to be related with abnormal inhibition of undesired
actions (Albin and Mink, 2006). This lack of inhibition has been
attributed to local deficits within the striatum, which serves as the
primary input nucleus of the BG. Most neurons in the striatum
are the medium spiny projection neurons (MSNs) whose activity
is modulated by interneurons such as GABAergic fast spiking
interneurons (FSIs) and cholinergic tonically active neurons
(TANs) (Kita et al., 1990; Bennett and Bolam, 1994; English
et al., 2011) as well as by neuromodulatory afferents including
dopaminergic, histaminergic, and adrenergic inputs (Holmberg
et al., 1999; Surmeier et al., 2007; Ellender et al., 2011).

Converging evidence point to the involvement of the CBG
loop, and specifically the striatum, in the pathology of TS: A
small decrease in overall volume (Peterson et al., 2003) and
a substantial reduction in the cell count of FSIs and TANs
(Kalanithi et al., 2005; Kataoka et al., 2010) have been observed
in the striatum of TS patients. Tic severity in early adulthood
was found to be correlated with the extent of volume reduction
of the caudate nucleus in childhood (Bloch et al., 2005). Further,
correlations have been found between the severity of tics and
the structural connectivity between the motor cortex and the
striatum (Worbe et al., 2015), and between the supplementary
motor area and the BG (Cheng et al., 2014). Abnormalities
in neuronal transmission including decreased GABAA receptor
binding in the striatum (Lerner et al., 2012) and increased
putamen dopamine release (Singer et al., 2002) have been
reported in TS patients.

ANIMAL MODELS OF TOURETTE

SYNDROME

TS is a multifaceted disorder associated with a wide spectrum
of clinical symptoms involving multiple underlying neuronal
systems (Yael et al., 2015). In this perspective we focus on TS
animal models related to the striatum since most findings from
TS patients and most modern animal models are associated
directly or indirectly with deficits within this brain region.

Motor and vocal tics, the primary symptom of TS, may be
evoked by a disruption of GABAergic transmission within the

striatum. Local microinjections of different GABAA antagonists
(such as bicuculline and picrotoxin) into the motor domain of
the striatum have been shown to induce tics in both rodents
(Marsden et al., 1975; Tarsy et al., 1978; Bronfeld et al., 2013b)
and primates (Crossman et al., 1988; McCairn et al., 2009).
The location of the disinhibition within the striatum determines
the properties of the tics; injections in the motor striatum
induce motor tics expressed in the body region associated
with the somatotopic location of the striatal injection (Bronfeld
et al., 2013b), whereas injections in the limbic striatum induce
vocal tics (McCairn et al., 2016). Disinhibition in non-motor
functional domains of the striatum induces behaviors similar to
hyperactivity and compulsive symptoms (Worbe et al., 2009),
thus exposing an intriguing link between tics and their comorbid
symptoms. Additional support to the role of the striatum in
TS and its comorbid disorders arise from a transgenic mouse
model affecting the limbic cortico-striatal connectivity. This
model demonstrates multiple symptoms such as OCD-like
behaviors and sensorimotor gating deficits (Campbell et al., 1999;
Nordstrom and Burton, 2002; Godar et al., 2015).

The identification of specific striatal neuronal subpopulations
whose number is altered in TS (Kalanithi et al., 2005; Kataoka
et al., 2010) inspired the development of animal models that
target these subpopulations exclusively. Models have mimicked
the selective suppression of the population of FSIs (using IEM-
1460) thereby inducing abnormal movements (Gittis et al., 2011).
The decline in the population of TANs has been modeled
using viral-targeted cell ablation that leads to a highly specific
reduction in this neuronal subpopulation in the dorsolateral
striatum in mice (Xu et al., 2015). The ablation led to an
increase in the expression of stereotypic behavior following stress
and amphetamine treatment. However, although the animals
displayed motor and behavioral abnormalities, no tics were
observed in either model.

Other TS animal models are based on the dopaminergic
model. This widely used model was originally related to other
disorders such as schizophrenia, ADHD and OCD. Based on the
“dopamine hypothesis,” which argues that the pathophysiology
leading to TS involves hyper activation of the dopaminergic
system (Singer et al., 1982), this model was associated with
TS. Systemic (Randrup and Munkvad, 1967; Taylor et al.,
2010) and intrastriatal (Kelley et al., 1988) administration of
dopamine agonists (such as amphetamine and apomorphine) was
shown to induce behavioral stereotypies and sensorimotor gating
disruption (Mansbach et al., 1988; Swerdlow et al., 2003) but not
motor or vocal tics. Dopamine induced behavioral stereotypies
may be enhanced when other neuromodulator systems are
disrupted, as has been recently illustrated in the histidine
decarboxylase (HDC) knockout TS mouse model (Castellan
Baldan et al., 2014).

VALIDATION OF TOURETTE SYNDROME

ANIMAL MODELS

The validation of animal models for human disorders is based
upon three factors: face, predictive and construct validity. (1)
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Face validity is defined as the phenomenological similarity
between the human clinical condition symptoms and symptoms
expressed in the animal model. (2) Predictive validity refers to
the ability of the model to predict some aspects of the disorder.
Specifically, this validation is usually based on the extent to
which the animals’ response tomedication can predict the human
response. (3) Construct validity refers to the theoretical rationale
of the model, based on the known pathophysiology of the
disorder (Jinnah and Hess, 2005; Bronfeld et al., 2013a).

In TS animal models, assessment of face validity is
complicated by the wide spectrum of features associated with
the disorder due in part to the fact that TS lies in a gray
area between movement disorders (based on the existence of
motor tics) and psychiatric disorders (based on the premonitory
urges and comorbid symptoms). The primary feature associated
with the movement disorder aspect of TS is the ability to
induce tic-like movements. Currently, the striatal disinhibition
model is the only one expressing motor tic-like movements
(Marsden et al., 1975; Crossman et al., 1988; McCairn et al., 2009;
Bronfeld et al., 2013b) and/or vocal tic-like sounds (McCairn
et al., 2016). Other animal models typically elicit other forms
of abnormal movements such as dyskinesia and dystonia (Gittis
et al., 2011). Assessing TS as a psychiatric disorder complicates
the evaluation of face validity. It is impossible to directly assess
the existence of premonitory urges in animals; however, it was
suggested these can reflect deficits in sensory motor gating
(Swerdlow et al., 1999). Thus, indirectly these urges can be
assessed by the pre-pulse inhibition (PPI) paradigm. Using PPI,
deficits in the sensory motor gating have been reported in
several dopamine related animal models (Mansbach et al., 1988;
Castellan Baldan et al., 2014) but have not been tested in other
models. Another aspect of TS is the high rates of comorbid
conditions. Dopaminergic, cholinergic (TANs) and HDCmodels
(subsequent to stress and/or amphetamine injection) were found
to show an increase in stereotypic behaviors (Randrup et al.,
1963; Kelley et al., 1988; Castellan Baldan et al., 2014; Xu et al.,
2015) whereas the striatal disinhibitionmodel demonstrated both
hyperactivity and stereotypy following manipulation of non-
motor (limbic and associative) areas in the striatum (Worbe et al.,
2009).

The predictive validation of TS animal models is restricted
by the non-specific medication for TS which is mostly based on
responses to antipsychotic drugs (Shapiro and Shapiro, 1968).
Due to the common definition, the dopaminergic animal models
have a high predictive validity, as this model is based on
the effectiveness of these drugs. Other models have not been
explicitly tested for response to antipsychotics as well as to other
drug treatments.

Evaluating the construct validity of TS animal models is
currently speculative because the underlying pathophysiology
of TS is still unclear. Typically the construct validity of
TS animal models is based on their relationship to the
small subset of currently known differences identified in TS
patients compared to controls. Striatal animal models have
been linked to current evidence from human studies, including
dopamine dysfunction (Singer et al., 1991, 2002; Cheon et al.,
2004; Minzer et al., 2004; Steeves et al., 2010), genetic

abnormalities in a small subpopulation of TS patients (HDC
model; Ercan-Sencicek et al., 2010), and a reduction in the cell
count of striatal FSIs and TANs (Kalanithi et al., 2005; Kataoka
et al., 2010). Another approach to assessing the construct validity
of TS animal models is their relationship to theoretical functional
models of information processing in the BG in both normal
and pathological states. The “box and arrow” model of the
BG describes their function based on their main anatomical
connectivity (Albin et al., 1989; DeLong, 1990). According to
this model, dopaminergic innervation to the striatum modulates
striatal activity and consequently increases the overall cortical
activation, leading to hyperkinetic symptoms. Consistent with
this model, the dopaminergic model yields increased movement
in the form of stereotypic behavior (Randrup and Munkvad,
1967; Kelley et al., 1988). This behavior was also observed in
HDC knockout (Castellan Baldan et al., 2014) and TAN ablated
(Xu et al., 2015) mouse models of TS which demonstrated
enhanced stereotypic behavior in response to dopamine agonists.
The “action selection” model contemplates that the BG chooses
a single action while inhibiting competing actions (Mink, 1996).
A loss of inhibition in a specific area within the striatum would
thus prevent the selection process (Mink, 2001). This coincides
with the animal model of focal disinhibition of the striatum using
local blocking of GABA which prevents input from all inhibitory
sources, including FSIs and neighboring MSNs (McCairn et al.,
2009;Worbe et al., 2013). This functional model may also explain
the behavioral and neuronal effects observed in the animal model
based on selective suppression of FSIs (Gittis et al., 2011).

STANDARDIZATION OF TOURETTE

SYNDROME ANIMAL MODELS

Over the last decade, rapid progress has been made in TS
animal models studies, leading to a proliferation of novel models.
Accumulating results from imaging, genetic, and anatomic
studies performed on TS patients, provided solid foundation for
the development of novel models with high construct validity,
such as the TANs, FSIs, and HDC models. In addition, animal
models which were previously attributed to other disorders
have been recently considered valid models of TS. These
include the striatal disinhibition model previously attributed to
myoclonus (Marsden et al., 1975) and the dopaminergic models
previously attributed to OCD and/or schizophrenia (Swerdlow
and Geyer, 1998; Korff and Harvey, 2006). The use of different
species of animals has made it possible to investigate multiple
properties of the disorder by utilizing the relative advantages
of each species. Mouse studies have enabled the investigation
of genetic manipulation, rat studies explore the relationship
between pharmacology, physiology, and behavior, and primate
studies serve the study of complex behaviors linking the
motor and psychiatric aspects of the disorder. Studies utilizing
animal models significantly improved our understanding of the
underlying mechanisms of specific properties of TS. For example,
key questions such as “when” and “where” tics are expressed
were recently addressed in animal model studies (Bronfeld et al.,
2013b; Israelashvili and Bar-Gad, 2015). Similarly, data pointing

Frontiers in Neuroscience | www.frontiersin.org 3 March 2016 | Volume 10 | Article 132

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Yael et al. Standardization of Animal Models of Tourette Syndrome

to a common pathophysiology of TS and its comorbid conditions
were experimentally supported when the same manipulation
yielded a variety of behavioral symptoms (Worbe et al., 2009).
This progress has led to a situation where finally basic and clinical
science can co-contribute to the study of this disorder.

This major progress generates new challenges faced by TS
animal models studies. The complexity of TS research which
results from the myriad of symptoms and the fact that the
pathophysiology leading to the disorder is still largely unknown
have resulted in high variability in the study of mechanisms and
behavioral symptoms in animal models of TS. Naturally, each of
the current animal models focuses on a small subset of symptoms
associated with the disorder which are examined using specific,
non-standard and non-overlapping tests. Typically, these early-
stage models were developed and studied by teams with specific
expertise such as pharmacology, electrophysiology and genetics,
thus creating a situation in which different models are studied
with a high degree of focus into one field with significantly less
effort in others. As a result, under the broad title of a “TS animal
model study,” a variety of models exist, that vary widely as regards
to the scientific basis, methods used and the features examined.
This issue is evident even when different models examine the
same feature. The description of motor deficits does not adhere
to an accepted classification, which leads to unclear (and in some
cases ill-defined) definitions such as tic-like movement, tic-like
stereotypy, and tic-like dyskinesia, without a robust kinematic
evaluation. While this variability may contribute to a better
understanding and characterization of different aspects of the
disorder, it hinders the comparison across results of different
models and the evaluation of the relevance, uniqueness, and
contribution of each model. Furthermore, the use of this wide
nomenclature is not necessarily supported by a large variety
of underlying behavioral symptoms. A standardization of the
examination criteria of TS animal models could help overcome
these challenges.

Standardization is a widely used procedure in multiple fields
to ensure consistency and comparability between processes or
products. Evaluation criteria defined in standard protocols assist
in the assessment of relevant information and allow uniformity
within and between different users. In the clinic the necessity of
standard protocols for diagnosis and treatment was raised for
TS and other disorders, leading to the development of multiple
standardized guidelines. The consistency and comparability
enabled by these guidelines are highly beneficial in terms of the
ability to properly diagnose and treat individual patients. More
broadly it provides a uniform database enabling future study and
the existence of a worldwide discourse. The reasons that led to the
establishment of guidelines in the clinic apply to the development
of standardized assessment of TS animal models that are still
lacking in the field.

A standardization process defining the gold standard for the
evaluation of TS animal model will improve the utility of these
models and their use in both basic science as well as drug
and treatment discovery. Standardized parameters will explicitly
define themajor components of a TS animalmodel evaluation, by
providing an organized list detailing the range of characteristics

of a valid TS animal model. In addition, a standardization process
will allow an evaluation of the studied model’s coverage, pointing
to features that were studied using a specific model and those
that were not. The standard definitions arrived at through this
process will provide a clear differentiation between behavioral,
pharmacological or physiological characteristics which are
qualitatively different. These definitions will provide well-defined
guidelines for classification of parameters while avoiding a use
of fuzzy definitions. Thus, it will enable categorizing behaviors
into either different categories if these behaviors resemble distinct
symptoms or into a merged category if they resemble similar
symptoms. This common terminology will allow both the
evaluation of each model by standardized categories, and more
importantly, a comparison between different models using the
same vocabulary. The process of standardization in TS animal
model research will help combine information from different
studies into a general framework describing the mechanisms
and their behavioral outcomes. It will enable a transition in TS
research from small, local attempts typically confined to a single
lab into a global effort. The development and implementation of
such standards by a single lab or a small group of cooperating
labs is prone to generate a partial picture biased by the inherent
properties of this group. Thus, the standard criteria for TS
animal model evaluation should be developed by a diverse
committee including experts from various fields, reflecting a
broad and comprehensive perspective, including both basic
scientists developing and studying animal models, scientists
conducting studies with TS patients and the clinicians working
with these patients. This committee should be responsible
for both writing the guidelines and maintaining a worldwide
database summarizing results from different studies. We believe
that such an effort should be managed by research-supporting
international associations such as the Tourette Association of
America (TAA) and/or the European Society for the Study of
Tourette Syndrome (ESSTS), which hold the ability to direct
international efforts. This standardization process, previously
shown to be highly beneficial in other fields, has the potential to
translate the rapidly accumulating results into a comprehensive
framework for experimental studies of TS.
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