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Abstract

Ductal carcinoma in situ is a biologically diverse entity.
Whereas some lesions are cured by local surgical
excision, others recur as in situ disease or progress to
invasive carcinoma with subsequent potential for
metastatic spread. Reliable prognostic biomarkers are
therefore desirable for appropriate clinical management
but remain elusive. In common with invasive breast
cancer, ductal carcinoma in situ exhibits many genomic
changes, predominantly copy number alterations.
Although studies have revealed the genomic
heterogeneity within individual ductal carcinoma in situ
lesions and the association of certain copy number
alterations with nuclear grade, none of the genomic
changes defined so far is consistently associated with
invasive transformation or recurrence risk in pure ductal
carcinoma in situ. This article will review the current
landscape of genomic alterations in ductal carcinoma in
situ and their potential as prognostic biomarkers
together with the technologies used to define these.
lignancy to recur after local excision or progress to
Introduction
Ductal carcinoma in situ (DCIS), the direct precursor to
invasive carcinoma of the breast, is a clinical challenge.
Thirteen to thirty-five percent of DCIS will recur within
10 years after local surgical excision [1]. These recur-
rence rates can be significantly reduced with adjuvant
treatments, including localised radiotherapy [1, 2] and
endocrine therapy [2, 3], but as there is no reliable way
of identifying these cases, many patients are either
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under- or over-treated, leading to concomitant morbidity
and cost [4]. Therefore, identifying DCIS cases with in-
trinsically aggressive behaviour is essential for appropri-
ate allocation of any adjuvant treatment at the time of
diagnosis.
Clinical and histopathological features associated with

increased risk of ipsilateral recurrence include young pa-
tient age, symptomatic tumour detection, tumour multi-
focality, large tumour size, involved surgical margins,
high nuclear grade, and presence of comedo necrosis
[5]. In addition, protein biomarkers [6] and multigene
expression assays such as the Oncotype DX DCIS score
[7] have shown potential as predictive and prognostic
markers in selected patients.
Breast cancer not only is driven by somatic point mu-

tations and epigenetic alterations but also characterised
by extensive copy number changes [8, 9], and these
large-scale alterations are likely to be informative of its
biology in addition to clinico-histopathological features
and expression profiles. However, little is known about
the specific genetic alterations that drive an in situ ma-

invasion.
Assessing the impact of genetic alterations on DCIS out-

come is difficult. Cases of pure DCIS (DCIS in the absence
of synchronous invasive carcinoma) have been infrequent
until the widespread implementation of mammographic
screening programmes; thus, establishing large cohorts of
cases with long-term clinical follow-up presents a chal-
lenge. Such cohorts are required as the incidence of DCIS
recurrence or invasive progression is relatively low and
may occur many years after the initial DCIS episode. In
addition, DCIS often appears as small lesions that require
microdissection for accurate sampling, and fresh frozen
tissue is rarely available. This often limits genetic investi-
gations to technologies compatible with small quantities
of formalin-fixed paraffin-embedded (FFPE)-derived DNA
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that is highly fragmented, especially in older samples
[10–14]. In this review, we describe the key genomic
alterations associated with DCIS, focus on their associ-
ation with clinical and histological variables, and high-
light the challenges in translating them for predicting
prognosis and treatment strategies.

Copy number changes in ductal carcinoma in situ
Detection methods
Commonly used methods to detect genomic alterations
have been comprehensively reviewed elsewhere [15], and
methods frequently used in DCIS studies are summarized
in Table 1 [16–22]. These methods can generally be di-
vided into genome-wide or locus-specific approaches.
Genome-wide approaches used in studying DCIS include
chromosomal comparative genomic hybridisation (CGH),
array comparative genomic hybridisation (aCGH), single-
nucleotide polymorphism (SNP)-based arrays, and mas-
sively parallel sequencing (MPS).
CGH [23] involves the hybridisation of labelled target

DNA to metaphase spreads along with differently labelled,
normal, reference DNA. The contribution of CGH to
understanding of genomic changes in breast cancer and
precursor lesions has been reviewed by Reis-Filho and col-
leagues [24] (2005). aCGH, which has improved resolution
and sensitivity compared with CGH in detecting copy
number alterations, involves the hybridisation of target
DNA to an array of DNA clones, often bacterial artificial
chromosomes (BACs) spread at predetermined intervals
along the genome. Further improvements in resolution
have been developed by using SNP-based arrays, which
also have the ability to detect loss of heterozygosity (LOH)
and allelic imbalance. Copy number assessment by SNP
arrays involves hybridising target DNA to oligonucleotides
specific to SNPs. The data are compared with an inde-
pendently hybridised group of controls instead of direct
comparison with a presumed normal sample. These
methods are generally not ideal for use with FFPE-derived
DNA, and none is able to detect balanced chromosomal
alterations or genomic polyploidy.
Molecular inversion probe (MIP) arrays were initially

developed for SNP genotyping but also can be used to
detect copy number alterations, LOH, insertions and de-
letions, and somatic mutations. The basis of this tech-
nique is the padlock probe which hybridises to either
side of the target SNP. After enrichment for the closed
probes, the probes are cleaved, amplified, and hybridised
to an array. This approach is particularly suitable for
DCIS samples as MIP arrays are compatible with small
amounts (75 ng) of fragmented DNA [25].
A new technique which can overcome many of the

limitations of array-based methods is MPS. MPS allows
the simultaneous detection of genomic events at mul-
tiple loci in a high-throughput manner and not only can
identify point mutations but can provide accurate copy
number and, in the case of whole-genome sequencing,
chromosomal translocation information as well. This ap-
proach has facilitated the exploration of the cancer gen-
ome of many tumours, including collaborative efforts
such as The Cancer Genome Atlas (TCGA) programme,
as well as the identification of clinically relevant alter-
ations in diagnostic material [26, 27].
Whole-exome sequencing has been performed on a

small number of DCIS samples [28]; however, these are
unusual for DCIS as they are derived from fresh frozen
tissue, requiring DNA amounts that are unachievable for
most DCIS samples. Targeted MPS panels designed for
FFPE-derived DNA, such as the TruSeq Amplicon Can-
cer Panel, have also been performed but again are biased
against samples with extensive DNA degradation as these
assays require fragment sizes of at least 170 base pairs
(bp). These sequencing-based methodologies present add-
itional challenges as FFPE-derived samples are acknowl-
edged to give rise to sequencing artefacts, complicating
data analysis [12, 29]. In addition, relatively small panels
like this can detect alterations at the included target loci
only.
Locus-specific copy number assays mainly have a role

in detecting known copy number alterations and validat-
ing results of genome-wide copy number analyses. Earl-
ier studies employed microsatellite markers to determine
allelic imbalance and LOH. Locus-specific methods cur-
rently in widespread use include: quantitative polymerase
chain reaction (qPCR), which quantifies copy number on
the basis of rate of amplification; droplet digital PCR
(ddPCR), which deduces copy number on the basis of lim-
iting dilution involving thousands of individual PCRs; and
fluorescence in situ hybridisation (FISH). The advantage
of FISH is the ability to detect balanced structural rear-
rangements and polypoidy and to target a specific tissue
area for copy number analysis without microdissection.
In addition, the recently developed Nanostring nCounter

system allows probes targeting up to 800 regions of inter-
est to be multiplexed and accurately counts barcoded
probes hybridised to the target region to give a count of
template copy number. This system is reported to require
300 ng of DNA and to be suitable for degraded FFPE
material because of the relatively short (100 bp) probes
used.

Copy number alterations and nuclear grade
The most studied association of copy number alterations
to DCIS phenotype is with nuclear grade. Most of these
studies were performed in the 1990s and early 2000s by
using CGH, which now is considered a low-resolution
technique but at the time was a major advance in the
detection of copy number alterations throughout the
whole genome.



Table 1 Common methodologies used for copy number variation detection

Method Brief outline of method Advantages Disadvantages Resolution Main use

Chromosome comparative
genomic hybridisation (CGH)

Target DNA and normal reference
DNA differentially labelled and applied
to metaphase spread from cultured
normal lymphocytes

Genome-wide analysis Cannot detect balanced chromosomal
alterations or polyploidy. Resolution
limited by use of highly condensed
metaphase chromosomes

High-level amplification
250 kb Gains 2 Mb
Losses 10 to 20 Mb [16]

Discovery studies

Array CGH (aCGH) Target DNA hybridised to DNA clones
(for example, bacterial artificial
chromosomes) or oligonucleotides
placed at certain intervals through
genome.

Genome-wide analysis Cannot detect balanced chromosomal
alterations or polyploidy. Prone to
spatial bias.

Determined by density
of clone coverage

Discovery studies

Single-nucleotide polymorphism
(SNP) arrays

Target DNA hybridised to
oligonucleotides specific to SNPs
and compared with collection
of controls

Can detect loss of heterozygosity
(LOH) and mutations. Normal
reference DNA not required.

May not be genome-wide analysis as
SNPs are unevenly distributed across
genome; however, commercially
available arrays deliberately include
probes in SNP-poor areas to increase
genome coverage. Prone to spatial bias.

Determined by length,
density, and distribution
of probes

Discovery studies

Molecular inversion probe array Target DNA amplified in
SNP-dependent manner and
hybridised to oligonucleotides

Suitable for small amounts
(<100 ng) of degraded DNA.
Can detect LOH and mutations.

As for SNP arrays Determined by density
and distribution of probes

Discovery studies

Massively parallel sequencing Parallel sequencing of large
numbers (potentially millions)
of templates

Potential genome-wide analysis.
Can identify copy number neutral
structural variations. Suitable for
fragmented DNA.

Large volume of sequencing and
data analysis

Potential single-base
resolution

Discovery studies

Fluorescence in situ
hybridisation

Fluorescently labelled genomic
clones hybridised to target
interphase nuclei

Structural rearrangements and
polyploidy can be detected.

Minimal multiplexing ability 50 kb [17] Locus-specific copy
number analysis

Quantitative polymerase
chain reaction (PCR)

Quantitation of copy number
based on rate of amplification

Low DNA input requirements Limited multiplexing ability. Prone to
PCR amplification bias. Precision
dependent on number of replicates.
Underestimates high copy numbers.

Assay design dependent,
but resolution of less
than 100 base pairs (bp)
possible.

Locus-specific copy
number analysis

Droplet digital PCR Quantification of copy number
based on Poisson distribution
statistics of thousands of
digital PCRs [18]

Low DNA input requirements
and compatible with fragmented
DNA

Minimal multiplexing ability. Cannot
detect polyploidy.

Targets regions of less
than 100 bp possible.
Can detect more than
0.15 % positive droplets
per sample [19].

Locus-specific copy
number analysis

Multiplex amplification and
probe hybridisation (MAPH)/
multiplex ligation-dependent
probe amplification

Quantification of PCR products
of hybridised probes

Multiplexable Large amount of good-quality DNA
required for MAPH (250 to 1,000 ng,
>100 bp) [20]

150 bp [21, 22] Locus-specific copy
number analysis

Nanostring nCounter system Absolute quantification of
probes hybridised to
target region

Multiplexable. Requires
fragments of 100 bp or greater

Requires 300 ng of input DNA Detects 0 to 4 copies
of minimum 100 bp
target regions

Locus-specific copy
number analysis
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These studies demonstrated high levels of genomic
instability in high-nuclear grade DCIS whereas low-
nuclear grade DCIS showed fewer genomic alterations
[24, 30–35]. In addition to general levels of genomic
instability, high-grade and low-grade DCIS are distin-
guished from each other by recurrent chromosomal
changes. These chromosomal changes are similar to
those observed in grade 3 and grade 1 invasive carcin-
omas of the breast, respectively. Thus, low-grade DCIS
is characterized by frequent 16q loss [31, 36–39] and 1q
gain [31, 33, 36, 40], whereas high-grade DCIS shows
frequent gain of 5p, 8q, 17q, and 20q [32, 33, 36–38],
amplifications of 11q13, 17q12, and 17q22-24 [31, 32, 36],
and loss of 8p, 11q, 13q, and 14q [31, 38, 39, 41]. The pat-
tern of 8p loss has also been reported to differ between
high-grade DCIS, in which whole arm loss (65 %) mostly
occurs, and low- and intermediate-grade pure DCIS, in
which 8p loss occurs as partial arm loss combined
with proximal gain (29 %) rather than as whole arm
loss (12 %) [38]. In addition to copy number changes,
LOH of chromosome 17 [36] and regions 6q25-q27,
8q24, 9p21, 13q14, and 17p13.1 are more frequently
reported in poorly differentiated DCIS [34], whereas
LOH of chromosome 16 [36] and 16q22.3-q24.3 were
more frequently altered in low-grade DCIS [34].
Whereas high-grade and low-grade DCIS are separated

by different chromosomal alterations, intermediate-grade
DCIS harbours changes overlapping with high- and low-
grade DCIS [24, 31, 37]. This feature may be a consequence
of the known poor reproducibility of intermediate-nuclear
grade assignment by histopathologists [42] but also may
reflect the biology of intermediate-grade DCIS. Gene ex-
pression profiling in invasive breast cancers has revealed
that histologically grade 2 breast cancers do not have a
distinct gene expression pattern but that instead many of
these tumours have expression profiles similar to those of
histologically grade 1 or grade 3 tumours, which were as-
sociated with low and high risk of recurrence, respectively
[43]. Given the parallels between DCIS and invasive car-
cinoma, it could be expected that intermediate-grade
DCIS similarly is not a distinct independent entity but
encompasses cases that align with low-grade DCIS and
high-grade DCIS. This raises the issue of how intermediate-
nuclear grade cases should be classified for the purposes
of genomic studies and whether the common practice of
merging intermediate-grade cases with low-grade cases to
create a ‘non-high grade’ group is a valid approach when
some of the intermediate-grade DCIS cases may be bio-
logically ‘high grade’.
In terms of individual genes, MYC (8q24) and ERBB2

(17q12) amplifications have been associated with high
nuclear grade [44–47] and with other features suggestive
of a more aggressive phenotype such as high Ki-67 index
[45, 46] and micropapillary and comedo growth patterns,
respectively [45]. Copy number alterations of CCNE1
(19q12) and AURKA (20q13) have been reported to
occur exclusively in high-grade DCIS [47], while the
11q13 amplicon, frequently present in high-grade DCIS,
contains the known oncogene CCND1 [32] (Fig. 1).

Copy number alterations and intrinsic subtype
In invasive breast cancer, the intrinsic subtypes of lu-
minal A, luminal B, HER2, and triple-negative were de-
fined by gene expression profiling [48, 49] and were
found to correlate with survival and copy number profiles
[50]. These subtypes can be approximated by surrogate
immunohistochemical markers [51–53]. Vincent-Salomon
and colleagues (2008) [54] identified different patterns of
copy number alterations by intrinsic subtype in 57 cases
of pure DCIS. In the HER2-amplified DCIS subgroup, half
of recurrent amplicons other than HER2 (13 out of 26,
50 %) were also on chromosome 17q, as opposed to just
five of 29 amplicons (17.2 %) in luminal-subtype DCIS
[54]. This study identified specific regions of gain (17q)
and losses (3p, 4p, 4q, and 8p) in HER2-amplified DCIS
and specific regions of gain (1q, 8p, and 17q) and loss
(16q) in luminal-subtype DCIS [54]. They also classified
DCIS cases into categories based on the type and degree
of copy number alterations, similar to that proposed in in-
vasive carcinomas [55]. Tumours were characterized by (i)
few copy number changes apart from 1q gain and 16q loss
(classified as ‘1q/16q’), (ii) tumours with many low-level
copy number alterations (labelled ‘complex’), and (iii) tu-
mours with recurrent amplifications in addition to low-
level copy number alterations (‘mixed amplifiers’) [55, 56].
This study provides a novel, though not yet clinically vali-
dated, molecular classification system for DCIS.

Copy number alterations of chromosomal regions:
comparisons between pure DCIS, mixed DCIS, and
invasive carcinoma
Paradoxically, several studies have reported greater gen-
omic instability in pure DCIS compared with mixed DCIS
(DCIS adjacent to invasive carcinoma) [40, 57]. Farabegoli
and colleagues [57] (2002), using 15 microsatellite markers
in regions altered in invasive breast cancer, reported more
frequent LOH in 28 pure DCIS lesions compared with 25
mixed DCIS cases. More recently, Liao and colleagues
[40] (2012) used 19K BAC arrays followed by qPCR valid-
ation to investigate copy number alterations in 20 low-
grade pure DCIS, 25 low-grade mixed DCIS, and 24 of
their matched invasive components. Pure DCIS harboured
more copy number alterations compared with mixed
DCIS. Sixteen regions on 13 chromosomal arms had a sta-
tistically significant difference in copy number alterations
between pure DCIS and mixed DCIS, all but one of which
were increased copy number gains in pure DCIS [40]. The
authors hypothesise that the copy number gains in low-



Fig. 1 Copy number alterations of specific genes associated with ductal carcinoma in situ (DCIS) phenotype and disease stage. *Small DCIS
lesions are defined as less than 15 mm, and large DCIS lesions are defined as more than 40 mm. aCGH, array-comparative genomic hybridization;
CGH, comparative genomic hybridization; ER, estrogen receptor; FISH, fluorescence in situ hybridisation; HG, high grade; MLPA, multiplex ligation-
dependent probe amplification; non-HG, non-high grade; PCR, polymerase chain reaction
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grade pure DCIS lesions may result in amplification and
possible upregulation of invasion suppressor genes [40].
However, given that many of the alterations in low-grade
DCIS are in common with invasive carcinoma, this seems
unlikely. Alternatively, the high genomic instability in pure
DCIS may not allow the cohesive and sustained signalling
of pro-invasive pathways for invasion to occur. Further-
more, the results may be biased by the presence of normal
cells (for example, lymphocytes) within regions of invasive
tumour that are more readily avoided when microdissect-
ing pure DCIS because of the contained nature of the
lesion. Thus, reduced detection sensitivity may be a tech-
nical reason for lower levels of copy number alterations in
invasive breast cancer compared with DCIS.
It is interesting, but perhaps not surprising, to note

that in contrast to comparisons with pure DCIS, the ma-
jority of DCIS cases with associated invasive carcinoma
show genomic changes that are remarkably concordant
with their matched invasive component [31, 35, 38, 40,
41, 47, 58–61]. These studies have examined up to 24
synchronous DCIS-invasive carcinoma pairs and found
identical chromosomal alterations in at least 75 % of
cases [31, 35, 38, 40, 41, 58, 61]. Johnson and colleagues
[35] (2012) investigated copy number differences be-
tween the DCIS and invasive carcinoma components of
21 tumours by using MIP arrays, providing the greatest
resolution of the copy number differences between
matched DCIS and invasive carcinoma to date. Shared
copy number alterations were present in 81 % (17 out of
21) of pairs. In addition, exclusive regions of copy num-
ber gain (5q, 16p, 19q, and 20) and copy number loss
(3q, 6q, 8p, and 11q) were also identified in the invasive
component as well as a region of exclusive copy number
loss (17q11.2) in DCIS [35].
Although genomic similarities between synchronous

DCIS and invasive carcinoma are likely to indicate direct
development of invasive carcinoma from the DCIS com-
ponent, these findings could also potentially arise from
ductal colonisation by invasive carcinoma, mimicking
DCIS. Similarly, genomic differences between DCIS and
invasive carcinoma components may indicate genetic
changes important in determining invasion but could
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also be due to clonal heterogeneity and ongoing genetic
evolution.

Copy number alterations of specific genes: comparisons
between pure DCIS, mixed DCIS, and invasive carcinoma
Copy number alterations of specific genes reported to be
associated with disease progression include those whose
protein products regulate the cell cycle (CCND1) or
transcription (MYC) or function as receptor tyrosine ki-
nases (ERBB2 and FGFR1) (Fig. 1). Many of these (for
example, FGFR1) are also targets of amplification in
other cancers.
When pure DCIS and mixed DCIS are compared, one

study has reported a number of genes showing different
frequency of copy number gains and losses [40]. How-
ever, apart from SMRT (NCOR2) and NR4A1 (both on
12q24 and showing increased gain in pure DCIS and
increased loss in mixed DCIS), none of the genes has
been associated with breast cancer in other studies. In
addition, application of these results to the general DCIS
population may not be appropriate as the study popula-
tion was limited to low-grade cases [40]. Another study
involving a cohort of 130 pure DCIS and 159 mixed
DCIS found no difference in copy number of the breast
cancer- related genes ERBB2, ESR1, CCND1, and MYC
by FISH between the two types of DCIS [60].
Comparing DCIS and invasive components of syn-

chronous tumours, Johnson and colleagues [35] (2012)
observed increased amplitude of copy number gain in
the invasive component compared with matched DCIS
in regions encompassing known oncogenes MYC and
CCND1. This observation is in keeping with an earlier
report of an increase in amplitude of MYC amplification
in invasive carcinoma compared with adjacent DCIS [62]
and a recent study which reported MYC amplification to
be present in more than 30 % of tumour cells in 10 out of
13 (76.0 %) invasive carcinoma cases compared with only
six out of 13 (46.2 %) matched DCIS cases [63], but this
was not confirmed in some other studies [46, 47, 60].
Mu and colleagues [64] (2011) also identified CCND1

amplification in invasive carcinoma which was absent in
matched adjacent DCIS in three of 16 (18.8 %) cases.
Interestingly, in these three cases, the invasive compo-
nents were high-grade but the adjacent DCIS were low-
grade. These data indicate that CCND1 may help mediate
invasion and transition to a higher grade; however, it is
also possible that in these cases the DCIS may not be a
direct precursor of the invasive carcinoma. Significant dif-
ferences in CCND1 amplification between invasive carcin-
oma and matched DCIS were not detected in other
studies [46, 63].
Although a previous smaller study (n = 39) revealed

no difference in FGFR1 copy number between mixed
DCIS and matched invasive carcinoma [47], Jang and
colleagues [46] (2012) examined a large cohort of pure
DCIS (n = 175), mixed DCIS (n = 203), and invasive car-
cinoma (n = 427) by FISH and reported that FGFR1
amplification (defined as average copy number of more
than 6.0 or FGFR1-to-centromeric enumeration probe
ratio of more than 2.2) was not only significantly more
frequent in invasive carcinoma compared with pure
DCIS (12.5 % versus 6.0 %, P = 0.020) but also more fre-
quent in invasive carcinoma compared with matched ad-
jacent DCIS (P = 0.031), suggesting a role of FGFR1
amplification in the transition from non-invasive to inva-
sive disease.
Whereas the studies highlighted above observed differ-

ences between the DCIS and invasive components of
synchronous tumours, other studies have found no dif-
ference in copy number for the same and other genes
[46, 47, 60, 63]. This may be due to the small number of
cases included in some studies [47, 63] and the limited
panel of genes selected for investigation. Alternatively,
the similarities may be due to a direct clonal relationship
between DCIS and adjacent invasive carcinoma and sug-
gest that structural genome changes might not be re-
sponsible for the acquisition of an invasive phenotype.

Heterogeneity of genomic changes in ductal carcinoma
in situ
Studies examining copy number alterations in matched
pairs of mixed DCIS and invasive carcinoma have also
shed light onto the high degree of intra-tumoural gen-
omic heterogeneity of DCIS. This result is unsurprising
given the demonstrated morphological, immunohisto-
chemical, and intrinsic subtype diversity within individ-
ual DCIS lesions [65] (Figs. 2 and 3). Hernandez and
colleagues [61] (2012) identified both qualitative and
quantitative differences in copy number between mixed
DCIS and matched invasive carcinoma in three of 13
cases (23.1 %) by aCGH. Validation of the results by
FISH revealed that the component showing lower copy
numbers for the target region was in fact composed of a
mosaic of cells, some of which harboured the amplifica-
tion whereas some did not. Similarly, Jang and col-
leagues [46] (2012) observed discrepancies in HER2,
MYC, CCND1, and FGFR1 amplification between in situ
and invasive components in 22 out of 203 matched pairs
(10.8 %) by FISH on tissue microarrays. However, when
FISH was performed on whole sections, heterogeneous
amplification was observed and this may account for the
discrepant findings.
Such data support the notion that DCIS lesions are

genomically heterogeneous and undergo clonal selection
as well as ongoing genetic evolution in the progression
to invasive carcinoma. This idea is in keeping with the
finding of greater diversity of allelic loss patterns in
DCIS compared with invasive carcinomas [66]. Clonal



Fig. 2 Single ductal carcinoma in situ (DCIS) lesion showing
variation in nuclear grade and architectural patterns. (a) High-grade
DCIS with cribriform architecture (200×). (b) High-grade DCIS with
solid architecture with comedo necrosis (200×). (c) Low-grade DCIS
with papillary and micropapillary architecture (200×)
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divergence in the progression from DCIS to invasive car-
cinoma has been reported in a study involving FISH
analysis of 13 matched DCIS-invasive carcinoma pairs
by Heselmeyer-Haddad and colleagues [63] (2012). In
this study, four patterns of clonal evolution were ob-
served. Cases in the first category show the major clone
to be unchanged in DCIS and invasive components. In
the second category, one of several major clones in DCIS
became the dominant clone in the invasive tumour,
whereas in the third pattern, the major clone in DCIS
became one of two major clones in the invasive tumour.
The fourth pattern was characterized by a shift in the
major clone between DCIS and invasive carcinoma [63].
However, in this study, the DCIS and invasive com-
ponents were macrodissected to create cytospin prepa-
rations for FISH analysis, raising the possibility that
contaminating non-tumour cells could be inadvertently
included in the analysis because of loss of architectural
features.
Nonetheless, the genetic diversity within DCIS lesions

complicates the search for genomic changes which drive
the transition to invasive phenotype. Perhaps, the mere
presence of genetic diversity may itself be a marker of
aggressive behaviour, similar to what has been reported
for Barrett’s oesophagus [67], and is an avenue which
warrants further investigation in DCIS.
Despite the utility of studying matched mixed DCIS-

invasive carcinoma pairs, it can be argued that this
approach is not appropriate for the identification of
prognostic markers of pure DCIS and that studying dif-
ferences between pure DCIS cases that do not recur and
those that do is a better method of finding biomarkers
that can be used to guide clinical management of pa-
tients who present with DCIS in the absence of syn-
chronous invasive carcinoma. As yet, no studies have
examined genomic differences between pure DCIS which
are cured by local surgical excision and pure DCIS cases
which recur as either in situ or invasive disease after local
excision. One study did include 17 cases of pure DCIS
with recurrences and 17 cases of pure DCIS without re-
currence; however, no subgroup analysis was reported for
these groups [38]. Another novel approach employed by
the same group was to study a unique group of pure DCIS
cases characterised by large tumour size and high nuclear
grade but without evidence of invasion despite thorough
histopathological examination [68]. These tumours were
compared with small high-grade DCIS lesions to identify
differences which may account for the lack of invasion in
the large tumours. Large DCIS cases were found to have
fewer copy number gains of MYC (40.9 % of large and
66.6 % of small DCIS) and of ZNF217 (27.2 % of large and
47.6 % of small), and in cases with an above-median Ki-67
index, large DCIS lesions showed fewer amplifications
compared with small lesions [68].

Somatic mutations and rearrangements in ductal
carcinoma in situ
Compared with copy number alterations, somatic muta-
tions have been identified relatively infrequently in DCIS.
One of the most frequently mutated genes in DCIS is



Fig. 3 Tumour with synchronous ductal carcinoma in situ (DCIS) and invasive carcinoma showing heterogeneity of HER2 amplification and
expression. (a) HER2 immunohistochemistry (IHC) showing strong circumferential membrane staining (positive for HER2) in an area of DCIS, with
negative staining in adjacent DCIS and invasive carcinoma (100×). (b) HER2 silver enhanced in situ hybridisation (SISH) of same region as (a) showing
DCIS with HER2 amplification and adjacent DCIS without HER2 amplification (200×). (c) Invasive carcinoma with areas showing strong circumferential
membrane staining for HER2 IHC (positive for HER2) and areas negative for HER2 (100×). (d) HER2 SISH of same region as (c) showing invasive
carcinoma with areas with and without HER2 amplification (200×)
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PIK3CA. PIK3CA mutations are believed to be early
events in the development of breast cancer [61, 69–71]. A
higher frequency of PIK3CA mutations in mixed DCIS (8
out of 33, 24 %) than in pure DCIS (0 out of 31) has been
reported in a specific group of high-grade, estrogen
receptor-positive, HER2-negative DCIS cases [72]. How-
ever, Miron and colleagues [73] (2010) reported the fre-
quency of PIK3CA activating mutations to be 30 % in
pure DCIS (61 out of 202 cases) and mixed DCIS (29 out
of 97 cases) and 29 % in invasive carcinoma (35 out of 120
cases). Of the matched mixed DCIS-invasive carcinoma
cases, 25 % (19 out of 76) had discordant results between
the two components, without any trend toward either
group [73]. In addition, Johnson and colleagues [35]
(2012) identified PIK3CA mutations in 8 out of 21 (38.1 %)
matched mixed DCIS-invasive tumours; however, in two
of these cases, the mutation was present in the DCIS com-
ponent only. These findings suggest that PIK3CA muta-
tions are not positively selected in the transition from in
situ to invasive disease.
Although AKT1 mutations are rare in invasive breast

cancer (approximately 2 %) (TCGA), activating AKT1
exon 2 mutations were observed in the in situ compo-
nent of two of three breast tumours exhibiting the muta-
tion in the invasive component in one study [69] and in
three of six papillomas harbouring DCIS in another
study [74]. Similar to invasive breast cancers [28], no co-
existent PIK3CA mutations were detected in tumours
with AKT1 mutations consistent with their role within
the same pathway [69].
TP53 mutations in exons 4 to 11 have been reported in

10 % to 37 % of pure DCIS cases [44, 54, 75–79] and 20 %
to 33 % of mixed DCIS cases [78, 79] and associated with
high nuclear grade [54, 77] and HER2 subtype [54]. The
presence of TP53 mutations also appears to be an early
event in breast cancer development and not specifically
associated with in situ-to-invasive transition [79].
Translocations of two genes previously associated with

increased oncogenic activity [80], MAST2 and NOTCH1,
were identified by FISH in one study in 4 out of 115 (3.5 %)
and 2 out of 115 (1.7 %) mixed DCIS cases, respectively,
but these translocations were not observed in 170 cases of
pure DCIS [81]. However, structural rearrangements in
DCIS may be more frequent than currently realized given
the relatively frequent occurrence of such events in inva-
sive breast cancers and breast cancer cell lines [82].

Conclusions
Identifying patients curable by local surgical excision
from those who have more aggressive biology and require
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additional treatment is important to spare low-risk pa-
tients from mastectomy and adjuvant treatments such as
radiotherapy and hormonal blockade and their associated
side effects and cost while preventing undertreatment of
high-risk patients. Studies have identified multiple gen-
omic changes and revealed the degree of intra-tumoural
heterogeneity in DCIS. However, so far, none of these al-
terations is a reliable indicator of in situ recurrence or in-
vasive progression.
The lack of a clear genomic signature of recurrence

risk may be due to several reasons. Firstly, large cohorts
of pure DCIS cases with long-term clinical follow-up are
required to assess outcome in DCIS, and these have
been rare to date. Data from randomised controlled tri-
als investigating the utility of radiotherapy in DCIS indi-
cate that 88 % of detected recurrences occur within 10
years. However, local recurrence events continue to
occur after 10 years, suggesting that follow-up should
extend beyond this period [1]. Secondly, global high-
resolution genomic profiling using current technologies
requires high-quality genomic material such as that de-
rived from fresh tissue. Fresh DCIS tissue is very rarely
available as the diagnosis of pure DCIS requires histo-
logical examination of the entire lesion. Therefore, col-
lections of fresh-frozen DCIS tissue for research are
unlikely to be established given diagnostic consider-
ations. However, given the rapid development of tech-
nology in this field, it is likely that methodologies will
evolve to be compatible with FFPE tissue before fresh-
frozen DCIS tissue banks accrue sufficient cases. Cur-
rently, several methods are suitable for good-quality
FFPE material, including MIP arrays and MPS, especially
protocols using hybridisation-capture approaches, as
well as more targeted methods such as the Nanostring
nCounter system and ddPCR. It is envisioned that, in
the future, technologies compatible with all FFPE tissues
will be developed that can recover information of all as-
pects of the genome whether structural, copy number,
or point mutations.
Thirdly, genomic alterations alone may not determine

prognosis in DCIS. Instead, integration of genomic,
epigenomic, and transcriptional data with clinico-
histopathological features could be more informative
of prognosis and lead to an improved understanding of
the biology of DCIS, including the fundamental question
of why local recurrences occur after apparently complete
surgical excision. The role of myoepithelial cells and the
tumour microenvironment in determining outcome in
DCIS is increasingly being recognized [83, 84], and an-
other possible explanation is the ‘sick lobe’ theory [85],
which proposes that the entire lobe in which a lesion oc-
curs is genetically unstable and prone to tumourigenesis,
leading to the development of further tumours in the re-
gion. Genomic alterations in DCIS lesions could be
informative of outcome by being markers of a certain rela-
tionship between the malignant cells and the tumour
microenvironment permissive to local recurrence or by
reflecting the genetic instability of the local breast field.
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