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Abstract

Background: Culex quinquefasciatus, an arboviral and filarial vector, is present year round in several cities of the
Republic of Benin. There is more information on the resistance status to malaria vectors compared to Culicines. It is
therefore unfortunate that the international focus is on Anopheles control and not so much done against Cx.
quinquefasciatus, a rather more resilient mosquito to many insecticides that deserves attention. The present study
aims to assess the resistance status of Cx. quinquefasciatus to carbamates, pyrethroids and organochlorine and
discuss the implications for vector control in four contrasting localities of the country.

Methods: Four contrasting localities of the country were selected for mosquito collection during the dry season based
on their variation in agricultural production, use of insecticides and/or ecological settings. Bioassay were performed on
adults collected from the field to assess the susceptibility of Cx. quinquefasciatus to insecticide-impregnated papers
(permethrin 0.75%, delthamethrin 0.05%, DDT 4%, and bendiocarb 0.1%) following WHOPES guidelines. Molecular
assays were carried out to detect the presence of knock down resistance (kdr) and acetylcholinesterase (ace. 1) mutations
in surviving specimens using PCR techniques.

Results: WHO diagnostic tests showed high frequency of resistance in Cx. quinquefasciatus to permethrin (ranging
from 4 to 24% mortality), deltamethrin (24 to 48%), DDT (4 to 12%) and bendiocarb (60 to 76%) in the four selected
areas. This was consistent with the presence of target site insensitivity due to kdr and ace.1 mutations, which were
significantly higher in areas where farmers used insecticides for pests control than in areas where no insecticides were
used (p < 0.05.).

Conclusion: These findings showed that wild populations of Cx. quinquefasciatus have developed resistance against
pyrethroids, organochlorine and carbamate. This situation of resistance may seriously jeopardize the efficacy of
Insecticide Residual Spray (IRS) and Long-Lasting Insecticide nets (LLINs) on which, most African countries including
Benin, rely to reduce malaria transmission.
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Background
Culex quinquefasciatus is a major biting nuisance, par-
ticularly in urban areas where it thrives in wet pit la-
trines, blocked open drains, and polluted puddles [1]. In
Benin, Cx. quinquefasciatus is a common mosquito that
lives close to people due to the presence of large number
of Cx. quinquefasciatus breeding sites [2].
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Cx. quinquefasciatus is a member of the Culex pipiens
complex Linnaeus and one of the main subspecies found
in Africa [3,4]. Cx. quinquefasciatus (Diptera: Culicidae)
is widely distributed in tropical and subtropical areas
and is the most important vector of filarial parasite
Wuchereria bancrofti, although Anopheles gambiae s.l
and An. funestus also play a role in selected areas [5-9].
In Africa, the prevalence of lymphatic filariasis (LF) is

especially striking, affecting over 40 million people in
the sub-Saharan region [2]. The LF program established
in 1994 with a mass drug administration (MDA) cam-
paign to treat sick people in 2001 was associated with
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the launch of the Global Program to Eliminate LF
(GPELF) in many African countries by the World Health
Organization (WHO) and proved successful [10]. The free
distribution of Insecticide-Treated Nets (ITN) and the im-
plementation of Indoor Residual Spraying (IRS) as vector
control methods against malaria have contributed to the
great success of this program.
However, successful implementation of these vector

control strategies requires sound knowledge of vector
distributions, biology and changing trends on suscepti-
bility status to available insecticide compounds.
Indeed, it is possible that these insecticides used to

Eliminate LF (GPELF) in many African countries can
exert indirect selection pressure on mosquito’s larvae.
For example, indoor residual spraying of DDT for mal-
aria control was suspected of favoring the selection of
DDT resistance in Anopheles [11-13] as well as in Cx.
quinquefasciatus [14,15]. Contamination of larval breed-
ing sites by insecticides used in agriculture (for example in
cotton and vegetables) has also been shown to select for
DDT and pyrethroid resistance in malaria vectors [13-16].
In Benin, for the past 10 years, insecticides of the or-

ganophosphate (OP) and pyrethroid (PY) groups have
been intensively utilized by farmers for pest control
and also, in public health as the main strategy to con-
trol malaria vectors [11]. It is possible that larvae of
Culex spp which are sympatric with Anopheles larvae
may be affected by the wide use of these insecticides
and developed resistance even though these species
were not being targeted.
In Benin, there is more information on insecticide

resistance status of malaria vectors compared to
Culicines.
Therefore, for an implementation of a vector control pro-

gram against Cx. quinquefasciatus, there is need to have as
much information as it is available for these vectors.
The present study aims to assess the resistance status

of Cx. quinquefasciatus to carbamates, pyrethroids and
organochlorine and discuss the implications for vector
control in southern and northern Benin.
Data generated from this study will be useful to

know if resistance of Cx. quinquefasciatus to the insec-
ticides above will jeopardize or not the efficacy of
Insecticide Residual Spray (IRS) and Long-Lasting
Insecticide-treated Nets (LLINs) on which, most Afri-
can countries including Benin, rely to reduce malaria
transmission.

Methods
Methods
Study areas
The study was conducted from January to December 2013
in Benin. Four contrasting localities of the country were
selected for mosquito collection on the basis of variation
in agricultural production, use of insecticides and/or eco-
logical settings (Figure 1). One rice production area lo-
cated at Kandi (2°95 E, 11°16 N) with 350 hectares (ha)
located in the West-North of Benin; an urban vegetable
farming area at Houeyiho (6°45’N and 2°31’E) in southern
Benin with 14 ha in size and shared between five local co-
operatives of approximately 2,000 farmers; a cotton grow-
ing area at Banikoara (2°59 E, 11°31 N) with 50 ha in
West-North of Benin and a cereal growing area located at
Natitingou (1°23 E, 10°18 N) with 5 ha in East-North of
Benin.
In fact, at Banikoara, in the cotton production areas,

six pesticide treatments were applied by farmers 45 days
after seeding and at two weeks intervals from flowering
[17]. At Houeyiho, the increase in vegetable farming in
this area has led to the use of insecticides in an im-
proper manner to control vegetable pests [17]. How-
ever, at Kandi and Natitingou, no insecticide was used
by farmers.
The southern Benin is characterized by a tropical coastal

Guinean climate with two rainy seasons (April–July and
September–November). The main annual rainfall is more
than 1300 mm. The middle part of the country (Parakou)
is tropical Sudano-Guinean climate with an average
rainfall of 1100 mm per year. The northern part (Kandi,
Natitingou and Banikoara) is characterized by a Sudanian
climate (semiarid) with only one rainy season per year
(main annual rainfall is 900 mm).
Agricultural practices in those farms create numerous

trenches that retain rain and water from irrigation sys-
tems. These stagnant waters provide suitable breeding
sites for mosquitoes, particularly Cx. quinquefasciatus.

Mosquito collection
Cx. quinquefasciatus larvae were sampled from polluted
drain across the four contrasting localities selected during
the dry season. Contrary to the Anopheles larvae which lie
parallel to the surface of the water, Cx. quinquefasciatus
larvae hang at an angle to the surface of the water.
Larvae and pupae were collected using the dipping on

breeding sites and then kept in separate labeled bottles
for each locality. Larval samples were reared up to
adult emergence at the CREC (Centre de Recherche
Entomologique de Cotonou, Benin) insectary for fur-
ther bioassay tests.

Insecticide susceptibility test
From each site, 150 females mosquitoes aged 2–5 days
old were exposed to diagnostic doses of various insecti-
cides for susceptibility tests using insecticide-impregnated
papers, as described by the standard WHO testing
protocol [18].
Mortality and knockdown resulting from tarsal contact

with insecticide-treated filter papers were measured using



Figure 1 Map of Benin showing the study sites.
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WHO test kits [18]. The tests were carried out using del-
tamethrin (0.05%), permethrin (0.75%), DDT (4%) and
bendiocarb (0.1%). Four batches of 25 unfed females, aged
2–5 days, were exposed to impregnated papers for 1 h.
The number of knock down mosquitoes was recorded
every 10 min. Tests with untreated papers that served as
control were run in parallel. At the end of the exposure
period, mosquitoes were transferred into tubes with un-
treated white filter papers (known as holding tubes) and
allowed a 24 h recovery period. All mosquitoes were pro-
vided with 10% glucose water during the 24 h recovery
period. Mortality rate was recorded after 24 h. Dead and
surviving mosquitoes from this bioassay were separately
kept in Carnoy solution at −20°C for further molecular
characterization.

PCR detection of the Knock-down mutation
In each site, 40 survivors of mosquitoes from suscep-
tible tests for each insecticide were used for PCR as-
says. Each mosquito was extracted using a modified
salt-extraction, with total DNA from each mosquito
extraction resuspended in 50 μl dH2O (Kent et al.
[19]). Head + thorax extractions were used to genotype
samples for the kdr allele, using a Polymerase chain reac-
tion diagnostic test for detection of kdr “Leu-phe” muta-
tions following the protocol described by Martinez-Torres
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et al. [20]. PCR conditions are as follows: each 25 μl reac-
tion contained 1X PCR buffer, 100 μM each dNTPs, 75
pmol CxRev primer, 75 pmol forward primer, 2.0 U Taq-
polymerase, and 1.5 μl DNA template. Thermocycler con-
ditions consisted of an initial denaturation step of 95°C for
2 minutes; 50 cycles of 94°C for 30 s, 55°C for 1 min, 72°C
for 45 s; followed by a final extension of 72°C for 5 min.
Mosquitoes were screened for insensitive acetylcholin-

esterase (ace-1) by the PCR-RFLP method of Weill et al.
[21]. PCR products were digested overnight for the
RFLP, and run on 2% agarose gel.

Data interpretation
Mortality rates were corrected using Abbott’s formula
when control mortality was above 5% [22]. The resistant
status of mosquito samples was determined according
to the WHO criteria [18]. Following the WHO protocol,
mortality of less than 80%, indicate resistance, while
those greater than 98% indicate susceptibility. Mortality
between 80%-98%, suggests the possibility of resistance
that needs to be verified.
The resistance allele frequency at the kdr and ace-1

locus was calculated using Genepop software (version
3.3) as described by Raymond and Rousset [23].

Results
Resistance status
Table 1 shows the insecticide resistance status of Cx. quin-
quefasciatus populations from the four contrasting local-
ities, compared with the susceptible reference strains SLAB.
Cx. quinquefasciatus mosquitoes from all four study

areas were resistant to all tested insecticides. Strong
resistance was found when Cx. quinquefasciatus popula-
tions from the four study areas were exposed to pyreth-
roid and organochlorine. The lowest mortality was
observed from the north to the south with the use of
DDT where mortality was ranging from 4 to 12%. With
the two pyrethroids, the mortality was ranging from 4 to
24% for permethrin and 24 to 48% for deltamethrin. For
carbamate, moderate mortality rates was observed after
exposing these populations of Cx. quinquefasciatus to
bendiocarb with mortality rates ranging from 52 to 76%.
In contrast, no alive mosquitoes were recorded when

the susceptible strain (SLAB) was exposed to diagnostic
doses of various insecticides for susceptibility tests using
insecticide-impregnated papers above.

Detection of resistance genes by PCR
Allele and genotype frequencies at knock-down resist-
ance (kdr) and acetylcholinesterase (ace- 1) loci of Cx.
quinquefasciatus from the four study areas are shown in
Table 2.
The highest frequency of kdr mutation was recorded

from the populations of Banikoara and Houeyiho sites
from 0.84 - 0.79 respectively and the lowest 0.56 and
0.54, respectively for Kandi and Natitingou.
An analysis of variance (ANOVA) performed on the

frequencies of kdr from areas where farmers used insec-
ticides compared to those where no insecticide is use
showed that, resistance allele frequency was significantly
higher in areas where farmers used insecticides for pest
control (Banikoara and Houeyiho) than in those where
no insecticide is used (Kandi and N’dali) (p < 0.05.).
Moreover, despite the low frequency of ace.1 found in
Cx. quinquefasciatus in all sites, an analysis of variance
(ANOVA) performed on the frequencies of ace.1 from
areas where farmers used insecticides compared to those
where no insecticide is use showed a similar trends with
the kdr frequencies.

Discussion
The current study reports the insecticide susceptibility/
resistance status of adult Cx. quinquefasciatus to organo-
chlorine (DDT), pyrethroids (permethrin, deltamethrin)
and carbamate (bendiocarb) in four agro-climatic zone
settings in Benin.
Based on the WHO criteria for characterizing insecti-

cide resistance/susceptibility, results from our study sites
showed that Cx. quinquefasciatus has developed resist-
ance to orgonochlorine, pyrethroids and carbamate. The
resistance is very strong with DDT, permethrin and del-
tamethrin with mortality rates less than 13%, but mod-
erate with bendiocarb with 70% as an average mortality.
In fact, the widespread resistance to DDT and pyreth-

roid in the four sites can be explained by a long-
standing, massive use of DDT house-spraying in several
districts of the country during the WHO malaria eradi-
cation program in the 1950s [24]. Moreover, the rapid
expansion of urban agriculture couple with cotton pro-
duction in West Africa could be one of the major factors
that contribute to a large distribution of pyrethroid re-
sistance in Cx. quinquefasciatus [11].
Pyrethroids have been extensively used in agriculture

since 1980s [25] particularly in cotton and vegetable fields
in Benin. In fact, cotton and vegetable cultivation require
intensive use of pesticides including insecticides belonging
to the two main classes recommended for vector control
in public health (organophosphates and pyrethroids) and
which mostly were used indiscriminately to control vege-
table and cotton pests. During the treatments, insecticide
residues in cotton or vegetable fields are washed into
mosquito breeding sites thus exerting a huge selection
pressure on mosquito larval populations, which resulted
in the emergence of insecticide resistance in Cx. quin-
quefasciatus [11]. This may be the most likely cause of
selection on strong resistance in Cx. quinquefasciatus to
pyrethroids and DDT, particularly in cotton and vege-
table growing areas.



Table 1 Mortality of the wild populations of Culex. quinquefasciatus from the four study sites after exposure to
organochlorine (DDT = 4%), pyrethroids (permethrin = 0.75% and deltamethrine 0.05%) and carbamate (bendiocarb = 0.1%)

Population Location Insecticide N % Mortality [Cl95] Resistance status

Sites

Banikoara West-North DDT 100 4 [−3.68-11.68] R

Permethrin 100 4 [−3.68-11.68] R

Deltamethrin 100 28 [10.40- 45.60] R

Bendiocarb 100 52 [32.42- 71.58] R

Kandi West-North DDT 100 12 [− 0.74-24.74] R

Permethrin 100 20 [4.32- 35.68] R

Deltamethrin 100 24 [24.54- 63.46] R

Bendiocarb 100 72 [54.40- 89.60] R

Natitingou East-North DDT 100 12 [− 0.74-24.74] R

Permethrin 100 24 [7.26- 40.74] S

Deltamethrin 100 48 [28.42- 67.58] R

Bendiocarb 100 76 [59.26- 92.74] R

Houeyiho South DDT 100 8 [−2.63 -18.63] R

Permethrin 100 8 [−2.63 -18.63] R

Deltamethrin 100 32 [13.71- 50.29] R

Bendiocarb 100 60 [40.80- 79.20] R

Cx. SLAB DDT 100 100 S

Permethrin 100 100 S

Deltamethrin 100 99 S

Bendiocarb 100 99 S
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Moreover, the massive free campaign of bed nets
impregnated with permethrin and deltamethrin as the
major control strategy against Wuchereria bancrofti
transmitted by Cx. quinquefasciatus [26,27] could also
explain the resistance of Cx. quinquefasciatus to pyre-
throids. This hypothesis has been confirmed by Czeher
et al. [28] with the increasing of Leu-Phe knockdown re-
sistance mutation in Anopheles gambiae from Niger
following a nationwide long lasting insecticide-treated
nets implementation.
This result on insecticide resistance confirmed previ-

ous field surveys on Cx. quinquefasciatus in Benin con-
ducted by Corbel et al. [11].
Therefore, the pyrethroid resistance observed in this part

of Benin on Cx. quinquefasciatus may seriously jeopardize
Table 2 Frequency of Kdr and Ace1R mutations in Cx.
quinquefasciatus populations from the study sites

Kdr mutation Ace. 1 mutation

Locality SS RS RR F(R) SS RS RR F(R)

Banikoara (102) 4 24 74 0.84 30 08 9 0.27

Houeyiho (92) 3 34 61 0.79 24 06 6 0.25

Kandi (92) 20 40 32 0.56 30 03 3 0.13

Natitingou (92) 24 38 30 0.54 32 04 2 0.10
the efficacy of IRS and LLINs on which most African coun-
tries including Benin, rely to reduce malaria transmission.
The presence of ace-1 mutation particularly in high level

in samples from treatments areas could be explained by
the intense use of organophosphates by farmers for pests
control in agriculture [17] and also in public health for
IRS activities [12] in this part of Benin.
With pyrethroid and carbamate resistance spreading in

Cx. quinquefasciatus, the current findings will help for
decision making in the National Malaria Control Pro-
gram particularly in the choice of insecticide to use dur-
ing campaigns of Indoor residual spraying in Benin.
The challenge to find effective strategies to manage

insecticide resistance in mosquitoes remains a high pri-
ority and an urgent need particularly in Benin where
pyrethroid resistance has been wildly spread.
Base on the limited numbers of insecticides available

for vector control, a rational use of insecticides or mo-
saic strategy can be adopted to delay development of
resistance in mosquitoes in Benin.
Therefore routine surveillance of insecticide suscepti-

bility/resistance in wild populations of Cx. quinquefas-
ciatus across different ecological zones in Benin is very
urgent for effective resistance management strategy for
the efficacy of IRS and LLINs.
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Conclusion
These findings showed that wild populations of Cx.
quinquefasciatus have developed resistance against pyre-
throids, organochlorine and carbamate.
This situation of resistance may seriously jeopardize

the efficacy of Insecticide Residual Spray (IRS) and
Long-Lasting Insecticide nets (LLINs) on which, most
African countries including Benin, rely to reduce malaria
transmission.
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