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A B S T R A C T   

The incidence curve of coronavirus disease 19 (COVID-19) shows cyclical patterns over time. We examine the 
cyclical properties of the incidence curves in various countries and use principal components analysis to shed 
light on the underlying dynamics that are common to all countries. We find that the cyclical series of 37 countries 
can be summarized in four principal components which explain over 90% of the variation. We also discuss the 
influence of complex interactions between biological viral natural history and socio-political reactions and 
measures adopted by different countries on the cyclical patterns exhibited by COVID-19 around the globe.   

1. Introduction 

Many infections undergo cycles and present waves of variable 
duration ranging from one to four years [1]. The two major contributors 
to the cyclic nature of respiratory viral infections are the changes in 
environmental parameters and human behavior [2]. The magnitude and 
the severe impact of COVID-19 on individual mortality, social in
teractions, strain on healthcare systems, and political and economic 
variables worldwide has led researchers to try to understand the com
plex interactions between the SARS CoV-2 (Severe Acute Coronavirus 2) 
virus, the individual host and the exposed population, and environ
mental factors. It is recognized that SARS CoV-2 as a coronavirus, has 
transmission epidemiology similar to influenza [3]. Influenza, as well as 
COVID-19, has followed wave patterns with a peak usually followed by a 
second wave a few months later [4]. Studying this cyclical pattern 
provides us with important insights about the nature of the cycle 
involving virus, host, community, and environment. Our study uses 
Principal Component Analysis (PCA) to model incidence patterns in 
different countries. 

Fig. 1 shows the cyclical component of incidence series for Germany, 
Israel and the United States normalized such that the first observation 
corresponds to the peak of the first infection wave. The patterns are 
similar but not equal. While the cycles seem to move in a congruent way, 
the amplitude and length tend to vary. In this analysis, we apply fre
quency domain time series techniques to examine the extent to which 

common patterns in the cyclical components can be extracted allowing 
us to approximate the further movement of the series. We found that the 
variation of 37 incidence curves corresponding to the same number of 
countries can be reduced to four principal components that explain over 
90% of the variation in the sample. We also show cycle predictions for 
countries with shorter incidence series since the peak of the first wave 
and a one-step ahead as a well as an out-of-sample estimation for Ger
many and the United States as a representation of countries with high 
overall incidence in two different continents. Both countries are 
currently in the upswing of a cycle whose turnaround point does not 
seem to be within the next couple of weeks. 

2. Cycle extraction and commonalities 

To examine the common cyclical properties of the series, we fol
lowed two general steps. First, we filtered away the trends and the high- 
frequency cycles (e.g. weekly fluctuations in the numbers) to solely 
focus on the cycles that repeat every couple of weeks and months. 
Second, we extracted the elements that are common to all the filtered 
series of a sub-sample of 37 countries using principal components 
analysis. 

2.1. Time series filtering 

Time series in general can be broken down into different constituent 
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factors: trend, cyclical components (weekly, monthly, and other peri
odicities), and an irregular component [5]. By using time series filters it 
is possible to separate components from each other and focus on the 
periodicities of interest. To filter the range of frequencies for the specific 
case of COVID-19 incidence series across countries, we used the popular 
Hodrick-Prescot filter in its double application [6]. 

We illustrate the procedure using the German series as an example 
(Fig. 2). The first application of the HP-filter takes away the cycles that 
repeat very often (high frequency) and leaves away everything else 
(curve HP-1 in Fig. 2A). The second application leaves only the very low 
frequencies (trend, curve HP-2 in Fig. 2A). By subtracting HP-2 from HP- 

1 we get the frequencies that are just between the very frequent peri
odicities and the trend (black dashed line in Fig. 2B). 

The underlying series for the calculation of the cyclical components 
are the standardized logarithms of the weekly new cases per 1 Million 
inhabitants. The series start at a high level because we used data starting 
at the peak of the first wave. The reason for omitting the initial obser
vations was that in most countries the test capacity increased at the 
beginning of the spread of the virus, leading to overestimation of 
incidence. 

2.2. Common periodicities 

We use the resulting filtered curves in the second step to examine 
common regularities at different periodicities. A straightforward way of 
examining commonalities consists of using a principal components 
analysis (PCA). The idea of PCA in a nutshell is to reduce the dimen
sionality of a dataset with multiple variables by identifying a smaller 
number of independent variables which capture the information of the 
dataset by summarizing the common patterns and therefore the varia
tion of the whole dataset. In our specific case, the different variables are 
the cyclical components of the incidences of each country. We imple
mented a PCA over a sub-sample of 37 countries for which we have data 
corresponding to at least 358 days since the peak of the first wave. Data 
are more or less reliable and the testing capacity is accurate (according 
to the World Health Organization (WHO) criteria of 10–30 tests per 
confirmed case) [7]. These criteria leave countries like Cuba, Venezuela 
and Iran out of the sample. The countries included were Austria, 
Belgium, Bosnia and Herzegovina, China, Costa Rica, Croatia, Czech 
Republic, Denmark, Estonia, Finland, France, Germany, Greece, 
Hungary, Ireland, Israel, Italy, Japan, Kosovo, Latvia, Macedonia, 
Malaysia, Netherlands, Norway, Portugal, Romania, Singapore, 
Slovenia, South Korea, Spain, Switzerland, Thailand, Turkey, United 

Fig. 1. New cases per 1 Million (Cyclical Component) in United States, Ger
many, and Israel. 

Fig. 2. Germany: Filtering the Incidence Curve. (A) First and second application of HP filter. (B) Original and resulting (filtered) incidence series. HP, 
Hodrick-Prescott. 
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States, Uruguay, and Uzbekistan. The time span goes from the peak of 
the first wave in each country until April 6th, 2021. 

The main result from the principal components analysis is that 96.7% 
of the cyclical variation of 37 incidence series can be summarized in six 
variables or principal components. Four principal components contain 
over 90% of the total variation. This means that the infection dynamics 
as well as the social and political reactions over countries have impor
tant commonalities, such that they can be reduced to a handful of 
variables. 

Fig. 3 shows the first 4 principal components calculated out of the 37 
filtered series. Each component exhibits a different cycle length and 
trajectory. The first component (black line in Fig. 3), which explains 
50% of the variation, shows a declining pattern until period 80 and af
terwards a steady increase at a slower rate compared to the decrease 
until period 220. Afterwards, a new declining phase starts until it rea
ches a new through roughly 100 periods later. Since we do not have 
longer underlying time series, we cannot know with certainty for how 
long this cycle will expand or when a new turning point could be ach
ieved. The second component (red line in Fig. 3) explains an additional 
15% of the variation. This component suggests a lag length of approxi
mately 60 days. The cycle length of the third component is unclear as a 
turnaround after period 300 is not foreseeable yet. The fourth principal 
component seems to have a somewhat shorter length as the second and 
is also entering an increasing phase, as well as the first and second 
principal components are. 

3. Estimating cyclical series 

We can use the extracted principal components, which are 358 days 
long, to estimate the hypothetical path of the cycle curves of countries 
with shorter incidence series than the ones used to calculate the prin
cipal components. Predictions were made using a simple linear regres
sion of the cycle series on the six principal components. Fig. 4 shows the 

predicted cycles using the 6 principal components which explain 97% of 
the variation of the 37-country sample. The predicted cyclical series (red 
dashed line in Fig. 4) fits the official data closer in some countries than in 
others. The shorter the prediction horizon, such as in the UK or in 
Bulgaria, the more accurate the prediction was. The discrepancies are 
more evident when the available data end in or close to a turning point 
such as in Chile, India, Poland and Russia. Discrepancies can also reflect 
differences in the data quality as most of the countries with shorter 
cycles have less testing capacity (e.g. Colombia, Chile) or concerns about 
the transparency of their data reporting (e.g. Russia). 

Fig. 5 shows one-step-ahead predictions of the cycle series for Ger
many and the United States starting at day 150. In other words, we 
wanted to answer the question: Were Germany and the US now at day 
150 of the pandemic, how well would the principal components (trained 
model including neither of those two countries) predict the later tra
jectory of the cycle for both countries? The upward turning point after 
day 150 was well anticipated by the principal components. The trajec
tory towards the end of the series is overestimated for Germany and 
underestimated for the US and the latest turnaround towards a new 
increasing phase was captured rather accurately. 

4. Forecasts of the cycles 

Using the same approach to estimate the trajectory of the cycles for 
Germany and the United States for the upcoming weeks, we analyzed 
countries that have been at least one week ahead in the number of days 
since the initial peak. For Germany, Australia, Austria, China, Costa 
Rica, Italy, Latvia, Norway, South Korea, Thailand, and Uruguay are at 
least one week ahead. For the United States, the available countries are 
Australia, Austria, China, Costa Rica, Croatia, Czech Republic, Estonia, 
France, Germany, Greece, Italy, Latvia, Norway, Portugal, Slovenia, 
South Korea, Spain, Switzerland, Thailand, and Uruguay. 

Fig. 6 shows the estimation of the trajectory one week from day 358 

Fig. 3. Principal Components explaining 93% of variability. Each component exhibits a different cycle length and trajectory.  
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on. For Germany, the model projects a further upward but less steep 
trajectory. For the United States, even though the model is less accurate, 
it predicts a steepening of the cycle series which the official data is not 
showing at the time of the analysis. 

5. Discussion 

Modeling of biological phenomena is limited by the presence of 
randomness and noise. This randomness is the result of incomplete or 
insufficient knowledge of the nuances of biological variables at a smaller 
scale [8]. In our case, the effects of individual interactions with SARS 
CoV-2 are difficult to incorporate into a model based on large pop
ulations of different countries. Understanding both static complexities 
that do not change over time and extrinsic variations imposed over time 
by changes in biological aspects of the virus (e.g., new variants), the host 
(e.g., acquired immunity), and the community (e.g., behavior changes), 
is critical to comprehend patterns of viral spread. For instance, genetic 
differences leading to heterogeneous susceptibility to the virus, varia
tion in viral replication from host to host, and behavioral and contact 
differences between individuals have been identified as important fac
tors determining viral transmission within groups of people [9,10]. 

A significant body of evidence shows that possible seasonal de
terminants typical of respiratory viruses such as temperature, sunlight, 
and humidity, as well as host factors (e.g., vitamin status and behavior) 
contribute to the cyclical pattern of these infections [2,11–15]. Envi
ronmental conditions such as dry and unventilated air facilitates trans
mission of respiratory virus particles [16]. Cyclic tightening and 
loosening of lockdown mandates or compliance to the rule in different 

countries may be associated with intermittent exposure to indoor con
ditions that enhance transmission in patterns compatible to those dis
played by the measured and predicted waves presented by our study 
[17]. On the other hand, despite the generalized agreement on the fact 
that dry environments occurring during winter season stimulate respi
ratory viral replication and transmission, Luo et al. challenged this 
notion by examining province-level variability of the basic reproductive 
numbers of COVID-19 in China, determining that summer conditions 
would not protect against viral spread [18]. Wang et al. assessed the 
impact of humidity and temperature on the transmission of COVID-19 
taking into account socioeconomic status, mobility status, and de
mographics [19]. The authors conclude that changes in humidity and 
temperature are insufficient to reduce the reproductive viral number. 
Taken together, these studies underscore the complex contribution of 
environmental and non-environmental factors to viral spread. Our study 
shows that the waves are not completely seasonal, and that social and 
policy factors are playing a significant role in the pattern of infection 
across communities. 

Mathematical models have been used to predict the effect of mea
sures such as social distancing and lockdowns on COVID-19 propagation 
patterns [20]. However, discrepancy between predictions and actual 
incidence and patterns of presentation have been consistently identified 
[21]. Our study tries to add value to the contribution of statistical 
learning methods to the exploration of possibilities rather than making 
robust prediction about contagion dynamics in the future. We present 
actual, fitted, and predictive incidence data. The information contained 
in our numbers reflects positive testing and not mortality. In contrast 
with studies using compartments for exposure, we cannot discriminate 

Fig. 4. Predicted Cycles for countries not used to perform the Principal Component Analysis (PCA) in relation to official data.  
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Fig. 5. One-step-ahead cycles Germany (A) and the United States (USA) (B).  

Fig. 6. Trajectory estimation Germany (A) and United States (USA) (B).  
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cases according to severity. We consider that simplifying information by 
just displaying incidence trends provides better interpretability to help 
decision makers incorporate data into their learning processes before 
coming up with policies [22]. Indeed, most governments closely follow 
the incidence and the reproduction number R, which is a function of the 
incidence, for health and economic policy making. The fact that our 
study includes wave patterns from countries with diverse policies fa
cilitates this reflection process based on feedback provided by studies 
like ours. The introduction of vaccines is expected to change the pro
gression and epidemiological profile of COVID-19. De Leon et al. pre
sented a model showing the effect of the vaccination program in Israel 
that covered 80% of the population at the time of the study. The authors 
report that the shape of the outbreak as measured as new moderate and 
severe cases has changed, bringing the decline earlier than expected by 
their prediction model [23]. Fig. 1 also shows the steep decline in the 
cyclical component for Israel starting around day 300 after the peak of 
the first wave. 

Our study has limitations. We did not use compartments to 
discriminate between asymptomatic, mild, and severe cases, and we did 
not analyze mortality rates. Although making predictions based on 
severity may show a better picture about the virulence of the virus and 
may help planning for increasing hospital capacity, we believe that our 
study provides policy makers and the general public with information 
that describes the overall infection spread and its relationship with 
control measures in different countries. As most policy makers in general 
also do not discriminate between cases when deciding on imposing 
lockdowns restrictions on say schools vs retiring homes, our study is 
indeed useful to describe the cyclical movements that come from social 
and political decision making. We argue that the comparison between 
countries might prove useful to isolate effective policies versus ineffec
tive and even damaging ones. Although some control measures have 
been universal, regional differences are probably playing a role in dif
ferential trend patterns [24]. We also acknowledge the fact that our 
analysis includes a time frame that may not be representative of the total 
duration of the pandemic. In this regard, with the emergence of new 
variants, the predictions of our model may become obsolete [25]. We 
propose to continue training the model with new observations and 
reevaluate the prediction accuracy as the pandemic and the effect of new 
variants evolve. 

Future research is necessary to continually evaluate the prediction 
accuracy of this and other models based on data analysis as the COVID- 
19 progression is fluid and rapidly changing. Experimental designs 
evaluating specific control measures in population groups may help 
elucidate the role of such measures as part of public health policy. 
Finally, population studies targeting vulnerable populations to charac
terize their unique epidemiological profile in relation to COVID-19 are 
warranted. Statistical learning is a powerful tool in assisting analysis of 
growing data in those population subgroups. 

6. Conclusion 

The incidence curves of the COVID-19 measured as the number of 
confirmed new cases per 1 million inhabitants show strong commonal
ities among countries. After filtering away the high-periodic elements as 
well as the trends from the incidence curves of 37 countries, 90% of the 
information in the resulting dataset can be summarized in four variables 
(principal components). The commonalities are not only related to the 
periodic nature of viral infections but also that the fact that citizens and 
governments have reacted to the spread of the virus in a similar fashion. 
The combination of viral natural history and governmental and indi
vidual behavior seem to have so much in common, that the incidence 
cycles of 37 countries can be reduced to a few principal components. 
One-step ahead forecasts for Germany and the United States show that 
the principal components can track the incidence cycles. How well the 
principal components can predict the trajectories out-of-sample will be 
evident in the coming weeks and months. 
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