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Abstract

Background: Respiratory-induced motion (RIM) causes uncertainties in localizing hepatic lesions,

which could lead to inaccurate targeting during interventions. One approach to mitigate the

problem is respiratory motion estimation (RME), in which the liver motion is estimated by mea-

suring external signals called surrogates.

Methods: A learning-based approach has been developed and validated to estimate the RIM

of hepatic lesions. External markers placed on the human's abdomen were chosen as surro-

gates. Accordingly, appropriate motion models (multivariate, Ridge and Lasso regression models)

were designed to correlate the liver motion with the abdominal motion, and trained to esti-

mate the superior–inferior (SI) motion of the liver. Three subjects volunteered for 6 sessions of

such that liver images acquired by magnetic resonance imaging (MRI) were recorded alongside

camera-tracked external markers.

Results and conclusions: The proposed machine learning approach was validated in MRI on

human subjects and the results show that the approach could estimate the respiratory-induced

SI motion of the liver with a mean absolute error (MAE) accuracy below 2 mm.
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1 INTRODUCTION

Percutaneous image-guided interventions such as biopsy and tumor

ablation are commonly used during the diagnosis and treatment

of liver cancer.1,2 Medical imaging modalities (such as computed

tomography (CT), ultrasound (US), magnetic resonance imaging (MRI),

etc.) are widely used during such interventions. In fact, high-quality and

real-time medical images can significantly improve the overall diagnosis

and treatment of cancer patients.3 However, the two requirements are

usually contradictory. For instance, MRI offers high image quality (con-

trast and spatial resolution) at a low update rate, whereas ultrasound

offers the opposite.4 For liver interventions, the soft tissue contrast in

MRI makes it the preferable modality.4,5 Apart from the imaging modal-

ity used, accurate targeting of hepatic lesions is vital to successfully

complete the interventions.6 The most common cause of inaccurate

targeting is internal organ motion. In particular, one of the main causes

of internal organ motion is respiration.7

1.1 Respiratory-induced motion

Respiratory-induced motion (RIM) mainly affects the organs in the

abdominal and thoracic regions (such as lungs, liver, diaphragm, etc.).8,9

In fact, RIM of the liver could range from 8 to 25 mm in one direction

during shallow breathing.7,10

Thus, if RIM is not handled together with slow imaging modalities,

locating the exact lesion motion will be uncertain, which implies inac-

curate targeting of the inserted needle during percutaneous interven-

tions. In fact, this uncertainty and inaccurate targeting cause significant

damage to healthy tissues, insufficient treatment and recurrences dur-

ing ablation, and misdiagnoses during biopsy.1,11
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A common solution to RIM is breath-holding, which requires the

patient to hold their breath for approximately 20 seconds, such that

treatments occur only while the breath is held.12 The main disadvan-

tages of breath-holding are an increase in the intervention time, incon-

sistent lesion location between breath holds13 and that patients might

feel uncomfortable during breath holds or cannot hold their breath for

sufficient time.14

1.2 Respiratory motion estimation

An alternative solution to deal with RIM is respiratory motion estima-

tion (RME). RME estimates the actual internal motion of interest by

measuring external signals, so called surrogate data, that do not directly

measure the actual internal motion of interest but have a strong corre-

lation with it and can be easily measured.9 The actual internal motion

of interest is referred to as motion data in this article, and is usually

medical imaging data acquired at a low update rate.15 Moreover, RME

depends on deriving a motion model that mathematically describes the

relation between the motion data and surrogate data. This relation-

ship is represented by a set of parameters that are determined during

the training phase by the fitting method, which is typically a supervised

learning algorithm. As shown in Figure 1, RME consists of two phases: a

training phase during which the motion and surrogate data are fed to a

fitting method to train the motion model offline, and a prediction phase

in which the surrogate data are fed to the motion model to generate

motion estimates.

RME is utilized in applications where it is not possible or feasi-

ble to directly acquire the actual internal motion of interest with

a tolerable temporal resolution.11 RME can also be used to mini-

mize motion-induced artifacts by adjusting the reconstruction of the

acquired images.13 Moreover, the motion estimates can be imple-

mented as gate signals during respiratory gating. In such a manner, the

RIM of the lesions is constantly scanned during normal breathing, while

the radiation is delivered during a specific window of the breathing

cycle that is indicated by the gate signal.8

1.3 Surrogate data

MR navigators are the most common surrogates for MRI in RME.11,13

The navigators are convenient for MR applications since they do not

require extra equipment or installation. However, the main disadvan-

tages of an MR navigator are that it is a 1-dimensional signal11 and that

it might slightly increase the acquisition time.4 Spirometery is another

example of a surrogate signal that relies on measuring the volume of the

air flow in and out of the lungs.16 The main advantage of spirometers

is that they provide simple 1-dimensional signals that have a high cor-

relation to the respiratory motion.17 However, studies have shown that

spirometers have a noticeable drift due to air leakage,13,18,19 as well as

a noticeable discomfort to patients.16 In the same context, respiratory

bellows are as common as spirometers but are tapered around the sub-

ject's thorax, measuring its motion due to respiration.20 The bellows

share the same advantages and disadvantage as spirometers. Further-

more, to get an accurate measurement, the bellows have to be tightly

stretched around the patient's thorax, which is uncomfortable for

the patient.13

Accelerometers are also used as surrogate signals22 during

percutaneous interventions1 and have been tested for their MRI

compatibility.13 Nevertheless, they are usually not preferred due

to their poor MRI compatibility and low correlation to respiratory

motion.22 Surrogates could also rely on other medical imaging modali-

ties. For example, high-resolution US has been studied to measure the

diaphragm motion while using low-resolution MRI as motion data.4

However, US is still not MRI-compatible unless the US is wired with

optical fibres, which makes it expensive and fragile.

Finally, optical tracking is another choice of surrogate data. By

using an infrared (IR) or a digital camera, markers placed on the

patient's chest or abdomen are tracked. Many studies have shown

FIGURE 1 An overview of RME. The surrogate data and motion data (which represent the actual internal motion of interest) are acquired at the
same time. The fitting algorithm trains the motion model using a supervised learning algorithm such that motion estimates could be predicted by
using only the surrogate data
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that the patient's thorax motion has a good correlation with

respiration.15,16,21-23 For example, Beddar et al. used the Real-time

Position Management System (RPM, Varian Medical Systems, Palo Alto,

CA), which had a reflective marker placed on the human's abdomen

and tracked using an IR camera, and also showed that the motion is well

correlated with the internal motion of the liver.21 Vedam et al. studied

the same effect but for internal motion of the diaphragm,24 and Ernst

et al. studied the correlation between multiple external IR-reflective

LEDs and the internal liver motion of a swine15; both obtained similar

correlation results to Beddar et al.21 Henningsson et al. and Wasza

et al. stated that using external markers is advantageous due to its high

temporal and spatial resolution,25,26 whereas Wilms et al. elaborated

that by using optical tracking, multiple markers could be advantageous

since the dimensionality of the system will increase without adding

extra cost to the setup.27

In this context, the motion data are MRI-acquired liver motion. Thus,

the surrogate should operate safely inside the MRI scanner, and should

not cause additional discomfort to the patient. As a result, for RME

of the liver in MRI, optical tracking is a suitable surrogate since it is

MRI-compatible, drift-free28 and multi-dimensional.27 Moreover, the

tracked markers are not tightened around the patient's abdomen but

stuck on the body, thus saving space and causing less discomfort to the

patient.

1.4 Contribution and objectives

The purpose of this study is to develop and validate an RME approach

that can estimate the motion of a moving target in the liver to improve

targeting during percutaneous image-guided interventions. The paper

focuses on RME of the liver in which the motion data are MRI-acquired

liver motion while the surrogate data are external markers. As shown in

Table 1, most of the previous research in RME of the liver has focused

on other types of surrogate data (such as MRI, bellows, accelerome-

ters, etc.) apart from external markers. Furthermore, studies that used

external markers as a surrogate for RME of the liver usually validated

their approaches on either phantoms or animal subjects. In this context,

the suggested approach was validated on human subjects by utiliz-

ing state-of-the-art supervised learning fitting methods (namely linear,

Ridge and Lasso).

The objectives of this paper are to choose appropriate motion mod-

els and fitting algorithms that have a strong correspondence between

the surrogate and motion data, and to validate and assess the designed

motion models and the suggested RME framework by conducting in vivo

experiments.

2 METHODS AND MATERIALS

2.1 Motion model

2.1.1 Analysis

Following McClelland et al.,11 the motion model is analyzed

according to

• how the motion is represented in the model,

• how the motion data are related to the surrogate data,

• how the data are fitted.

The liver motion is represented by the displacements of the upper

border of the liver and the abdominal motion is represented by the

tracked displacements of the markers. Additionally, if the model is spe-

cific to the patient and session, linear representations are sufficient. As

a result, linear fitting methods were chosen in this context. The most

common method is multivariate linear regression (MVR).11,35 Other

methods are modifications of MVR, such as Ridge regression,36,37 prin-

cipal component regression,38 etc. With that said, the motion model is

formulated as follows:

yi ≈ f(xi) = 𝛽0xi0 +
p∑

j=1

xij𝛽j, (1)

such that yi represents the motion data, 𝛽 = [𝛽0, 𝛽1, … , 𝛽p] are the

parameters/coefficients of the motion model, xi = [xi1, xi2, … , xip] are

the model features perceived from the surrogate data, p is the number

of parameters and xi0 is the dummy unit intercept to account for the bias

in the model. Furthermore, the parameters 𝛽 are determined using the

fitting method. In this context, MVR was implemented and extended

with shrinkage methods (Ridge and Lasso regression). Shrinkage meth-

ods are used when multiple surrogate data are highly correlated with

each other.11

TABLE 1 Summary of related work on RME of the liver

Related work Motion data Surrogate data Fitting methods Experimental validation

Beddar et al.,21 CT External markers Linear regression Human subjects

Odille et al.,29 MRI Bellows Image registration & reconstruction Motion phantom & human subjects

White et al.,30 MRI MRI Linear regression Human subjects

Nguyen et al.,31 CT MRI Population-based deformable registration Human subjects

Hinkle et al.,32 CT External markers Image registration & reconstruction Motion phantom

Ernst et al.,15 Xray External markers Support vector regression Porcine subject

Rijkhorst et al.,33 MRI MRI Linear regression Human subjects

Buerger et al.,34 MRI MRI B-spline smoothing Human subjects

Preiswerk et al.,4 MRI US Kernel smoothing Human subjects

Chen et al.,13 MRI Acc.a & Bellows Linear & Ridge regression Motion phantom & Human subjects

Abayazid et al.,1 EMb Acc. RAkELc Motion phantom

aAccelerometers
bElectromagnetic sensor
cRandom k-Labelset.
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2.1.2 Multivariate linear regression

The main objective of MVR is, given a set of N training data {(x1, y1),
(x2, y2), … , (xN, yN)}, to estimate the set of parameters 𝛽 using the ordi-

nary least squares (OLS) method by minimizing the cost function J(𝛽):

J(𝛽) =
N∑

i=1

(yi − f(xi))2

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
Fitting penalty

(2)

over all the training data.35 Thus, MVR obtains a set of parameters 𝛽

that provide the optimal fit to the training data. However, MVR can be

challenging when dealing with multiple features since the greater the

number of features, the more MVR tries to overfit the training data35 by

capturing the noise and idiosyncratic characteristics of the signal rather

than the physical model. Overfitting might also occur since the features

are highly correlated, considering that they are extracted from multiple

markers.11 Thus, MVR has to be extended to penalize for the number of

parameters 𝛽 .39

2.1.3 Shrinkage methods

Ridge regression is a shrinkage method that extends the cost function

of MVR such that the cost function is written as follows40:

JR(𝛽) = J(𝛽)
⏟⏟⏟

Fitting penalty

+ 𝜆

p∑
j=1

𝛽2
j

⏟⏟⏟
Shrinkage penalty

, (3)

such that 𝜆 denotes the shrinkage parameter to be tuned (𝜆 ≥ 0). If

𝜆 is zero then the equation reduces to MVR. If 𝜆 is too big then the

model is optimized to minimize the parameters rather than to fit the

model, which will underfit the data. The greater the shrinkage parame-

ter, the more the parameter 𝛽 shrinks towards zero. Thus, there has to

be a trade-off in selecting the shrinkage coefficient. The parameter 𝜆 is

tuned by validating the motion model over a set of validation data and

choosing the parameter 𝜆 that results in the smallest prediction error

(as stated in Section 2.1.5).

Lasso regression41 is another shrinkage method that penalizes the

absolute size of the coefficients as follows:

JL(𝛽) = J(𝛽)
⏟⏟⏟

Fitting penalty

+ 𝜆

p∑
j=1

|𝛽j|
⏟⏟⏟

Shrinkage penalty

. (4)

The main difference between Ridge and Lasso is that Ridge shrinks

the parameters towards zero while Lasso has the ability to shrink the

parameters to exactly zero.39 Thus, Lasso has the ability to cancel

out features that are not needed if the shrinkage parameter 𝜆 is rela-

tively large. In other words, if the features are highly correlated, Lasso

selects a set of fewer features and cancels out all the others. However,

Lasso is more computationally expensive than Ridge because there is

no closed-form solution for its optimization problem.

2.1.4 Model selection

The acquired dataset has to be split into 3 segments: training data, val-

idation data and test data,35 such that the training data are used to

fit the models, the validation data are used to select the features and

shrinkage parameter while the test data are used to evaluate the per-

formance of the models. The proportions of test, validation and training

data are chosen to be 50%, 20% and 30% respectively. Note that there is

no general rule for choosing the ratios between the 3 data segments.35

2.1.5 Feature and shrinkage parameter selection

The features are extracted from the surrogate data and are selected

such that they are simple, interpretable and have a good fit to the data.

The features could be numeric values of the input signals (the posi-

tions of the markers) or polynomial representations of the input signals

(quadratic, cubic or higher order).35 In the context of RME, the features

can be the derivative(s) of the input signals1,15 or a signal indicating

inhalation/exhalation.11

For feature selection, the prediction error of models with varying

complexity are compared as shown in Figure 2 such that when using

FIGURE 2 Feature and shrinkage parameter selection: the figure represents the procedure for selecting the features (left) and shrinkage
parameter 𝜆 (right) for the chosen regression algorithms. It also shows that the selection should be based on the validation data
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the validation data, a minimum value for the validation error will cor-

respond to the optimal features. Moreover, as shown in Figure 2, the

shrinkage parameter with the lowest prediction error in the validation

data is selected. Features and the shrinkage parameter should not be

selected on the basis of the training data because the training data will

result in overfitting, yielding a lower training error that is not intuitive,

as shown in Figure 2.

2.2 In vivo experiment

2.2.1 Overview

In this section, the suggested approach was validated by conducting

experiments on human subjects. Figure 3(A) presents an overview of

the experimental setup. The presented study involved two markers

placed on the subject's abdomen and tracked using a digital camera out-

side the MRI cage. A multichannel spine coil (Esaote SpA, Genoa, Italy)

was placed around the subject's thorax. The surrogate and motion data

were acquired simultaneously at different rates. Subsequently, the 3

motion models were trained offline.

2.2.2 Measurement protocol

Three healthy subjects (2 males and 1 female) participated in the exper-

iments. The subjects were not obese and their ages were in the range

20–28 years. Each subject signed informed consent before the start

of the experiment. Each subject was subjected to two sessions of 3

minutes each. Because of the short scanning duration and the small

magnetic field, the experiment involved no risk to the subjects. Accord-

ing to Dutch legislation no medical ethical approval was necessary for

this specific research project due to its explorative nature and minimal

risks. MRI safety of the subjects was safeguarded by an MRI screen-

ing procedure. The experiments were conducted at the University of

Twente (Enschede, the Netherlands). During the scan, each subject was

requested to breathe normally (without any previous training) and to

try not to move during the scan.

2.2.3 Hardware setup

The MRI system used was a 0.25 T open-bore system (G-scan Brio,

Esaote SpA, Genoa, Italy)(as shown in Figure 3(B)). The subject was

placed on the MRI table in a supine position with his/her hands behind

his/her head. The subject was positioned such that the centre of the

field of view was approximately at the border of the liver.

Two 2 cm diameter 3D printed plastic spherical markers were

placed on the subject's abdomen as shown in Figure 3c. A preliminary

experiment was conducted to track the markers in several locations

such that the locations with the highest range of motion (excursion)

were chosen.

An industrial camera (MVBlueFox3, Matrix Vision GmbH, Oppen-

weiler, Germany) was chosen with a suitable lens (25 mm, 1.4 focal

length). The camera was placed outside the MRI cage (approximately

2 m from the centre of the MRI bore) facing the subject (as presented

in Figure 3(D)).

2.2.4 Data acquisition

The MRI sequence is a 2D balanced steady-state free precession (2D

HYCE S), imaging plane = sagittal, slice thickness = 15 mm, repetition

time = 7 ms, echo time = 3.5 ms, reconstructed resolution = 1.5 mm ×
1.5 mm, flip angle = 40◦ , field of view = 38 × 38 cm2, temporal resolu-

tion approximately 1 fps. The camera acquired frames at 10 fps with a

spatial resolution of 0.15 mm. The region of interest of the camera was

20 × 20 cm2. The time stamp of each acquired frame from the MRI and

the camera was recorded for temporal alignment and synchronization.

2.3 Post-processing

2.3.1 Workflow

The workflow is shown in Figure 4. The MRI and camera images

were segmented offline and the liver and abdominal motion were

extracted. Moreover, the extracted signals were processed and split

into 3 datasets (training, validation and test data). The training and val-

idation data were utilized to train the motion model while the test data

of the abdominal motion were fed to the motion model. Consequently,

the estimated liver motion was evaluated and compared against the

actual liver motion.

2.3.2 Image processing

The video streams were segmented offline. Each DICOM frame from

the MRI was segmented using a suitable threshold value (for each vol-

unteer) together with a series of morphological operations to detect

the upper border of the liver. Only the SI motion was detected since the

acquired spatial resolution (1.5 mm×1.5 mm) was too low to detect the

respiratory-induced anterior–posterior (AP) motion (which is approxi-

mately 2 mm7). The segmented SI positions were computed relative to

the reference frame as shown in Figure 5(A). In a similar manner, each

frame from the camera was segmented using a suitable threshold value

(for each volunteer) together with a series of morphological operations

FIGURE 3 Hardware setup. A, Overview of the setup of the in vivo experiments. B, The subject is in a supine position with hands behind the head.
The subject was adjusted such that the liver is centred. C, Two markers were placed on the subject's abdomen. The markers are placed 5 cm to the
right of the subject's umbilicus. Marker M2 coincides horizontally with the subject's umbilicus and marker M1 is 5 cm above M2. D, The camera is
placed at the door of the MRI cage, which is approximately 2 m from the centre of the MRI bore, facing the subject
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FIGURE 4 Workflow of the suggested approach. Firstly, the sagittal MRI liver images and camera-acquired abdominal motion were acquired
simultaneously. The acquired images were segmented and the liver and marker motion were extracted. Additionally, the acquired data are
processed and split for designing and evaluating the motion model

FIGURE 5 Post-processing: the figure represents the acquired frames
from MRI and camera and the segmented output. The markers were
segmented from the camera while the liver's border was segmented
from the MRI. The corresponding superior–inferior (SI) and
anterior–posterior (AP) axes of the markers and the liver are
presented at each segmented frame. According to the defined frames,
inhalation corresponds to a negative SI and AP for the markers and
positive SI and AP for the liver

to detect the markers. The markers' SI and AP centroid positions were

computed relative to their relative frame as shown in Figure 5(B).

2.3.3 Signal processing

After image segmentation, the markers' positions (SI and AP positions

of the two markers) and the liver's SI position were processed. A

suitable low-pass filter was designed for the two signals. The signals

were resampled in order to obtain the same sample rate. Temporal

synchronization was performed in two steps. Firstly, the two signals

were aligned according to their relative time stamps. Secondly, the

two signals were aligned using correlation analysis to correct for the

time delay.

2.4 Model evaluation

To evaluate the performance of the models used, the mean absolute

error (MAE) and the adjusted coefficient of determination (adjusted R

squared, R2
adj

) are calculated as follows:

MAE =
∑N

i=1 |Yi − Ŷi|
N

(5)

R2
adj = 1 − RSS . (n − 1)

TSS . (n − k)
(6)

where N is the number of test data and k is the number of coeffi-

cients (𝛽) including the intercept. Yi and Ŷi are the actual (ground truth)

and estimated liver motion from the test data respectively. Moreover,

RSS and TSS are the residual sum of squares and total sum of squares

respectively, and are calculated as follows:

RSS =
N∑

i=1

(Yi − Ŷi)2 (7)

TSS =
N∑

i=1

(Yi − Ȳ)2 (8)

where Ȳ is the mean value of Y. Note that R2
adj

is an indication of the

goodness of fit of the model, which could be any value less than or equal

to 1 such that R2
adj

closer to 1 indicates a better fit.39 Furthermore, MAE

is used to obtain a quantitative result of the predicted response. The

smaller MAE is, the smaller is the test error.

3 RESULTS

3.1 Power density analysis

Figure 6 represents the normalized power density of the markers

and the liver (SI) signals for all the sessions. Comparing the plots in

the same row allows the assessment of intrafractional variations in

each patient, while the columns allow the assessment of the varia-

tions between patients. As shown in Figure 6, the liver and marker

signals were dominated by the breathing frequencies.42 The figure also

shows spikes at low frequencies (smaller than 0.1 Hz), which indicate

the presence of noise or drift in positions. It can also be seen that

each subject had a different breathing pattern, thus the model has to
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FIGURE 6 Power density analysis: the figure shows the power density
(periodogram) of the liver SI motion (black solid line) and the markers'
motion (gray dotted line) for all the subjects. The figure shows that the
signals are dominated by breathing frequencies below (0.5 Hz).
However, there are spikes at low frequencies (below 0.1 Hz)

be patient-specific. Moreover, Figure 6 shows that the breathing pat-

terns are not identical for each subject over the two sessions, which

implies that the model should be updated for each session (intrafrac-

tionally). Note that according to the obtained data, the signals were

not affected by other organ-induced motion such as the heartbeat

(operating over 1 Hz42).

3.2 Motion and surrogate data analysis

Figure 7 and Table 2 present the processed data from the subjects.

Figure 7 presents the mean (𝜇) and the standard deviation (𝜎) plots

of the peak-to-trough (PTT) motion for the liver's SI motion and the

markers' SI and AP motion. Moreover, Table 2 presents the values of

the plots shown in Figure 7. As shown in Figure 7 and Table 2, the motion

FIGURE 7 Motion data analysis: mean 𝜇 and standard deviation 𝜎 of peak-to-trough (PTT) motion for the liver's SI motion and the markers' SI and
AP motion. The mean and standard deviations are summarized in Table 2

data showed the range of motion expected from previous studies.7

The greatest PTT motion of the liver and markers was observed

in subject 3 while the other two subjects had approximately simi-

lar ranges of motion to each other. The maximum mean PTT was

21.3 mm for the liver's SI motion, 13.9 mm and 11.7 mm for the two

markers' AP motion and 1.9 mm and 3.2 mm for the two markers'

SI motion (all observed in subject 3). The minimum mean PTT was

10.0 mm for the liver's SI motion (observed in subject 1), 0.4 mm

and 0.2 mm for the two markers' SI motion (observed in subjects

1 and 2 respectively) and 2.5 mm for the two marker's AP motion

(observed in subject 2). In all subjects, the markers' AP motion had

a greater range than their SI motion. The tables also demonstrate

the variations in breathing magnitudes between the subjects and

between sessions, thus confirming that the motion models should be

patient-specific.

3.3 Feature selection analysis

Nine types of features have been chosen as shown in Table 3. In order

to choose the optimal feature type, each one was validated using the

validation data as explained in Section 2.1.5 and Figure 2. Moreover,

Figure 8 shows the normalized MAE (NMAE) against the type of feature

for the training and validation data. The type of feature is directly pro-

portional to the model complexity. Thus, the higher the feature type the

higher the model order and thus the complexity. As shown in Figure 8,

choosing more than one marker improved the estimation accuracy.

However, marker 2 (type 2) outperformed marker 1 (type 1). More-

over, choosing a more complex model (higher order) did not improve the

performance of the model on the test data. Thus, the optimal feature

selected was type 3. Finally, Figure 8 also demonstrates that the selec-

tion of the feature type should be based upon validated data and not

training data.

3.4 Shrinkage parameter analysis

The shrinkage parameters (for Lasso and Ridge) were selected by

validating the model performance using the validation data. Ridge

and Lasso models had the same type of feature selected in Section

3.3 (type 3). Figure 9 shows the NMAE against the shrinkage param-

eter 𝜆 for Ridge and Lasso. Figure 9 shows the expected results as

explained in Section 2.1.5 and Figure 2. However, due to the lim-

ited resolution acquired for the liver data, the feature and shrinkage

analysis were more challenging to tune. According to Figure 9, the

shrinkage parameter was minimal at the values (0,0.2] and (0,0.4]



8 of 11 FAHMI ET AL.

TABLE 2 Motion data analysis: mean 𝜇 and standard deviation 𝜎 (both in mm) of the peak-to-trough motion for the liver
SI motion and the markers' SI and AP motion

Subject, Session SI (𝜇± 𝜎) Marker 1, SI (𝜇± 𝜎) Marker 1, AP (𝜇± 𝜎) Marker 2, SI (𝜇± 𝜎) Marker 2, AP (𝜇± 𝜎)

Subject 1, session 1 11.8 ± 1.6 0.5 ± 0.1 3.7 ± 0.6 0.5 ± 0.2 3.3 ± 0.6

Subject 1, session 2 10.0 ± 1.8 0.4 ± 0.1 3.3 ± 0.7 0.4 ± 0.1 2.9 ± 0.7

Subject 2, session 1 11.1 ± 1.1 1.3 ± 0.2 2.5 ± 0.4 1.3 ± 0.2 2.5 ± 0.4

Subject 2, session 2 10.3 ± 1.2 1.2 ± 0.2 2.5 ± 0.3 0.2 ± 0.1 2.8 ± 0.4

Subject 3, session 1 19.2 ± 3.0 1.6 ± 0.3 11.7 ± 2.9 1.6 ± 0.3 11.7 ± 2.9

Subject 3, session 2 21.3 ± 2.1 1.9 ± 0.3 13.9 ± 1.8 3.2 ± 0.4 11.5 ± 1.5

TABLE 3 Feature selection: Type 1 corresponds to the least complex
and type 9 to the most complex

Type Description

Type 1 Marker 1

Type 2 Marker 2

Type 3 Marker 1 and marker 2, first-order polynomial

Type 4 Marker 1 and marker 2, second-order polynomial

⋮ ⋮

Type 9 Marker 1 and marker 2, seventh-order polynomial

FIGURE 8 Feature selection: the figure shows the normalized MAE
(NMAE) against the feature type. The plot shows that feature type #3
has the smallest NMAE and thus it is the selected one

for Ridge and Lasso respectively. Thus, the average values of 𝜆 were

taken. These values were 0.1 and 0.2 for the Ridge and Lasso algorithms

respectively.

3.5 Estimation accuracy

To evaluate the designed models, the estimated liver SI motion Ŷ

obtained from the regression model in equation (1) was compared to

the true values of the liver SI motion Y obtained from MRI. Feature type

3 (see Table 3) was chosen for the 3 fitting methods (MVR, Ridge and

Lasso) and the shrinkage parameter 𝜆 was 0.1 and 0.2 for Ridge and

Lasso respectively.

Figure 10 shows the plots of Ŷ compared to Y using the test data

acquired from the 6 sessions conducted using MVR, Ridge and Lasso.

FIGURE 9 Shrinkage parameter selection: the figure shows the
normalized MAE (NMAE) against the shrinkage parameter 𝜆 for both
Ridge and Lasso regression. The plot shows that the minimum NMAE
is at approximately 0.1 for Ridge and 0.2 for Lasso

Tables 4 and 5 present the performance measures (MAE and R2
adj

respectively) of the estimated liver SI motion Ŷ that are shown in

Figure 10. Each row in Figure 10 and Tables 4 and 5 corresponds to

one session (out of 6). Thus, comparing the plots and values of the same

row allow the assessment of the 3 designed models. In addition, each

column in Figure 10 and Tables 4 and 5 corresponds to one regres-

sion method (out of 3), which allows the assessment of each regression

model throughout the sessions.

As shown in Figure 10, the 3 algorithms tracked the ground truth

values of the liver motion accurately without lagging or deviation. How-

ever, subject 3 had an observable deviation in both sessions during the

first 20 seconds. As shown in Table 4, subject 3 had the highest MAE

for the 3 regression methods while subject 2 had the smallest. More-

over, as shown in Tables 4 and 5, as a general trend, Lasso outperformed

MVR and Ridge in 3 of the 6 conducted sessions, while Lasso and Ridge

performed equally in the other 3.

4 DISCUSSION

The data acquired from the markers and the MRI showed that breath-

ing signals vary between patients, and consequently the models
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FIGURE 10 Evaluation results: the figure shows the estimated values of the liver SI motion (Ŷ) compared with the actual liver SI test data Y against
time. Each row of the figure indicates the subject (S) and session number (Se) while each column shows the regression algorithm used. The MAE,
standard deviation and R2

adj
of the graphs are summarized in tables 4 and 5 respectively

TABLE 4 Evaluation results: MAE and standard deviation 𝜎 (both in
mm) of the estimated liver SI motion using MVR, Ridge and Lasso

MVR Ridge Lasso

Subject, Session MAE ± 𝜎 MAE ± 𝜎 MAE ± 𝜎

Subject 1, session 1 1.5 ± 1.2 1.5 ± 1.1 1.2 ± 1.1

Subject 1, session 2 1.0 ± 0.8 1.0 ± 0.7 1.0 ± 0.7

Subject 2, session 1 1.4 ± 0.8 1.4 ± 0.8 1.0 ± 0.7

Subject 2, session 2 0.8 ± 0.7 0.8 ± 0.7 0.8 ± 0.7

Subject 3, session 1 1.5 ± 1.3 1.6 ± 1.3 1.5 ± 1.2

Subject 3, session 2 1.9 ± 1.9 1.8 ± 1.9 1.8 ± 1.9

designed were patient-specific. The acquired data were not affected by

other organ-induced motion such as the heart (operating over 1 Hz42).

TABLE 5 Evaluation results: R2
adj

of the estimated liver SI motion using
MVR, Ridge and Lasso

MVR Ridge Lasso

Subject, Session R2
adj

R2
adj

R2
adj

Subject 1, session 1 0.6 0.6 0.7

Subject 1, session 2 0.7 0.7 0.8

Subject 2, session 1 0.7 0.7 0.8

Subject 2, session 2 0.8 0.8 0.8

Subject 3, session 1 0.8 0.8 0.8

Subject 3, session 2 0.7 0.8 0.8

This is because the temporal resolution of the MRI acquisition (1 fps)

would not capture such high frequencies. However, for the markers,

even though the temporal resolution is able to capture heartbeats, the

markers' signals were not affected. The liver SI motion ranged between

10.0 mm and 21.3 mm, which is consistent with previous studies on the

liver.10,21 The marker motion was dominant in the AP (ranging between

2.5 mm and 13.9 mm) rather than the SI direction (ranging between

0.2 mm and 3.2 mm). The results also indicated a strong linear relation-

ship between the abdominal motion and the liver's SI motion. Further-

more, higher order models did not improve the overall fit of the data.

The results show that using only one marker would result in a lower

accuracy than using two markers, confirming the results of Ernst et al.15

Moreover, the location of the marker affects the estimation accuracy:

the closer the marker was to the umbilicus the higher the estimation

accuracy. The results also illustrated the accuracy of the estimated SI

liver motion; the MAE ranged between 0.8 mm and 1.9 mm for the 3

regression models. The results demonstrated performances consistent

with previous research studies on the liver using external markers,15,24

ultrasound4 and accelerometers as a surrogate.13 Additionally, Lasso

generally outperformed MVR and Ridge in the overall estimation accu-

racy. However, the spatial resolution of the acquired MRI liver images

prevented a more detailed evaluation of the 3 models.
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5 CONCLUSION

An RME approach to estimate the liver SI motion due to respiration

was developed and evaluated. External markers placed on the human's

abdomen were tracked using a digital camera. Abdominal motion track-

ing was chosen as surrogate data due to its MRI compatibility, comfort

for the patient, high temporal and spatial resolution and high correla-

tion with the liver motion. The motion data (liver) and the surrogate

data (markers) were used to fit supervised learning regression models

that were subsequently used to estimate the motion data based on the

surrogate data. The supervised learning models in RME were assessed

by analyzing the features and shrinkage parameters. The suggested

approach was validated by in vivo experiments that showed that the

markers succeeded in estimating the liver motion with a good accuracy

(below 2 mm).

The proposed approach was developed with hepatic percutaneous

interventions in mind. During interventions, the clinical operator relies

on offline MRI images that are acquired prior to intervention. Thus, the

respiratory-induced motion remains uncertain and the operator relies

on his/her experience to roughly estimate the motion. Our workflow is

essential to guide the operator during intervention. First, with the sub-

ject in the MRI room prior to intervention, the motion and surrogate

data are acquired simultaneously. Once the training phase is completed

(i.e., the motion model is formulated), the subject is requested to leave

the MRI room, and the motion data are estimated based solely on the

tracked abdominal motion. With the advancements in adjustable MRI

dockable tables,43 we envision the subject remaining on the MRI table

with the markers attached. The markers could also be detached and

reattached if their locations are marked with a temporary marker. With

that said, the motion estimates could exploited as a feedback to the

clinical operator as either raw data, a gated signal8 or synthetic MRI

images.4 The motion estimate could also be fed back to a surgical robot

for motion compensation. We envision a surgical robot for percuta-

neous interventions that corrects its reference motion trajectory by the

estimated respiratory-induced motion.

Our proposed approach was tested in an open-bore MRI system in

which the sagittal plane of the subject was clear, as shown in Figure 3(B).

Tracking the markers from the sagittal plane is not essential. For

instance, if close-bore MRI is used, the transverse plane could also be

used since this plane is clearer. In a more general case, the 3D motion

of the markers could be tracked by using stereo cameras. Additionally,

multiple cameras could be used for more accurate tracking, while IR

cameras could be used under sensitive light conditions. In fact, with

the technological advancements in computer vision and motion cap-

ture, several tracking options are commercially available and could be

augmented in our approach.44

In this study, a low-field MRI system was used to acquire the motion

data, which resulted in a low temporal (1 fps) and spatial resolution

(1.5 mm × 1.5 mm) that limited the overall evaluation of the proposed

framework. The most crucial improvement to the proposed framework

is using an MRI scanner that operates at a higher field strength. Acquir-

ing images at a higher temporal resolution can significantly affect

the performance since more data samples can be acquired. Moreover,

acquiring images at a higher spatial resolution allows the investigation

of other liver motions (AP and lateral motions) that were not investi-

gated due to the low spatial resolution and the relatively small motion in

these directions. Obtaining higher spatial resolution of the motion data

will result in a finer tuning of feature and shrinkage parameters since

the minimum values of these parameters are sharper.

As illustrated in the results, the differences between the 3 regres-

sion models were not significant. Thus, using a more complex regression

algorithm would not improve the estimation accuracy significantly.27

However, since shrinkage methods might outperform MVR in the case

of high dimensional data, using more than two markers will increase the

system dimensionality and thus might improve the estimation accuracy

in Ridge and Lasso. In fact, multiple markers have been used in previous

studies, which indicated that their use will increase the system dimen-

sionality and might capture more complex breathing patterns.15,27

Finally, it is necessary to test the proposed approach on a wider set

of subjects with more varied breathing patterns, age range and weight.

The robustness of our proposed approach should also be evaluated on

unhealthy subjects and sedated subjects.
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