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Simple Summary: Chondrosarcoma is a rare bone tumor characterized by the secretion of a cartilage-
like extracellular matrix. Its treatment poses major challenges, since chondrosarcoma is resistant to
chemotherapy and radiotherapy. Consequently, chondrosarcoma treatment has been limited over
the past 30 years, and consists in the surgical resection of the tumor. Increasing evidence suggests
that future cancer therapies will be enhanced by the combination of epigenetic and conventional
antitumor agents, leading to further investigations to combine 3-Deazaneplanocin A (DZNep), an
epigenetic drug, with existing antitumoral agents. We show by in vitro and in vivo experiments
that an optimised DZNep/cisplatin combination reduces chondrosarcoma viability and induces
apoptosis more effectively than each of the drugs alone. These results demonstrate the potential use
of this epigenetic-chemotherapeutic combination approach for further studies and management of
chondrosarcoma treatment.

Abstract: Background: We have previously shown that 3-Deazaneplanocin A (DZNep) induces
apoptosis in chondrosarcomas. Herein, we tested whether the combination of this epigenetic drug
to a standard anticancer therapy may enhance the response to each drug in these bone tumors.
Methods: Two chondrosarcoma cell lines (SW1353 and JJ012) were cultured in the presence of DZNep
and/or cisplatin. Cell growth was evaluated by counting viable cells, and apoptosis was determined
by Apo2.7 expression by flow cytometry. In vivo, the antitumoral effect of the DZNep/cisplatin
combination was assessed through measurements of tumor volume of JJ012 xenografts in nude mice.
Results: In vitro, the DZNep/cisplatin combination reduced cell survival and increased apoptosis
compared to each drug alone in chondrosarcomas, but not in normal cells (chondrocytes). This
enhancement of the antitumoral effect of the DZNep/cisplatin combination required a priming
incubation with DZNep before the co-treatment with DZNep/cisplatin. Furthermore, in the chon-
drosarcoma xenograft mice model, the combination of both drugs more strongly reduced tumor
growth and induced more apoptosis in tumoral cells than each of the drugs alone. Conclusion: Our
results show that DZNep exposure can presensitize chondrosarcoma cells to a standard anticancer
drug, emphasizing the promising clinical utilities of epigenetic-chemotherapeutic drug combinations
in the future treatment of chondrosarcomas.

Keywords: apoptosis; bone tumors; chondrosarcoma; cell death; xenograft; cisplatin; cancer;
chemotherapy; methyltransferase; epidrugs

1. Introduction

Chondrosarcoma is a rare bone tumor characterized by the secretion of a cartilage-
like extracellular matrix. Its treatment poses major challenges, since chondrosarcoma is
resistant to chemotherapy and radiotherapy. Consequently, chondrosarcoma treatment has
been limited over the past 30 years, and consists in the surgical resection of the tumor [1,2].
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Recently, 3-Deazaneplanocin A (DZNep), a carbocyclic adenosine analog, has been
shown to be able to induce apoptosis in chondrosarcomas in vivo and in vitro [3–5]. DZNep
is an inhibitor of S-adenosylhomocysteine hydrolase, leading to the cellular accumula-
tion of S-adenosylhomocysteine and the inhibition of S-adenosyl-methionine-dependent
methyltransferases, particularly histone methyltransferases [6,7]. It induces apoptotic cell
death in cancer cells, but not in normal cells [8–10]. Its anti-tumoral activity has also
been observed in vivo in numerous cancers, including embryonal rhabdomyosarcoma [11],
tongue cancer [12], prostate cancer [13], renal cell carcinoma [14], or lung cancer [15]. In
chondrosarcomas, DZNep induces apoptosis in vitro [4] and slows down tumor growth
in vivo [3,5]. Interestingly, this epigenetic drug appears to be relatively safe [16,17].

Increasing evidence suggests that future cancer therapies will be enhanced by the com-
bination of epigenetic and conventional antitumor agents, leading to further investigations
to combine DZNep with existing antitumoral agents. For instance, histone methylation
reversal by DZNep presensitizes pancreatic cancer cells to gemcitabine [18]. Also, DZNep
treatment potentiates the antitumor effect of cisplatin in non-small cell lung cancer cells,
and protects against its nephrotoxicity [19]. Thus, an epigenetic-chemotherapeutic drug
combination might provide an efficient strategy therapy for cancers [20].

Therefore, our study attempts to increase the efficiency of antitumor drugs in chon-
drosarcomas by combining DZNep with standard chemotherapy agents, such as platinum
compounds. We show by in vitro and in vivo experiments that an optimised DZNep/cisplatin
combination reduces chondrosarcoma viability and induces apoptosis more effectively than
each of the drugs alone.

2. Materials and Methods
2.1. Drugs

DZNep-HCl was provided by Tocris (Lille, France). Cisplatin was provided by Sigma
(St Quentin Fallavier, France).

2.2. Cell Culture

Human chondrosarcoma cell lines SW1353 and JJ012 were purchased from the Ameri-
can Type Culture Collection (ATCC, Manassas, VA, USA), and kindly provided by Dr. Joel
A. Block (Rush University Medical Center) [21,22], respectively. The identity of cell lines
was confirmed using STR profiling with the GenePrint 10 System (Promega, Charbonnières-
les-Bains, France). Chondrocytes were isolated and cultured, as previously described, from
normal articular cartilage [23], after obtaining signed agreement from patients, according
to local legislation and in accordance with the recommendation of local ethic committee
(Comité de Protection des Personnes Nord Ouest III).

Normal and tumoral cells were cultured in Dulbecco’s Modified Eagle Medium
(DMEM) supplemented with 10% fetal bovine serum (FBS) (Invitrogen, Cergy-Pontoise,
France) and antibiotics (penicillin/streptomycin), and incubated at 37 ◦C in a humidified
atmosphere containing 5% CO2. Cell cultures were regularly tested by PCR for mycoplasma
contamination.

2.3. Cell Growth Experiments

Cells were seeded at 15,000 cells/cm2. The day after, they were treated with drugs.
At the end of incubation, viable cells were counted using Countess II (Life Technologies,
Illkirch, France) after trypan blue exclusion. Each count was performed twice, and at least
three independent experiments were done.

2.4. Apoptosis Assay

Apoptosis was assayed as previously described [3]. Briefly, cells were immunos-
tained with phycoerythrin (PE)-conjugated antibody directed against Apo2.7 (clone 2.7
7A6) according to the manufacturer’s condition (Beckman Coulter, Villepinte, France).
Fluorescence was measured using the Gallios flow cytometer (Beckman Coulter, Villepinte,
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France) at the FACS facility (SFR 146 ICORE, Caen, France). At least 10,000 events were
analysed in each sample. Three independent experiments were performed.

2.5. Animals

Animal experimental procedures were performed according to local legislation, af-
ter approbation by the ethics committee (Comité d’Ethique de Normandie en Matière
d’Expérimentation Animale, agreement #03968.01). Mice were provided by Charles River
(L’Arbresle, France) and then kept in the animal facility (Centre Universitaire de Ressources
Biologiques, Caen, France). The mice were maintained in standard polypropylene cages
(37 × 23.5 × 18 cm, Charles River, 5–6 mice per cage) in a temperature- and humidity-
controlled room, and had free access to water and food. The animal investigations were
performed under the current European directive (2010/63/EU) as incorporated in national
legislation (Decree 87/848). Each animal was humanely handled throughout the experi-
ment, in accordance with internationally accepted ethical principles for laboratory animal
use and care, and all efforts were made to minimize animal suffering. Euthanasia was
performed using isoflurane inhalation.

2.6. Xenograft of Chondrosarcomas in Nude Mice

Twenty-five SWISS nude mice (6 weeks old, male, weight average = 32.23 g (28.50–36.5))
were xenografted subcutaneously with 106 JJ012 cells (suspended in 100 µL of matrigel) on
their back, as previously described [3], and separated in four groups: vehicle (n = 4, weight
average = 31.6 g (29.5–33.8)); DZNep alone (n = 7, weight average = 31.04 g (28.70–33.40));
cisplatin alone (n = 7, weight average = 33.44 g (29.50–36.50)); and DZNep and cisplatin in
combination (n = 7, weight average = 32.56 g (28.50–36.40)). When the tumors became pal-
pable (about 100 mm3), vehicle or DZNep was administered intraperitoneally three times
per week at 2 mg/kg for 4 weeks (“priming” stage). Then, cisplatin was intraperitoneally
injected alone or in combination with DZNep three times per week at 2 mg/kg for 3 weeks
(“treatment” stage). During experiments, tumors were measured two times per week with
a caliper, and tumoral volume was calculated by the following equation: (L × w2)/2 (with
L corresponding to length and w to width).

2.7. Protein Extraction and Western Blot

Tumors were crushed with potter, and lysed in a RIPA lysis buffer (Tris-HCl 50 mM pH
7.5; IGEPAL 1%; NaCl 150 mM; EGTA 1 mM; NaF 1 mM) supplemented with phosphatase
inhibitors (NA3VO4 10 µL/mL) and protease inhibitors (leupeptin 1 µL/mL; aprotinin
1 µL/mL; pepstatin 1 µL/mL; and phenylmethylsulfonyl fluoride 4 µL/mL). Protein ex-
tracts were migrated in SDS-PAGE, and transferred to polyvinylidene difluoride (PVDF)
membranes (Bio-Rad, Marnes-la-Coquette, France). After probing with primary antibodies,
the membranes were incubated with horseradish peroxidase-conjugated secondary anti-
bodies, and signals visualized by Western Lightning® Plus-ECL (Perkin Elmer, Villebon
S/Yvette, France). Antibodies specific for PARP (#5246), H3K4me3 (#9727), H3K9me3
(#13969), H3K27me3 (#9733), H3K36me3 (4909), H3K79me3 (#4260), H4K20me3 (#5737),
and H3 (#4499) were obtained from Cell Signalling (Danvers, MA, USA), and actin (sc47778)
was provided by Santa Cruz (Heidelberg, Germany). The whole Western blot figures can
be found in File S1.

2.8. Statistical Analysis

All data are expressed as mean ± SEM. For in vitro experiments, at least three different
experiments were performed for each condition. Statistical significances were calculated
with Student’s-t-test. For in vivo experiments, global analysis of tumor volumes was
performed using a two-way ANOVA with repeated measurements, followed by post-hoc
Tukey multiple comparison. All data are expressed as mean ± SEM, and p-values < 0.05
were considered as statistically significant.



Cancers 2021, 13, 4648 4 of 10

3. Results
3.1. DZNep Reduces Histone Methylation in Chondrosarcomas

In this study, we used two chondrosarcoma cell lines: SW1353, a cell line that is not
very sensitive to cisplatin, and JJ012, a cell line that is more sensitive to cisplatin. We
first evaluated whether DZNep is able to modify the histone methylation profile in both
chondrosarcoma cell lines. After 48 h, DZNep strongly reduced the trimethylation of
histones H3 at lysine 36 (H3K36me3) and H4 at lysine 20 (H4K20me3) in a dose-dependent
manner. It also decreased H3K79me3 and H3K4me3 in the JJ012 line (Figure 1). These data
confirm that DZNep is an epigenetic drug, which regulates histone methylations.

Figure 1. DZNep treatment reduces histone trimethylation level in chondrosarcomas. SW1353 or JJ012 chondrosarcomas
were treated with increasing doses of DZNep (0.3 µM and 1 µM) for two days. Then, proteins were extracted, and histone
trimethylation levels were analyzed by western blot. H3 was used as the protein loading control. Representative figures of
three independent experiments are shown. Histograms represent the relative quantification of me3/H3 signals. Data are
expressed as means +SEM (n = 3). *: p-value < 0.05; **: p-value < 0.01; ***: p-value < 0.001.

3.2. Co-Treatment DZNep/Cisplatin Is Not Sufficient to Reduce Survival Compared to Cisplatin
Treatment

Next, we compared the response of chondrosarcomas to cisplatin and DZNep alone
or in combination. We used drugs at concentrations that are close to the IC50 values
in the less-sensitive-to-cisplatin cell line (SW1353), and that did not induce apoptosis in
normal cells (chondrocytes). We evaluated whether direct DZNep/cisplatin co-treatment
(Figure 2A), or cisplatin priming followed by DZNep/cisplatin co-incubation (Figure 2B,C),
are able to reduce chondrosarcoma survival. None of the combinations were able to induce
a reduction of chondrosarcoma survival compared to cisplatin alone.
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Figure 2. Direct co-treatment of DZNep/cisplatin or cisplatin priming did not affect cell survival. SW1353 or JJ012
chondrosarcoma cells were treated with DZNep (0.3µM) and cisplatin (5µM). (A) Co-treatment Cisplatin/DZNep for three
days. (B) Primed with cisplatin (one day), following co-treatment cisplatin/DZNep (two days). (C) Primed with cisplatin
(two days) following by co-treatment of cisplatin/DZNep (three days). At the end of the experiments, viable adherent cells
were counted. Cell survival was normalized to untreated cells. *: p-value < 0.05; **: p-value < 0.01; ***: p-value < 0.001.

3.3. Co-Treatment with DZNep and Cisplatin after DZNep Priming Enhances the Sensibility to
Cisplatin in Chondrosarcomas

Next, we evaluated whether DZNep priming followed by DZNep/cisplatin co-
treatment enhances the sensibility to cisplatin alone (Figure 3A). We compared the response
of chondrosarcomas to cisplatin and DZNep alone or in combination (Figure 2A). We used
drugs at concentrations that are close to the IC50 values in the less-sensitive-to-cisplatin cell
line (SW1353), and that did not induce apoptosis in normal cells (chondrocytes). We showed
that DZNep and cisplatin significantly reduced the viability of chondrosarcomas. Interest-
ingly, this reduction of cell survival was significantly greater when chondrosarcomas were
treated by the combination of DZNep/cisplatin after DZNep priming (corresponding to a
priming period with DZNep 0.3 µM for two days, followed by a treatment period for three
days with a combination of DZNep 0.3 µM and cisplatin 5 µM), compared to treatments
with each drug alone (Figure 3B).
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Figure 3. Co-treatment with DZNep and cisplatin after DZNep priming increased the effect of cisplatin on cell survival
and on apoptosis in chondrosarcoma cells, but not in normal cells. SW1353 or JJ012 chondrosarcomas, and normal cells
(chondrocytes) were primed or not with DZNep (0.3 µM) for two days and then treated with DZNep (0.3 µM) and/or with
cisplatin (5 µM) for three days. (A) Experimental design. (B,D) Viable adherent cells were counted at the end of treatments.
Graphs represent cell survival normalized to untreated cells. Data are expressed as means ± SEM. (C,E) Apoptosis was
assayed by staining cells with Apo 2.7 antibody coupled with phycoerythrin. Histograms represents the percentage of
apoptotic cells. Data are expressed as means ± SEM. *: p-value < 0.05; **: p-value < 0.01; ***: p-value < 0.001.

We further analyzed the effect of drugs alone or in combination on apoptosis. Both
treatments with DZNep (0.3 µM for five days) or cisplatin (5 µM for three days) moderately
induced apoptosis. In contrast, two days of DZNep priming followed by treatment for
three days with both drugs significantly increased apoptosis (Figure 3C).
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3.4. Co-Treatment with DZNep and Cisplatin after DZNep Priming Does Not Enhance
Chondrocyte Sensibility to Cisplatin

Furthermore, we investigated whether treatments with DZNep and cisplatin alone
or in combination are toxic in normal cartilage cells, e.g., chondrocytes. Even if the
combination of DZNep and cisplatin reduced the chondrocyte cell number (−40%) after
five days compared to untreated cells (Figure 3D), it did not induce apoptosis in these cells
(Figure 3E), suggesting that it only reduced cell proliferation without leading to cell death
in chondrocytes.

3.5. Peritoneal Injection of DZNep and Cisplatin Reduces Tumor Growth in Xenograft Mice

To extend this analysis, we performed in vivo experiments using nude mice bearing
xenografted JJ012 tumors (chondrosarcomas cell lines with better capacity of implantation
than SW1353). As shown in Figure 4, DZNep priming followed by DZNep/cisplatin
co-treatment significantly slowed down tumor growth compared to treatment with a single
drug (see Table S1 for raw values). No change in the weight of the mice treated with
cisplatin, DZNep, or both drugs was observed.

Figure 4. Peritoneal injections of DZNep and cisplatin reduced tumoral growth of chondrosarcoma in xenograft nude mice.
The JJ012 chondrosarcoma cell line was subcutaneously injected in 25 nude mice. When tumors were implanted, DZNep
(2 mg/kg) was intraperitoneally injected three times per week. After four weeks of DZNep priming, mice were treated with
DZNep and/or cisplatin (2 mg/kg i.p) three times per week for three weeks. (A) Experimental design. (B) Tumors were
measured regularly by a caliper and tumoral volume was calculated. Values represent means ± SEM. *: p-value < 0.05;
***: p-value < 0.001. (C) At the end of experiment, proteins were extracted from tumors, and PARP cleavage was analyzed
by western blot.

Moreover, apoptosis in untreated or DZNep-treated tumors was also analyzed. The
data revealed that the combination of cisplatin with DZNep increased apoptosis as evi-
denced by the PARP cleavage (Figure 4C).

4. Discussion

Chondrosarcoma treatment remains an important issue for clinicians. Indeed, this
bone tumor is resistant to conventional radio- and chemotherapy, and its resection is
the usual treatment. In this context, there is an important need to identify novel drugs
able to treat chondrosarcoma. The present study demonstrates that the combination of
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3-deazaneplanocin and cisplatin exhibits strong pro-apoptotic effects on chondrosarcomas
in vitro and in vivo, superior to the effects of the drugs alone.

We previously showed that DZNep, an inhibitor of SAH known to reduce histone
methyltransferase activity, induces apoptosis in vitro and in vivo in chondrosarcomas [3–5],
without inducing deleterious effects on the majority of tissues, nor on cognitive functions in
mice [16]. In the present study, we show that co-incubation with DZNep and cisplatin after
DZNep priming enhances apoptosis compared to treatment with the drugs alone. This is
in accordance with the literature. Indeed, in other cancer cells, such as cholangiocarcinoma,
pancreatic cancer, or rhabdoid tumor cells, the combination of DZNep with standard anti-
cancer agents (gemcitabine, etoposide, or doxorubicin) induces a synergistic inhibition of
cell proliferation and significantly increases apoptosis compared to the drugs alone [24–26].

Furthermore, and interestingly, DZNep and cisplatin alone as well as in combination
did not induce apoptosis in normal chondrocytes. Similarly, DZNep/gemcitabine co-
incubation does not enhance drug toxicity in normal pancreatic cells [18]. Additionally, we
observed no change in the weight of the mice treated with cisplatin, DZNep, or both drugs,
suggesting that, at the doses used in this study, these drugs do not have major toxic effects
in vivo.

Intriguingly, this enhancement of the cytotoxic effect by combination of DZNep/cisplatin
was only observed when cells were primed with DZNep, but not for a direct co-treatment.
This temporal difference was also observed by Hung and collaborators, which showed
that DZNep priming has superior cytotoxicity and synergy with gemcitabine than the
co-exposure of both drugs in pancreatic cancer cells [18].

The mechanism by which DZNep potentialize chemotherapeutic drugs is still unclear.
Some have proposed that DZNep, by reducing EZH2 activity and H3K27 trimethylation, a
mark of heterochromatin, may induce a loss of chromatin compaction, which could favour
DNA damage induced by conventional cytotoxic drugs (such as platinum compounds)
and consequently reduce the survival of cancer cells. However, in some chondrosarcomas
(as JJ012), DZNep did not reduce H3K27me3. However, DZNep is known to reduce
global histone methylation, and herein, we show that this drug significantly reduces the
trimethylation of H3K36, H4K20, H3K79, and H3K4, confirming that DZNep acts though
epigenetic mechanisms.

5. Conclusions

We have developed a procedure to enhance the apoptosis induced by cisplatin and
DZNep in human chondrosarcomas. While cisplatin alone only produces modest effects in
theses bone tumors, DZNep priming followed by DZNep/cisplatin co-treatment enhances
the overall pro-apoptotic efficacy of each of the drugs in chondrosarcoma cells, while
preserving normal chondrocytes. These results demonstrate the potential use of this
epigenetic-chemotherapeutic combination approach for further studies and management
of chondrosarcoma treatment.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/cancers13184648/s1, Table S1: Tumoral volumes of chondrosarcoma xenografts during
priming and treatment periods. File S1: the whole western blot figures.
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