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The role of properdin in complement-mediated renal diseases: a new
player in complement-inhibiting therapy?
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Abstract
Properdin is known as the only positive regulator of the complement system. Properdin promotes the activity of this defense
system by stabilizing its key enzymatic complexes: the complement alternative pathway (AP) convertases. Besides, some studies
have indicated a role for properdin as an initiator of complement activity. Though the AP is a powerful activation route of the
complement system, it is also involved in a wide variety of autoimmune and inflammatory diseases, many of which affect the
kidneys. The role of properdin in regulating complement in health and disease has not received as much appraisal as the many
negative AP regulators, such as factor H. Historically, properdin deficiency has been strongly associatedwith an increased risk for
meningococcal disease. Yet only recently had studies begun to link properdin to other complement-related diseases, including
renal diseases. In the light of the upcoming complement-inhibiting therapies, it is interesting whether properdin can be a
therapeutic target to attenuate AP-mediated injury. A full understanding of the basic concepts of properdin biology is therefore
needed. Here, we first provide an overview of the function of properdin in health and disease. Then, we explore its potential as a
therapeutic target for the AP-associated renal diseases C3 glomerulopathy, atypical hemolytic uremic syndrome, and proteinuria-
induced tubulointerstitial injury. Considering current knowledge, properdin-inhibiting therapy seems promising in certain cases.
However, knowing the complexity of properdin’s role in renal pathologies in vivo, further research is required to clarify the exact
potential of properdin-targeted therapy in complement-mediated renal diseases.
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Abbreviations
aHUS Atypical hemolytic uremic syndrome
AP Alternative pathway
C3G C3 glomerulopathy
C3GN C3 glomerulonephritis
C3NeF C3 nephritic factor

CP Classical pathway
DDD Dense deposit disease
FB Factor B
FD Factor D
FH Factor H
FI Factor I
GBM Glomerular basement membrane
LP Lectin pathway
MAC Membrane attack complex
PTEC Proximal tubular epithelial cells
sC5b-9 Soluble C5b-9
TSR Thrombospondin type 1 repeat

Introduction

In the last decades, it has become evident that the complement
system is involved in various diseases [1]. Consequently, the
interest in complement-inhibiting therapy has grown
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immensely [2]. In principle, the complement system is a
Bgood guy^ as it is a crucial part of our innate immunity. It
consists of numerous plasma and cell surface proteins that
strongly interact with each other and with other regulatory
(immune) systems to discriminate between foreign, altered-
self, and healthy self-surfaces. In this way, complement pro-
vides the body with sophisticated immune surveillance and
maintenance of homeostasis [3]. An arsenal of complement
regulatory proteins keep the complement activity in control
and limited to target cells. However, when the balance be-
tween the activation and regulation is disturbed, the wide-
spread functions of complement can cause damage to healthy
tissues. The kidneys are specifically vulnerable to such injury
[1, 4]. In complement-mediated diseases, the blocking of
complement-induced damagemay outweigh the possible risks
of (partly) compromising immunity. Complement inhibition
can be focused at different levels of the complement activation
cascades. In general, drugs can be grouped into three major
functional categories: preventing complement initiation,
dampening complement amplification, and blocking the com-
plement effector molecules. Importantly, complement-
inhibiting therapy must be considered with care and for each
disorder, or maybe even for each patient, individually. This
requires a thorough understanding of the pathological mech-
anisms underlying disease and of the exact functions of the
molecule of target [2].

An upcoming but for a long time ignored candidate tar-
get is properdin. This complement regulator has a crucial
role in promoting one of the three activation routes of the
complement system, namely the alternative pathway (AP).
The AP is an important contributor to overall complement
activity as this pathway has a guarding function providing
continuous low-level complement activity and an amplify-
ing function that augments complement activity initiated by
all three activation pathways. Properdin is well-known as
the only positive regulator of the AP. However, compared to
the many negative regulators that attenuate AP activity, our
knowledge of the exact functions of properdin in health and
disease is lagging behind. Nonetheless, properdin has
regained interest in the scientific community, especially in
the last 10 years, and this has initiated major advances in the
complement field. In this review, a general overview of the
basics of properdin biology is given first, covering the pro-
duction and structure of properdin, its function in the AP,
and its clinical significance. Afterwards, the possible role of
properdin in renal diseases associated with complement
dysregulation is examined, with focus on C3 glomerulopa-
thy, atypical hemolytic uremic syndrome, and proteinuria-
induced tubulointerstitial injury. Finally, the potential of
properdin as a new therapeutic target for treatment of these
diseases is discussed.

The production and structure of properdin

The complement protein properdin is a highly positively
charged plasma glycoprotein. In contrast to most complement
components that are being produced by the liver, properdin is
mainly synthesized by leukocytes, including T cells [5],
monocytes [6], and mast cells [7]. The protein is also stored
in the secondary granules of neutrophils from which it is re-
leased upon stimulation [8]. The contribution of neutrophils to
the total protein levels found in plasma is highlighted by the
association between chemotherapy-induced neutropenia and a
decline in circulating properdin levels [9]. Normal systemic
levels of human properdin generally cover a large range in the
healthy control group and are reported in a range from 5 to
45 μg/ml [10–24]. The large range observed among studies is
likely due to differences in the methods and reagents used,
e.g., detection methods, antibody combinations, and prepara-
tions used as the standard protein. Of note, systemic properdin
levels are lower in healthy neonates and infants (i.e., < 1 year
old) compared to adults [19, 20, 23–28].

Properdin is encoded on the X chromosome and circu-
lates in the blood in oligomeric forms. This latter charac-
teristic is very important for its biological function. The
properdin oligomers are composed of identical rod-like
monomers of ~ 53 kDa [29]. Each monomer consists of
442 amino acid residues [30] and comprises one presumed
truncated and six full thrombospondin type I repeat (TSR)
domains, numbered TSR0 to TSR6 from the N to C termi-
nus [30–32]. The flexible monomeric subunits associate
head-to-tail into mainly cyclic dimers, trimers, or tetramers
with curly vertex structures (Fig. 1) [10, 29, 33]. In normal
human plasma, the oligomers exist in a fixed ratio of ap-
proximately 1:2:1, with the trimer being the predominant
form [10].

The flexible, oligomeric nature of properdin is chal-
lenging for structural and biochemical studies. For a
long time, information about the functions of the indi-
vidual TSRs regarding target binding and oligomeriza-
tion had therefore been derived primarily from structure-
function studies using mutated/truncated recombinant
proteins or specific TSR-directed antibodies [31, 34,
35]. Recent advances in the elucidation of the atomic
structure of properdin have now indicated that four TSR
domains, originating from two monomers, are involved
in vertex formation. This leaves three TSRs to form the
connecting part [33, 36]. The most likely composition
of properdin, based on current knowledge, is a vertex
with TSR0–1/TSR5–6 connected by TSRs 2–4 (Fig. 1).
A complete, high-resolution atomic structure of proper-
din (in complex with the convertase) still needs to be
resolved.
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The function of properdin in the alternative
pathway of the complement system

Activation of the alternative pathway

Properdin promotes complement activity by specifically act-
ing on the AP. In contrast to the classical (CP) and lectin (LP)
complement activation pathways, the AP is constantly active
at a low level under normal conditions. Spontaneous hydroly-
sis of C3 at a low rate enables formation of an initial, fluid-
phase C3 convertase (C3(H2O)Bb) that is able to cleave C3
into its active components C3a and C3b (Fig. 2). This mech-
anism is known as Btick-over^ and generates a persistent low
level of activated C3 molecules that provide the host with
constant responsiveness to potential danger. C3a is released
as an anaphylatoxin to mediate inflammation, while C3b
marks target cells near its activation site for phagocytosis in
a process known as opsonization. Activated C3b molecules
can also be generated by the activity of C3 convertases from
the other two activation pathways that are formed upon rec-
ognition of immune complexes or specific carbohydrate sig-
natures. Such pattern recognition function has also been
assigned to properdin for the AP in certain contexts (see
BProperdin as an initiator of alternative pathway activity^ for
more details). Once complement is initiated and active C3b
has been formed, the AP supports an important amplification
loop. By interacting with factor B (FB), factor D (FD), and
properdin, target-bound C3b can form effective, stabilized AP
C3 convertases (C3bBbP). These surface-bound convertases
can amplify the complement response by converting many
more C3 molecules into C3b, which in turn support new C3
convertase formation, C5 convertase formation, and the initi-
ation of further downstream effects of terminal pathway acti-
vation (see Fig. 2) [3, 4, 37]. C5 convertases convert C5 into

C5a, which is a strong anaphylatoxin, and C5b. This latter
fragment forms the base for the assembly of the membrane
attack complex (MAC; C5b-9). This pore-forming protein
complex is inserted into membranes to induce direct osmotic
lysis of the target cell or indirect cytotoxicity via pro-
inflammatory pathways [3, 4, 37]. Thus, besides being an
important immunosurveillance system, the AP is also an im-
portant amplifier of initiated immune responses as it can ac-
count for over 80% of total complement activity [38].

Regulation of alternative pathway activity

The forceful activity of the AP must be tightly regulated to
avoid damage to healthy host cells and tissues. Several cell-
bound and soluble complement regulatory proteins keep AP
activation restricted to target surfaces and keep excessive AP
activation in control [3, 4, 37]. The regulatory mechanisms are
mainly aimed at inhibiting C3 convertase activity and can be
divided into two ways of action. First of all, complement reg-
ulators may have cofactor activity for the circulating comple-
ment regulator factor I. This soluble protease cleaves C3b into
inactive fragments that no longer support convertase forma-
tion. Secondly, regulators may have decay-accelerating activ-
ity, which means they promote the dissociation of the
convertases. Regulators with this activity may also compete
with FB to bind to C3b and thereby prevent convertase (re-)f-
ormation. Factor H (FH) is the most abundant and important
soluble regulator. It has all of the abovementioned activities
and can control AP activation both in fluid phase and on
surfaces to which it is recruited, also on tissue structures that
do not express membrane-bound regulators. Properdin is the
only known complement regulator that promotes instead of
inhibits AP activity. In addition, properdin only interacts with
AP convertases, in contrast to some of the other AP

Fig. 1 Proposed model of the structure of properdin oligomers. Properdin
is composed of monomeric subunits that associate together to form
dimeric, trimeric, or tetrameric oligomers with curly vertex structures.
Each monomer contains six full thrombospondin type I repeat (TSR)

domains named TSR1–6 and a putative truncated N-terminal TSR
(indicated with the striped pattern) denoted as TSR0. This latter TSR
contains all six conserved cysteine residues although overall sequence
homology with the other TSRs is low
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complement regulators that also regulate CP/LP convertase
activity [3, 4, 37].

The place of properdin in the alternative pathway

Initially, when the AP was still to be discovered, pro-
perdin was thought to be the initiator of serum-
dependent complement activity in the Bproperdin system^
defined by Louis Pillemer in 1954 [39]. His work show-
ing a non-antibody-dependent way of complement

activation was very controversial at that time and was
difficult to reproduce; hence, it received much criticism.
After the elucidation of the Btick-over^ mechanism as an
initiator of AP activity, this initiating function of proper-
din was replaced by its well-known function as a stabi-
lizer of AP convertases [40]. Nonetheless, biochemical
studies in the last two decades have provided new evi-
dence for a function of properdin in directing and trig-
gering complement activation on potentially danger-
ous targets.
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Fig. 2 The alternative pathway of the complement system. Activation of
the complement system can be achieved via three pathways—the
classical, lectin, and alternative pathways—depending on the trigger
that is recognized. The proteolytic enzyme cascades of these three
pathways converge at the central event of complement activation,
which is the cleavage of C3 into C3a and C3b by C3 convertases. The
classical and lectin pathways are activated using pattern recognition
molecules that initiate formation of the C3 convertase C4bC2a. The
alternative pathway is continuously activated at a low rate by a
mechanism called Btick-over.^ The spontaneous hydrolysis of C3
generates the active C3(H2O) fragment which can form an initial fluid-
phase C3 convertase upon association with factor B (FB) that is
subsequently activated by factor D (FD) into Bb. Under normal
conditions, this convertase generates small amounts of activated C3
fragments. C3a is released as an anaphylatoxin to mediate
inflammation, for instance by attracting leucocytes. C3b is an opsonin;
it binds to molecular or cellular target surfaces and marks them for

phagocytosis. C3b can also act as a platform for formation of new C3
convertases which are effectively stabilized by properdin (P). The
alternative pathway may also be initiated by properdin as this molecule
recognizes target surfaces and subsequently recruits C3b and FB to form
stabilized C3 convertases. Alternative pathway C3 convertases are
important amplifiers of the complement reaction by converting many
C3 molecules into C3b which in turn support new C3 convertase
formation. Furthermore, C3b can attach to preformed C3 convertase
complexes to form C5 convertases that convert C5 into C5a (an
anaphylatoxin similar to C3a) and C5b to initiate terminal pathway
activity. The C5b activation fragment recruits a series of other
complement components, i.e., C6, C7, C8, and multiple C9 molecules,
to form the membrane attack complex (MAC; C5b-9). This protein
complex forms a pore that disrupts the membrane integrity and thereby
can cause osmotic lysis of susceptible bacteria and cells. In sublytic
amounts, MAC causes cell damage by activating still not well-
understood (pro-inflammatory) signaling pathways
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Properdin as a stabilizer of alternative pathway convertases

Under physiological conditions, convertases are unstable en-
zyme complexes with a short half-life of around 90 seconds
[41, 42]. In association with properdin, their stability increases
up to tenfold [42, 43]. Properdin forms particularly strong
interactions with the C-terminal part of C3b and binds as well
to Bb [33, 36, 44, 45]. Its affinity for C3bB (the pro-
convertase) and C3bBb complexes is much higher than that
for C3b alone [44, 46]. Thus, properdin might stabilize these
complexes by holding the two components of the convertase
together. Besides, its binding induces a conformational change
in C3b, which hinders both the decay-accelerating and cofac-
tor activity of complement regulators, such as FH [33, 36, 44].
As such, properdin is an important positive regulator of the
AP.

From the structural studies of Alcorlo et al. [33] and
Pedersen et al. [36], it became clear that the vertexes of pro-
perdin are responsible for this binding and stabilization of
convertases (Fig. 3(A)). Oligomerization of at least twomono-
mers to form these vertex structures is therefore essential for
properdin’s function in vivo [33, 36]. In addition, it was
shown that oligomers can use each of their vertexes for
convertase binding [33, 46]. This may explain why tetrameric
and trimeric properdin are reported to be more active than
dimeric properdin [10, 47].

The stabilizing action of properdin is focused predominant-
ly on surface-bound convertase complexes, as the affinity of
properdin for surface-bound C3 derivatives is much higher
than that for fluid-phase fragments [44]. In line with this, it
is supposed that properdin facilitates the switch from the C3 to

the C5 convertase on surfaces [48]. C5 convertases are
only efficiently formed on surfaces, and not in fluid
phase, since their formation requires high densities of
C3b [49]. There are strong indications that absence of
properdin is associated with reduced C5 convertase and
terminal pathway activity (also see BUnexpected findings
of properdin gene knockout in C3G^) [11, 48, 50–56]. It
remains unclear, however, if properdin is strictly needed
for C5 convertase formation and/or if properdin stabilizes
the C5 convertase complex (C3bBbC3b) itself. This latter
function is generally assumed based on the high similarity
between C3 and C5 convertases, and it is often stated in
literature with references to studies performed in the
1970s and 1980s [42, 57, 58]. In our opinion, convincing
up-to-date evidence has yet to come.

Properdin as an initiator of alternative pathway activity

In 2006, Hourcade published a study that renewed the interest
in the concept of properdin as an initiator of AP activity [46].
It was demonstrated that properdin could not only stabilize
C3bBb complexes but also actively accelerate the association
of C3b with FB to form C3 convertases. More importantly,
properdin that was bound to an artificial surface, either direct-
ly or via C3 convertase intermediates (C3b, C3bB, or C3bBb),
was able to recruit components from the environment to form
new convertases on its unoccupied binding sites. Thus, pro-
perdin could serve as a platform for de novo convertase as-
sembly on a surface (Fig. 3(B, C)) [46]. Numerous studies
followed which extended these findings to biological surfaces
under more physiological conditions. Targets on which
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Fig. 3 The functions of properdin
in the alternative pathway. The
interactions of properdin,
depicted in its trimer form, with
C3 convertases (C3bBb) and a
surface are displayed. (A)
Properdin as a stabilizer of
preformed convertases on a
surface. (B, C) Properdin as a
platform for convertase formation
after initial C3-mediated binding
(B) or as a pattern recognition
molecule by directly recognizing
target surface structures (e.g.,
glycosaminoglycans and exposed
DNA) and subsequently
recruiting convertase components
(C3bBb, C3bB, or C3b and FB)
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properdin could initiate AP activity included typical AP tar-
gets (e.g., zymosan and rabbit erythrocytes), dangerous non-
self surfaces (e.g., Chlamydia pneumoniae), altered-self sur-
faces (e.g., apoptotic and necrotic cells), and also self surfaces
such as platelets and proximal tubular epithelial cells (PTECs)
[7, 17, 59–69]. Suggested binding ligands on non-microbial
cells are glycosaminoglycans [60] and surface-exposed DNA
[17]; both are negatively charged.

Whether endogenous properdin in serum can indeed act as
a true pattern recognition molecule in the meaning of being
able to recognize and directly bind surface structures without
primary C3b deposition in vivo (Fig. 3(C)) is a subject of
controversy. The conflicting findings on this topic depend
on the following three main aspects: (1) the source of proper-
din that is used, e.g., purified from serum, in whole serum
environment, or freshly secreted from leukocytes; (2) the ex-
perimental conditions under which the assays are performed,
e.g., allowing initial C3b deposition or not; and (3) the choice
of biological target surface studied. For instance, caution
should be taken in interpreting results obtained through the
use of purified properdin, as it can form large polymeric ag-
gregates, especially upon freeze-thaw cycles [10, 70]. These
non-physiological aggregates have different AP-activating
and target-binding properties than the physiological properdin
oligomers that were separated from these polymeric aggre-
gates after purification [10, 63, 64, 67, 70]. In addition, to
confirm that properdin is a true recognition molecule, condi-
tions should be used in which no initial C3b deposition can
take place [17, 71, 72]. Some studies have suggested that
circulating properdin in C3-inactive serum was not able to
bind freely to certain targets which purified physiological pro-
perdin oligomers [64–67, 72] or properdin freshly released
from activated leukocytes [60] could bind. C3-inactive serum
refers to serum in which C3 (activation) is blocked or re-
moved, for example by adding a C3-blocking molecule, using
C3-depleted serum, or using a calcium- and magnesium-
chelating agent to prevent complement activation. These find-
ings have led to the hypothesis that serum contains inhibitors
that prevent or regulate the direct pattern recognition function
of properdin in the circulation [73, 74]. Such a regulatory
mechanism could serve to prevent unwanted properdin-
mediated damage systemically and to keep the pattern recog-
nition preserved for specific conditions of danger or disease.
In a recent study of O’Flynn et al., monomeric (but not
pentameric) C-reactive protein was identified as such a
properdin-regulating molecule, as it was able to control
properdin-mediated AP activation on the PTEC surface [75].

In conclusion, it is evident that properdin can act as a
docking station for convertase assembly and further AP acti-
vation (Fig. 3(B)). However, confirming its potential as a di-
rect pattern recognition molecule in different in vivo environ-
ments (Fig. 3(C)) demands for a critical evaluation of used
properdin preparations and experimental setup. Taking these

conditions into account, the most important properdin-target
interactions published so far can be summarized as follows:
purified physiological properdin oligomers were shown to
bind directly to zymosan [63, 64], necrotic, diseased B and
T cell lines [64], Chlamydia pneumoniae [65], and activated
platelets [67]; freshly secreted properdin was found to bind to
apoptotic T cells [60] and activated platelets [67]; and proper-
din in C3-inactive serum has only been shown to bind to
necrotic cells so far [17]. Interestingly, recent indications of
other possible AP activators have emerged, such as comple-
ment FH-related protein 4 [76] and FH-related protein 5 [77,
78]. Comparable pattern recognition and AP-activating and
enhancing functions were attributed to these molecules as to
properdin, but these proteins also need further investigation as
to their exact role in different physiological contexts.

Properdin in the local microenvironment

Besides a systemic role in complement, properdin can also act
as an important and powerful mediator in (pro-inflammatory)
local microenvironments. At these sites, properdin-producing
cells are abundant and the properdin they produce might es-
cape the serum inhibition that is assumed to exist in the circu-
lation. Thus, locally strong increases in properdin levels may
be generated which may modulate diverse immune responses
at these sites (reviewed in [79]). First of all, properdin may
have an important role in the safe and effective clearance of
dying/dead cells. Direct binding of freshly secreted properdin
from neutrophils to apoptotic and necrotic cells may aid in the
phagocytosis of these cells [60]. Besides, the high amounts of
properdin released as a response to local stimuli may amplify
the AP-mediated inflammatory events in the microenviron-
ment. Properdin-mediated complement activation contributes
to further recruitment of pro-inflammatory cells to the site of
infection via generation of the potent neutrophil
chemoattractant C5a. In turn, neutrophils are triggered to re-
lease properdin from their granules, which may further act in a
positive feedback loop by activating complement at its own
surface and by activating and recruiting more neutrophils to
inflammation sites [79, 80].

Clinical significance of properdin

Properdin deficiency

Properdin deficiency is a rare X-linked disorder that mainly
affects males and is strongly associated with an increased
vulnerability for meningitis caused by Neisseria meningitidis
strains [81, 82]. Over 100 cases have been documented in over
25 families [82, 83]. Compared to properdin-normal individ-
uals, meningococcal infections in properdin-deficient patients
are associated with higher mortality and are more frequently
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caused by uncommon serogroups. Besides, the infections gen-
erally occur during teenage years instead of during early child-
hood as in the general population [84–86]. In addition to the
increased risk for meningococcal infection, a recent study
found that in one family, properdin deficiency was associated
with recurrent otitis media and pneumonia [87]. These find-
ings underline the importance of properdin in the host defense
against certain but apparently not all pathogens.

Three types of properdin deficiency are recognized: type I
describes the complete absence of the protein and is the most
common, type II encompasses the cases in which levels are
very low (up to 10% of normal), and in type III, systemic
properdin levels are normal, but the protein is functionally
defective [82]. Female carriers present with on average half
of the normal properdin levels; levels range from nearly zero
to concentrations in the normal range due to an uneven inac-
tivation of the mutated and normal X chromosome [84, 88].
The mutations underlying properdin deficiency are very het-
erogeneous. In type I deficient families, various nonsense and
missense mutations and few small deletions have been char-
acterized [82, 88–91]. These were located in exons 4 to 9,
encoding TSR1–5 and the first part of TSR6, respectively
[82, 88–91]. The genetic changes in type I deficiency typically
affected highly conserved amino acids [82] and are expected
to alter the conformation and/or stability of properdin in such a
way that it cannot be excreted anymore and becomes catabo-
lized intracellularly [92]. The three underlying genetic defects
found in type II deficiency are two missense mutations, one in
exon 4 [93] and one in exon 8 [92], and one small combined
deletion/insertion in exon 5 causing a frameshift and prema-
ture stop in exon 7 [87]. As a result of these mutations, pro-
perdin is likely impaired in its oligomerization, but the effect
on structure is probably less drastic than expected in type I
deficiency. Rapid catabolism of abnormal properdin mole-
cules extracellularly might explain the low systemic properdin
levels [92]. Only one family with type III deficiency has been
identified [94]. The affected Dutch family members contained
a missense mutation in exon 9 that likely affected C3b binding
by properdin [95].

Potential role for properdin in human pathologies

The involvement of properdin in other human disease settings
has only recently started to become elucidated. In the last
decade, multiple studies to (complement-related) diseases
have emerged in which alterations in systemic properdin
levels were found (see Table 1). These studies have given us
an indication of diseases in which properdin might play a
significant role. Importantly, as in healthy controls, properdin
levels in the studied patient cohorts generally also cover a
large range. Reduced systemic properdin levels as compared
to controls were observed in various disease conditions, such
as in the renal diseases C3 glomerulopathy (C3G) and lupus

nephritis [9, 11–14, 16, 21, 96] (Table 1). This may indicate
that properdin is Bconsumed^ in the circulation due to highAP
activity; i.e., properdin is repositioned from the bloodstream to
complement convertases at local sites of (surface-bound) com-
plement activation to drive the AP activity. Lowered concen-
trations in the blood may also indicate a problem with the
properdin-producing cells as in neutropenia [9]. Few studies
also found increased systemic properdin levels (Table 1), for
example in IgA nephropathy and in patients on hemodialysis
[15, 18, 22, 97, 98]. The observation that increased properdin
levels were associated with cardiovascular events and reduced
levels with chronic heart failure was somewhat contradicting
and needs further examination [16, 98]. A possible explana-
tion might be that the role of complement changes at different
stages of a disease. At the initial phase, elevated properdin
levels might mainly increase the risk for developing the full
disease. Once the disease has advanced and is clearly mani-
fested, properdin levels might be reduced due to consumption
[16]. Furthermore, some studies have reported pathological
conditions in which clear local changes in properdin were
found. For example, properdin levels increased in the bron-
choalveolar lavage of allergic asthma and rhinitis patients after
allergen challenge, which may indicate increased production/
infiltration of properdin-producing inflammatory cells [99].
Future research will define whether more AP-mediated
(renal) diseases show disturbances in properdin levels system-
ically and/or locally or whether this is selective for certain
disease mechanisms only. After all, in some AP-related dis-
ease groups, no alterations in systemic properdin levels could
be discovered [100].

Studies of properdin-deficient mouse models

Studies using properdin-deficient mouse models or mice treat-
ed with anti-properdin antibodies have provided us with indi-
cations about the beneficial and detrimental outcomes of
properdin-inhibiting strategies. In general, the absence of pro-
perdin has been found to be beneficial in mouse models in
which the complement activation is directed to host cells or
tissues. Elimination of properdin has been shown to be prom-
ising in mouse models of renal ischemia-reperfusion injury
[101, 102], arthritis [52, 53, 103], allergic airway inflamma-
tion [99], abdominal aortic aneurysm formation [104], and,
very recently, atypical hemolytic uremic syndrome (aHUS)
[105]. Properdin inhibition has also been shown effective in
preventing complement-mediated extravascular hemolysis
[62] and embryonic lethality [103] induced by the absence
of an important membrane-expressed murine complement
regulator. The better outcome of properdin-affected mice in
these disease models is likely due to abrogated/attenuated AP
activation and thus alleviation of the injuring immune re-
sponses directed to host tissues. On the contrary, in cases of
infection where complement is directed to the invading
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Table 1 Overview of human diseases and conditions associated with altered systemic properdin levels

Disease/condition Findings Reference

a. Diseases and conditions associated with reduced systemic properdin levels

C3 glomerulopathy Reduced P levels compared to controls. Average P levels were
almost two times lower in C3GN compared with DDD,
while sC5b-9 levels were elevated in C3GN compared with
DDD.

Zhang et al. 2014 [12]

Reduced P levels compared to controls (i.e., below the
mean-2sd) in 53% of the patients negative for C3NeF.
C3GN was more frequent in the C3NeF-negative group, but
no difference in C3GN frequency between the groups with
normal versus reduced P. P consumption correlated with
reduced C3 and C5 levels, with elevated sC5b-9 levels, and
with a higher degree of proteinuria.

Corvillo et al. 2016 [11]

Reduced P levels just below the lower limit of the reference
range of controls in 4 out of 5 patients positive for C4NeF.
Also decreased serum C3 and C5 levels, while C3c and
sC5b-9 were increased.

Zhang et al. 2017 [13]

Anti-neutrophil cytoplasmic antibody-associated vascu-
litis

Reduced P levels in active phase versus controls and versus
remission, while plasma C3a, Bb, C5a, and sC5b-9 were
elevated in active stage compared to remission. P levels in-
versely correlated with the proportion of crescents in the
renal specimen.

Gou et al. 2013 [21]

Lupus nephritis Approximately two-times reduced P levels in active lupus ne-
phritis compared to controls, accompanied by increased
plasma C3a, Bb, C5a, and C5b-9.

Gou et al. 2013 [21]

Human sepsis Reduced P levels in patients on admission to the intensive care
unit compared to controls. Slightly lower P levels in
non-survivors compared to survivors. Low P levels corre-
lated to increased treatment duration.

Stover et al. 2015 [14]

Chronic heart failure Reduced P levels compared to controls, especially in those with
a more advanced clinical disease, while FD and sC5b-9 were
increased. P levels correlated with measures of cardiac
function and were associated with adverse outcome.

Shahini et al. 2017 [16]

Viral lower respiratory tract infections Reduced P levels in patients with severe compared to mild
diseasea, although no differences found in acute versus
recovery samples.

Ahout et al. 2017 [96]

Chemotherapy-induced neutropenia Reduced P levels in the neutropenic state versus the
preneutropenic state with normal neutrophil counts.

Tsyrkunou et al. 2017 [9]

b. Diseases and conditions associated with increased properdin levels

Healthy first-degree relatives of type 2 diabetes subjects Elevated P levels in healthy first-degree relatives of type 2
diabetes subjects compared to age-matched controls. FB and
sC5b-9 were also significantly higher in first-degree
relatives, but no differences in C3, Bb, C3a, or FH.

Somani et al. 2012 [15]

Hemodialysis Elevated P levels (by approximately factor 1.3) compared to
controls, and slightly higher levels at the end of the
hemodialysis session compared to the start. Also increased
levels of C3d and C5b-9 after hemodialysis.

Poppelaars et al. 2016 [18]

Antibody-mediated rejection in heart transplant
recipients

Elevated P levels in AMR patients carrying a rare
AMR-associated allele in the P gene compared to control
patients not carrying the rare allele and without AMR.

Marrón-Liñares et al. 2017
[97]

Cardiovascular events Elevated P levels were associated with endothelial dysfunction,
and with the risk of cardiovascular events.

Hertle et al. 2016 [98]

IgA nephropathy Elevated P levels (by approximately factor 1.5) compared to
controls. Also in the patients followed over time, P levels
remained higher.

Onda et al. 2007 [22]

a No data on age-matched controls in this study involving very young children and no correction for age between the disease groups

P properdin, C3GN C3 glomerulonephritis,DDD dense deposit disease, C3NeF C3 nephritic factor, C4NeF C4 nephritic factor, sC5b-9 soluble C5b-9,
FD factor D, FB factor B, AMR antibody-mediated rejection
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pathogen, absence of properdin was often found detrimental
for the host. Properdin deficiency has been associated with an
exacerbated disease outcome in models of polymicrobial sep-
tic peritonitis [7], colitis [50, 51], small intestinal mucositis
[106], LPS-induced non-septic shock [107], and Listeria-in-
duced septicemia [108]. In these cases, properdin-deficient
mice likely had a detrimental outcome due to compromised
host defense against the microbial intruder, indicating proper-
din played a crucial role in this process. Nonetheless, the
abovementioned concepts to predict outcome of properdin
blockage do not always hold true. Whereas properdin-
deficient mice indeed showed reduced survival in the model
of non-septic shock induced by LPS, properdin-deficient mice
were more resistant to zymosan-induced non-septic shock
compared to wild-type mice [107]. In addition, in murine sep-
ticemia models, properdin deficiency worsened the outcome
when the disease was induced by an infection of Listeria
monocytogenes, whereas it improved the outcome when the
pathology was induced by Streptococcus pneumoniae infec-
tion [108]. Also unexpected were the findings that absence of
properdin in C3G, a disease characterized by glomerular inju-
ry due to excessive (fluid phase) AP activation, resulted in
exacerbated renal injury [54, 109]. These studies indicate that
there is a complex interplay between properdin and other
(immune) effectors acting at the site of injury which deter-
mines what outcome the absence of properdin will trigger.

The role of properdin
in complement-mediated renal injury

Genetic variations in complement genes and/or the presence
of autoantibodies changing the function of complement com-
ponents may disturb the sophisticated balance of AP activa-
tion and regulation. Especially in combination with triggering
events, this may result in an overactivation of the system with
subsequent damage to healthy tissues. The glomerulus is par-
ticularly vulnerable for complement attack; AP dysregulation
has been associated with the disease entity C3G and with
aHUS [110–115]. Besides, the renal tubular system can be-
come prone to complement activation in diseases accompa-
nied with proteinuria [116, 117]. The following section focus-
es on the role of properdin in developing these complement-
associated pathologies.

C3 glomerulopathy

Clinical manifestation and pathogenesis

C3G describes a spectrum of severe complement-mediated
renal diseases with up to 50% of patients progressing to end-

stage renal disease within 10 years after first presentation [48,
115, 118–123]. C3G is characterized by the accumulation of
C3 breakdown fragments in the glomeruli, without or with
sparse immunoglobulin deposition [118, 124]. The causative
disease process is an abnormal control of complement activa-
tion, deposition, or degradation [124]. Patients often present
with low serum C3 levels as a result of the enhanced C3
turnover in the fluid phase. The main two diseases
encompassed by the disease entity are dense deposit disease
(DDD) and C3 glomerulonephritis (C3GN), which are distin-
guished from each other based on electron microscopy ap-
pearance. DDD is diagnosed on renal biopsy based on the
presence of very dense ribbon-like intramembranous deposits
in the glomerular basement membrane (GBM), while in
C3GN these deposits appear in a less dense, more amorphous,
and more diffuse pattern [124]. The most important pathogen-
ic factors in C3G are autoantibodies stabilizing the AP C3
convertase, so-called C3 nephritic factors (C3NeF; 40–80%
of cases), although pathogenic variants in AP (regulating)
genes have also been reported (~ 20% of cases) [114, 115,
123]. Both C3NeF and properdin stabilize AP C3 convertases,
but whereas C3NeF is strongly associated with pathogenic
conditions and indicates a dysregulation of complement activ-
ity, properdin is part of healthy homeostasis and has a com-
plement regulatory role.

Unexpected findings of properdin gene knockout in C3G

As C3G occurs as a result of overactivation of the AP leading
to glomerular injury, it was hypothesized that inhibition of
properdin could prevent this AP overactivity and subsequent
injury. Surprisingly, however, mouse models showed a pro-
tective role for properdin in C3G (summarized in [125]). The
mouse models used were FH-deficient mice (FH−/−) [54] or
mice with only small amounts of truncated FH (FHm/m) [55,
109]. These two models both showed the characteristic accu-
mulation of C3 along the GBM with morphological changes
and glomerular inflammation typical for C3G. Besides, these
mice had low plasma C3 and C5 levels as a result of comple-
ment consumption by the activity of the C3/C5 convertases,
and thus clearly show the lack of FH-dependent complement
regulation [54, 55, 109]. However, mice that were knocked
out for both FH and properdin, FH−/−/P−/−, showed exacerbat-
ed injury with increased accumulation of C3 along the GBM.
FHm/m/P−/− mice showed a similar detrimental effect of the
absence of properdin; the renal injury was even worse since
the mice died prematurely of severe glomerulonephritis.
Remarkably, both these FH-affected properdin-knockout
models showed a selective C3 depletion but higher intact C5
levels (less C5 consumption) compared to the mice with an
intact properdin gene [54, 55, 109]. Thus, absence of
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properdin specifically reduced the C5 turnover and was asso-
ciated with the exacerbated injury observed in these
properdin-knockout mice.

Possible role for properdin in the distinction of C3G
subgroups with different pathophysiology

The differences in plasma C3 and C5 levels between
properdin-deficient and properdin-sufficient mice are reminis-
cent of the complement profiles found in C3G patient groups
associated with two types of C3NeF, namely properdin-
dependent and properdin-independent C3NeF (Table 2) [48,
126–130]. C3NeF are a heterogeneous group of autoanti-
bodies. All stabilize the AP convertases by preventing intrin-
sic and/or extrinsic decay [130], but some of them have the
ability to induce both systemic C3 and C5 consumption (pro-
perdin-dependent C3NeF; resembling properdin-sufficient
FH-affected mice), whereas others only seem to affect the
levels of C3 (properdin-independent C3NeF; resembling
properdin-deficient FH-affected mice) [48, 126–129]. A re-
cent study suggested the new term C5NeF for C3NeF that
are dependent on properdin and cause increased C5 conver-
sion [48]. In humans, properdin-dependent types of C3NeF
were more often found in C3GN [48, 126, 128]. In this C3G
subtype, C5 convertase dysregulation and terminal pathway
activation are more pronounced, indicated by lower C5 and
higher soluble C5b-9 (sC5b-9) levels in the circulation (Table
2) [12]. Properdin-independent C3NeF are more frequently
associated with DDD cases [48, 126, 128]. This subtype is
characterized by a selective, more pronounced C3 convertase
dysregulation, as shown by lowered C3 levels but near-normal
C5 and sC5b-9 levels [12]. Thus, these biomarker profiles of
C3G subtypes are in line with the functional characteristics

regarding C3 and C5 conversion attributed to the properdin-
dependent and properdin-independent C3NeF types.

The biomarker analysis of Zhang et al. also showed direct
differences in the level of properdin in C3G patients [12].
Properdin levels were found lower in C3G compared to con-
trols, and the effect was more pronounced in the C3GN group
than in the DDD group [12]. Next to the terminal pathway
biomarker sC5b-9, properdin was the only AP marker that
significantly differed between the two C3G subgroups.
Another study also showed significantly lowered serum levels
of properdin in a subset of C3G patients, namely in C3NeF-
negative patients which were predominantly C3GN cases
[11]. Interestingly, the properdin consumption was associated
with increased C5 convertase activity leading to C5 consump-
tion [11]. A recent cluster analysis approach performed by
Iatropoulos et al. confirmed that different complement dysreg-
ulation profiles at the C3 and C5 levels exist in patient sub-
groups in C3G [131]. However, the identified clusters were
not simply divided in C3GN and DDD but were based on
shared clinical, histological, genetic, and serological comple-
ment parameters to define distinct disease entities character-
ized by specific pathophysiological mechanisms [131].
Properdin was not taken into account.More research is needed
to investigate whether properdin, in combination with differ-
ent types of nephritic factors, might be the driving force in
directing the C3 or C5 convertase dysregulation and subse-
quent pathophysiology in C3G subgroups, and as suchmay be
an important disease biomarker.

A role for properdin in the pathogenesis of C3G is slightly
unexpected in the view of C3G being a disease caused by
fluid-phase dysregulation of the AP. How properdin alters
the balance of C3 and C5 consumption and how this exactly
results in exacerbation of renal injury in the FH-affected

Table 2 Proposed underlying
mechanisms in the
pathophysiology of C3
glomerulopathy based on the
presence of different types of
convertase-stabilizing nephritic
factors

Type of C3NeF Properdin-independent C3NeF Properdin-dependent C3NeF/C5NeF

Associated complement profile C3 consumption C3 consumption

C5 normal or slightly consumed C5 consumption

sC5b-9 normal sC5b-9 elevated

Disease association DDD C3GN

Comparative mouse model FH−/−/P−/− FH−/−

C3NeFC3 nephritic factor,C5NeFC5 nephritic factor, sC5b-9 soluble C5b-9,DDD dense deposit disease,C3GN
C3 glomerulonephritis, FH factor H, P properdin
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mouse models requires further investigation. The current hy-
pothesis is that properdin deficiency changes the ratio between
systemic, fluid-phase (properdin-independent), and local, sur-
face (properdin-dependent) AP activation [54–56, 109].
Depending on the presence of properdin and the availability
of intact C3 and C5, deposition of systemically generated
breakdown fragments and/or local AP activation may be di-
rected to different renal structures, e.g., the endothelium, the
unprotected, exposed GBM (on which properdin-independent
activation may be possible), the mesangium, or the renal tu-
bules, to cause injury to different extents. In this way, proper-
din may determine the intraglomerular fate of C3 breakdown
fragments which are related to the different C3G subforms
[54–56, 109]. Thus, further investigation into the role of pro-
perdin in C3Gmay aid in our understanding of the pathophys-
iology and distinction of C3G subforms.

Atypical hemolytic uremic syndrome

Clinical manifestation and pathogenesis

Atypical HUS is categorized as a thrombotic microangiopathy
and is clinically characterized by the typical triad of hemolytic
anemia, thrombocytopenia, and serious renal impairment
[132, 133]. These symptoms are caused by uncontrolled AP
activation focused on the glomerular endothelial cell surface.
Via diverse pro-inflammatory and pro-thrombotic events, this
complement activation leads to the disturbed integrity of the
endothelial cell layer and subsequent renal injury [112]. In
around 60% of the aHUS patients, genetic aberrations have
been found in complement genes [134–136]. These aberra-
tions include loss-of-function mutations in genes encoding
complement regulatory proteins and gain-of-function muta-
tions in genes encoding the constituents of the convertase
complex. The FH gene is most frequently affected
[134–136], and FH-directed autoantibodies are also a com-
mon cause of impaired complement control [137, 138]. This
illustrates the importance of this regulator in protecting the
glomerular structures.

Possible role for properdin in aHUS

Although many mutations in complement regulators have
been associated with aHUS development, little is known
about whether properdin may be affected in patients. To our
knowledge, no gain-of-function mutations in properdin have
been described in patients so far. Also from our own unpub-
lished observations, we can conclude the properdin gene is not
affected in aHUS patients. Thus, to date, there is no direct
evidence for a role of properdin in aHUS in humans.

Nonetheless, studies with mice have shown that properdin
plays a critical role in AP activation on autologous cells. Mice
were modeled for disorders in which the surface control on

autologous cells was impaired by knocking out important
membrane-bound complement regulatory proteins. The sub-
sequent vulnerability of these cells to complement-mediated
attack was dependent on the presence of properdin, since
properdin-deficient mice showed less injury and better disease
outcomes [62, 101–103]. Properdin is thus likely needed to tip
the balance to AP activation on cells that are well equipped
with a repertoire of complement regulatory proteins. In the
absence of intact complement regulators, as is also the case
in aHUS, properdin might gain in function and promote the
AP on healthy self-surfaces. Since absence of properdin is
beneficial in these types of modeled diseases, the interesting
question arises whether properdin blockage might also pre-
vent the surface-directed complement activation in aHUS.
Despite this attractive therapeutic potential, very few studies
have been performed so far using experimental (animal or
cellular) models of aHUS. Very recently, an important and
interesting article was published showing that properdin inhi-
bition in a mouse model of aHUS indeed improved disease
outcome as expected [105].

In addition, properdin might have a role in exacerbating the
thrombotic phenotype seen in aHUS. This is another reason
why properdin blockage might be beneficial in this disease.
Recent studies have elucidated a central role for properdin in
the complement-mediated cross-talk between platelets and
neutrophils. These two cell types mutually enhance each
other’s activation, directly or indirectly via AP activation,
and in doing so they are important mediators of
thromboinflammation (extensively reviewed in [74]). First of
all, activated platelets can act as a platform for local AP am-
plification. Properdin released from activated neutrophils can
directly bind to the surface of activated platelets and can sub-
sequently recruit the components needed for convertase for-
mation to further promote complement activation on this
platelet surface [67]. During this AP activation on platelets
at sites of vascular injury, C5a is released which is a very
important chemoattractant that can recruit and activate neutro-
phils. As previously explained, neutrophils can enhance their
own activation in a positive feedback loop by secreting pro-
perdin that in an autocrine or paracrine fashion increases
properdin-mediated AP activation on its own surface [80]. In
turn, the released properdin can also promote AP-mediated
platelet activation and complete the vicious cycle. In line with
these findings, by using whole-blood ex vivo assays, Blatt et
al. showed that blockage of properdin reduced platelet-
leukocyte aggregate formation by 50% [47]. Furthermore,
these studies collectively showed that the properdin-
mediated mechanisms contributing to thromboinflammation
were enhanced when the surface-protecting function of FH
was experimentally inhibited [47, 67]. In disorders of com-
promised complement regulation such as aHUS, it has to be
investigated if properdin blockage may therefore be bene-
ficial in interrupting the positive feedback loops
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responsible for the increased (complement-mediated)
thromboinflammation.

Chronic proteinuric renal disease

Complement mediates proteinuria-induced tubulointerstitial
injury

Glomerular dysfunction results in leakage of proteins through
the glomerular filtration barrier. This proteinuria can induce
tubulointerstitial injury and thereby is a strong predictor for
the progression of chronic renal disease to end-stage renal
disease [139, 140]. Complement activation at the surface of
PTECs by filtered complement components has been proven
to be a powerful mechanism underlying this proteinuria-
induced tubulointerstitial injury (reviewed in [116, 117]).
Under healthy conditions, complement components do not
pass the glomerular filtration barrier, but in proteinuric pa-
tients complement proteins are found in the urine and deposi-
tion of complement along the tubular brush border (the apical
side) is seen. Furthermore, complement inhibition attenuates
the renal deterioration in proteinuric rodent models,
confirming the role of complement in mediating
tubulointerstitial injury [116, 117, 140].

The role of properdin in complement-mediated
tubulointerstitial injury in proteinuria

It was hypothesized that properdin, as an initiator of AP ac-
tivity, might play a role in triggering the tubular complement
activation associated with tubulointerstitial injury in protein-
uric renal disease [61]. Indeed, properdin was able to bind
primary PTECs [61] and PTEC cell lines to act as a focal point
for AP amplification followed by subsequent C3 and C5b-9
deposition [61, 141]. PTECs may be especially vulnerable to
complement activation compared to other human cells be-
cause normally these epithelial cells do not come into contact
with complement components [61] and express less comple-
ment regulatory proteins [142]. In addition, properdin was
found in the urine of around 50% of proteinuric patients
[143]. This urinary properdin associated with elevated sC5b-
9 levels and with a worse renal function outcome but was not
dependent on the degree of proteinuria [143]. Altogether,
these findings advocate that properdin is an important deter-
minant in intratubular complement activation and in this way
it might play a role in the proteinuria-mediated renal damage.

The binding ligand for properdin on PTECs offers possibilities
for specific therapeutic approaches

In subsequent studies, the binding ligand for properdin on
renal tubular cells was identified: heparan sulfate proteogly-
cans. This type of proteoglycan is most abundant in renal

tissues. It was found that properdin could bind specifically
to certain heparan sulfate moieties of these proteoglycans in
vitro and that properdin colocalized with the heparan sulfate
proteoglycan syndecan-1 in vivo in proteinuric rat kidneys
[68]. Interestingly, FH is also well-known for being able to
bind to heparan sulfates; thus, it was speculated whether these
positive and negative regulators might compete with each oth-
er in the tubular lumen under proteinuric conditions.
Nonetheless, Zaferani et al. demonstrated that FH and proper-
din recognized different, non-overlapping epitopes of heparan
sulfate chains on renal tubular epithelial cells, indicating at
least no direct competition for binding sites [144].

In view of treatment strategies, this is an important and
interesting finding. The authors have shown that certain low-
or non-anticoagulant heparinoids could inhibit the interaction
of heparan sulfates with properdin but not with FH, indicating
that a specific blockage of the positive regulator properdin is
feasible while leaving the inhibitory, beneficial actions of FH
intact. Indeed, the in vitro experiments showed that these
heparinoids inhibited C5b-9 deposition on the tubular epithe-
lial cells and thus were able to control the AP of complement
[144]. In summary, these findings illustrate that the composi-
tion of cell surfaces, and possibly their change during disease,
may orchestrate the balance between AP activation and inhi-
bition by recruiting properdin and/or FH.

Future directions

The potential of properdin as a therapeutic target
in complement-mediated renal diseases

The interest in complement-targeted therapy has increased
immensely in recent years, and many complement inhibitors
are in the development pipeline [2]. Properdin is a relatively
new kid on the block in the field of complement and immu-
nity. Nonetheless, monoclonal antibodies against human pro-
perdin have been developed that are effective in blocking the
AP in vitro [100, 145], and one anti-properdin antibody is
currently at the stage of phase 2 in clinical trials [2]. Based
on the role of properdin in promoting the activity of the AP, it
is expected that properdin elimination can be effective in dis-
eases of complement overactivation resulting in host tissue
injury. To the best of our knowledge, no gain-of-function mu-
tations in properdin itself have been found so far. Thus, ther-
apy is aimed at compensating the complement dysregulation
caused by other autoimmune or genetic factors (as in C3G and
aHUS) or pathological conditions (as in chronic proteinuria).

In the previous sections, we have examined this potential of
properdin elimination as a treatment for C3G, aHUS, and
chronic proteinuric renal disease. Research so far has indicat-
ed that aHUS and chronic proteinuria might indeed benefit
from properdin inhibition by limiting the properdin-mediated
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AP activation directed at host cell surfaces, i.e., the glomerular
endothelium and proximal tubular epithelium, respectively. In
addition, properdin inhibition in aHUS may decrease the
thrombotic and inflammatory effects mediated by platelets
and leukocytes. In contrast, properdin inhibition might not
be a promising therapy in C3G, since properdin knockout in
C3G mouse models clearly resulted in exacerbated renal inju-
ry. These findings might indicate that absence of properdin is
advantageous in cases of uncontrolled tissue-bound activa-
tion, whereas in situations of uncontrolled fluid-phase activa-
tion, absence of properdin is unfavorable. This would be in
line with the evidence for properdin being mainly a surface-
directed regulator. C3G is not yet completely excluded as a
potential disease that may benefit from properdin-targeted
therapy. First of all, mice are not humans and the pathophys-
iological mechanisms may differ. The used mouse models
were based on FH mutations, but such mutations are found
in only a minority of C3G patients. C3NeF is a far more
common abnormality found in C3G patients, and it has been
shown that some C3NeF are dependent on properdin.
Therefore, elimination of properdin to inhibit this C3NeF ac-
tivity seems a plausible therapeutic option, but no studies on
this subject have been published so far.

In summary, we are still at the beginning of understanding
the effects of properdin-inhibiting therapy, and future research
should help us to unravel properdin’s exact role in diverse
disease settings. Its potential as a therapeutic target must be
considered with care. One should always keep in mind the
balance between the beneficial and detrimental functions that
properdin can have in specific pathological settings. These
differential effects are currently still hard to predict due to gaps
in our knowledge about exact properdin biology, e.g., regard-
ing the characteristics of the different oligomers, regarding the
need of properdin for AP activation in different settings, and
regarding the interaction of properdin with other immune ef-
fector molecules. Stratification of patient groups including a
careful characterization of the specific AP defect and the clin-
ical picture may aid in determining which patients may benefit
from therapy. Other factors to keep in mind for safe and effec-
tive properdin inhibition are whether properdin should be
inhibited locally or systemically and during which time win-
dow, i.e., acute or chronically.

Properdin inhibition in comparison to C5 inhibition
and its advantages

Eculizumab, a C5-inhibiting antibody, was approved in
2007 as the first complement-specific drug, and it is a very
effective therapy for aHUS patients [146, 147]. It prevents
C5a release and MAC formation and in this way reduces the
subsequent complement-mediated damage to the endothe-
lium. It was expected that eculizumab would also be effec-
tive in C3G, especially in patients showing increased C5b-9

levels. However, C3G patients show a heterogeneous re-
sponse to eculizumab treatment [148, 149]. Given the pre-
viously discussed associations between properdin deficien-
cy and decreased C5 convertase activity, properdin inhibi-
tion and C5 inhibition seem functionally similar to each
other. Therapeutic inhibition of properdin therefore also
seems promising in aHUS. Of note, both eculizumab use
and properdin deficiency increase the susceptibility for
meningitis. The prophylactic vaccination that is applied in
patients receiving eculizumab [150] would therefore also
be needed in properdin-blocking therapy.

In general, properdin-inhibiting therapy may have sev-
eral advantages over C5 inhibition or over therapies direct-
ed to other complement proteins such as C3. First, in con-
trast to C5 inhibition, properdin inhibition may also re-
duce, at least to a certain extent, adverse inflammatory
effects mediated by the upstream activation products C3a
and C3b. Since properdin is present in much lower con-
centrations than C3 (and C5), it would also be a more
manageable target to block [103]. Another important ad-
vantage of properdin inhibition is the specificity of
blocking the AP, which is preferred in diseases showing a
specific AP defect such as aHUS. C5 inhibition blocks all
terminal pathway activity, whereas properdin inhibition
only affects AP activity. The functioning of the other com-
plement activation pathways is preserved so these can still
fight infection and help maintain tissue homeostasis. This
is supported by the study of Heinen et al., in which it was
shown, using an in vitro enzyme-linked immunosorbent
assay, that properdin blockage in normal human serum
specifically impaired the ability to activate the AP but not
the CP and LP [151]. Nonetheless, convincing experiments
should be performed to confirm whether this also holds
true for in vivo situations. It is not clear yet if properdin
inhibition critically affects CP- and LP-induced comple-
ment responses by impairing the AP amplification loop,
since the few studies performed on this topic contradict
each other [47, 62, 74, 100, 145, 151]. These findings
might also indicate that the role of properdin is context-
dependent and may differ between disease settings. In line
with this, it has been shown that the absolute requirement
of properdin for AP activation depends on the activating
surface; not all microbes need the presence of properdin to
activate the AP [62]. If confirmed, not all AP-mediated
actions will be compromised when properdin is inhibited.
This indeed seems to be the case when looking at
properdin-deficient individuals which specifically show in-
creased vulnerability to Neisseria infections but not to
others. In conclusion, compared to C3 inhibition or C5
blockage by eculizumab, properdin-directed therapy may
provide a more sophisticated complement inhibition that
does not completely compromise host defense but keeps
some complement activation on several targets intact.
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Concluding remarks

Properdin is a recently discovered player in complement-
related kidney diseases. We have just started to unravel its
potential in therapeutics and further research is definitely
needed. These studies should focus on increasing the under-
standing of properdin biology in general and its cross-talk
with other immune pathways. Such research would benefit
from validated and standardized quantitative assays for mea-
suring properdin in serum or urine in well-defined patient
groups. In combination with a diagnostic workup on other
complement proteins, such data will provide us with important
information on disease mechanisms in complement-mediated
renal diseases and will help us to select patient groups that
may benefit from properdin-directed therapy.

Questions (answers are provided following
the reference list)

1. Which statement about properdin is not true?

a) Properdin oligomerizes in dimers, trimers, and tetra-
mers only upon stimulation

b) Properdin can recruit C3b and FB for new convertase
assembly

c) Properdin stabilizes AP C3/C5 convertases, but not
those of the classical and lectin pathway

d) Properdin oligomerization is essential for its function
in vivo

2. Which factors should be taken into account when the
function of properdin is studied:

a) Species differences
b) Aggregation of properdin upon freeze-thawing
c) The source of properdin: purified from serum, freshly

released from cells, or in serum context
d) All of the above

3. Properdin is mainly produced by:

a) Hepatocytes
b) Leukocytes
c) Hepatocytes and leukocytes
d) Endothelial cells

4. Which of the following statements regarding the proposed
role of properdin in renal disease is not true?

a) In proteinuria, properdin initiates and amplifies local
complement activation on proximal tubular epithelial
cells and thereby contributes to tubulointerstitial
injury

b) Properdin prevents C5 conversion and thereby it has
protecting roles in C3G

c) In aHUS properdin may both be involved in trigger-
ing the onset of disease as well as in exacerbating the
thromboinflammatory course of disease

d) Properdin can be important for clearance of danger-
ous pathogens and altered self-cells, but its require-
ment for AP activation is not equal for all targets.

5. Which of the following statements regarding properdin-
dependent and -independent C3NeF is true?

a) Properdin-dependent C3NeF are associated with a se-
lective C3 consumption, which resembles the com-
plement profile of FH-/-/P-/- knockout mice

b) Properdin-independent C3NeF are associated with a
selective C3 consumption and are most often found in
C3GN

c) Properdin-dependent C3NeF are associated with ele-
vated terminal pathway activation markers and are
mainly found in C3GN

d) Properdin-independent C3NeF are associated with el-
evated terminal pathway activation markers and are
most often found in C3GN
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