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A B S T R A C T   

Climate change affects plant dynamics and functioning of terrestrial ecosystems. This study aims 
to investigate temporal changes in global vegetation coverage and biomes during the past three 
decades. We compared historic annual NDVI time series (1982, 1983, 1984 and 1985) with recent 
ones (2015, 2016, 2017 and 2018), captured from NOAA-AVHRR satellite observations. To 
correct the NDVI time series for missing data and outliers, we applied the Harmonic Analysis of 
Time Series (HANTS) algorithm. The NDVI time series were decomposed in their significant 
amplitude and phase given their periodic fluctuation, except for ever green vegetation. Our 
findings show that the average NDVI values in most biomes have increased significantly (F-val-
ue<0.01) by 0.05 ndvi units over during the past three decades, except in tundra, and deserts and 
xeric shrublands. The highest rates of change in the harmonic components were observed in the 
northern hemisphere, mainly above 30◦ latitude. Worldwide, the mean annual phase reduced by 
9◦ corresponding to a 9 days shift in the beginning of the growing season. Annual phases in the 
recent time series reduced significantly as compared to the historic time series in the five major 
global biomes: by 14.1, 14.8, 10.6, 9.5, and 22.8 days in boreal forests/taiga; Mediterranean 
forests, woodlands, and scrubs; temperate conifer forests; temperate grasslands, savannas, and 
shrublands; and deserts, and xeric shrublands, respectively. In tropical and subtropical biomes, 
however, changes in the annual phase of vegetation coverage were not statistically significant. 
The decrease in the level of phases and acceleration of growth and changes in plant phenology 
indicate the increase in temperature and climate changes of the planet.   
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1. Introduction 

With the advent of the industrial revolution and the increasing use of fossil fuels over the past two centuries, climate change has 
been accelerated as a result of the emission and intensification of greenhouse gases [1]. These gases increase the atmosphere tem-
perature and cause global warming by absorbing and dispersing infrared spectra reflected from the earth’s surface [1]. Plant dynamics 
are influenced by environmental factors such as temperature and rainfall [2,3]. Temperature is considered the leading factor [2], 
whereas rainfall will be influential mainly when the temperature is optimal for plant growth [4]. Evidences show that global warming 
has drastically affected vegetation coverage in recent decades [5–7], and caused shifts in biome types. In India, for example, climate 
change has led to a decrease in the area cover for tropical desert scrubs, tropical deserts, tropical wet forests, and tropical moist forests 
[8]. 

Studding the changes in vegetation coverages and the parameters affecting it, requires the preparation of maps with frequent 
observations. The use of ground data collection methods is very costly, time-consuming, point-to-point and in some cases impossible. 
With the development of satellite imageries and remote sensing techniques, environmental factors such as temperature and rainfall are 
increasingly being used for analyzing plant dynamics [9]. Satellite acquisition system covers the whole word with data collected at 
regular intervals. For instance, the relationship between climate change and remotely-sensed vegetation indices such as the 
Normalized Difference Vegetation Index (NDVI) has been investigated in several studies [10–14]. 

Vegetation is characterized by its growth cycle (e.g. seasonal for vegetables and grains, and annual for deciduous trees). The 
variation of NDVI over time, during different stages of growth, can be described by a combination of periodic functions [15]. Although, 
this variation might not always be a complete periodic signal, it has features due to the superposition of periodic functions (i.e. monthly 
and yearly). This indicates that time series of NDVI can be characterized by combinations of different components of a periodic 
function (e.g. cosine and sine with various phase and amplitude at different periods of time). The sinusoidal cycle of plant growth is 
consisting of different cyclic components, such as annual and seasonal, and some noise [16]. The NDVI curve shows a combination of 
these components, as a unique signal which convey valuable information about the different environmental forces affecting the 
phenological stages of plants. These significant periodic components can be used to quantify the variation of NDVI over time by fitting 
a Fourier series (harmonic analysis) to the original time series data. Fast Fourier Transform (FFT) algorithm can be used to decompose 
a time series to its constituent signals (components). However, only some components are statistically significant which correspond to 
having most variance of time series and random noises. Each periodic component makes a sine or cosine signal with its amplitude and 
phase. Summation of all these signals can create the original signal without any noise. 

The analysis of time series can therefore be helpful in identifying different vegetation coverage characteristics such as growth and 
phenological changes. Remote sensing time series contain much information about plant dynamics and changes [17,18]. To make 
optimal use of these data, continuous, gap-free, and complete data over time are required. But, remotely sensed time series data 
captured by satellite’s sensors are often contaminated by gaps (no-data) and outliers (anomalous values compared to adjacent pixels). 
However, continuous remote sensing data is often degraded due to e.g. atmospheric dust, aerosols, sensor malfunction and especially 
cloud coverage [19], which causes errors in reading the optical sensors by affecting the energy reflected from the surface [20]. 

Harmonic Analysis of Time Series (HANTS) has been developed for identifying and removing outliers and filling in gaps in NDVI 
time series, either existing ones or created by removing outliers [21]. It decomposes the periodic time series into its components or 
different sines and cosines with various amplitudes and phases using Fast Fourier Transform (FFT) algorithm [22]. HANTS applies 
irregular sampling gaps and extracts the phenological data of plants [21,23]. For instance, HANTS has been used in recent years to 
reconstruct the gaps caused by cloud cover in remote sensing time series [20,24–29]. 

Analysis of changes in plant growth stages using HANTS (by decomposition of plant growth signal into its amplitudes and phases), 
especially for plants with annual fluctuation cycles, can be effective in identifying changes in plant growth and phenological processes 
related to climatic changes [13]. Phenology deals with the study of the time of occurrence of repeatable events of plant life in relation 
to the living and non-living organisms [30–32], and has a strong relationship with climatic events [32–34]. It is known as a critical 
biological index in response to global warming [35,36] because temperature is one of the most important factors in the initiation of 
plant growth and phenological processes [18,37,38]. 

HANTS has been used for the classification of vegetation coverages [39,40], recognizing that different types of vegetation coverage 
and plant species have various patterns in different components of Fourier series (significant periodic components with different 
amplitude and phase) [22,41]. Changes in NDVI time series components created by HANTS, however, have not yet been investigated 
globally. Examining vegetation changes using HANTS algorithm and basic concepts of physics can have advantages. For example, this 
method is less affected by the transient dynamics of vegetation. 

The main objective of the present study is to investigate changes in time series components of global biomes to reveal the possible 
impact of climate change over the last 30 years. To do so, we used HANTS algorithm in reconstructing NDVI time series and then, 
extract the most significant periodic components of NDVI time series signal and relate them to biomes coverage changes. 

2. Materials and methods 

2.1. Study area 

The study focuses on the global scale terrestrial biomes. Biomes are nature’s major ecological communities, classified according to 
the predominant vegetation, climate, and characterized by the adaptation of organisms to a particular environment [42]. Terrestrial 
biomes are the major global plant communities determined by rainfall and climate. In this research, we considered the terrestrial 
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biomes classification proposed by Ref. [43], which includes 14 distinct biomes (Fig. 1). These biomes are based on 825 terrestrial 
ecoregions of the globe [43]. The map of biomes is used as a basis for the assessment of changes of harmonic components of global 
vegetation coverage time series. 

2.2. NDVI products 

Four historical annual time series (1982, 1983, 1984, and 1985) and four recent annual time series (2015, 2016, 2017, and 2018) 
were used to investigate the changes of harmonic components of global vegetation coverage. There are two reasons to use these time 
series. First, mere extraction and comparison of harmonic components of just two single NDVI time series cannot indicate the real 
climatic change because changes may be influenced by the transient plant dynamics such as dry and wet periods. Second, it is possible 
to statistically compare changes in the harmonic components using one-way ANOVA, based on two sets of four annual time series. 
Because of the daily temporal resolution of NOAA-AVHRR NDVI images, we used 365 images per year. The FFT algorithm which the 
HANTS is based on it, was used to extract annual periodic harmonic components of the time series for each year. 

The NDVI is a commonly used index for the assessment of plant dynamics [7]. It is calculated by the following equation [44]: 

NDVI =
NIR − RED
NIR + RED

(1)  

where NIR and RED represent the reflectance of near-infrared and red band, respectively. The amplitude of this index ranges between 
− 1 and +1. Negative values show water, ice and snow areas, positive values indicate vegetation coverage increasing toward 1, while 
values around zero show arid or unplanted areas. In our study we exclude the negative data as they provide no evidence for vegetation. 
But some areas where the NDVI values were negative in historic study period, may be turn to positive values in recent period (e.g. 
shrinking water bodies), and vice versa. 

In this study, NOAA-AVHRR NDVI images were used, with NIR corresponding to AVHRR-band 2 and RED to AVHRR-band 1. We 
used daily NDVI data with a spatial resolution of 0.05 × 0.05◦ under the name AVH13C1 (NOAA CDR Program data). The algorithm for 
calculation of NDVI was developed by NOAA’s Climate Data Record (CDR) program using equation (1) [45]. 

2.3. The HANTS algorithm 

In this study, we used the HANTS algorithm to solve problems in the studied time series driven by the presence of outliers and gaps, 
and to generate different harmonic components such as amplitude and phase images in the time series. The HANTS algorithm is based 
on the concept of Fast Fourier Transform (FFT) [21,23,46], which is used here for modeling our time series of satellite data (see section 

Fig. 1. Map of global biomes [43].  
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2.4). We briefly introduce the algorithm and explain the parameters required for obtaining a reliable model by the algorithm. Let yi be a 
time series with N observations (i from 1 to N). This time series can be described by a Fourier series, as follows: 

yi = a0 +
∑M

j=1
aj cos

(
wjti − φj

)
(2)  

where wj is the j th frequency of harmonic series in a Fourier series, ti is the time when the ith sample is taken, M is the number of 
frequencies of Fourier series (M ≤ N), and aj and φj are jth amplitude and phase of the harmonic series, respectively. Since the zero 
frequency (a0) has no phase, the amplitude related to a0 is equal to the mean of all N observations yi. The harmonic frequencies (wj) are 
obtained by multiplying a base frequency (e.g. wj = 2π/N) by I (equation (3)): 

wj =

(
2π
N

)

× i i= 1, 2, 3, ...,N (3)  

In the HANTS algorithm, after selecting M and the wj, the unknown Fourier series parameters of aj and phase values φj are determined 
by fitting the time series through observations using the least square method. To obtain a reliable model from a time series, several 
parameters should be defined by the user [21].  

1. A valid data range, e.g. the acceptable range of observed values. Observations outside this range stage are eliminated by allocating 
zero weight to them.  

2. The relevant period, e.g. the number of samples in each periodic component.  
3. The Number of Frequencies (NOF), which determines the details that can be used in signal reconstruction. A low NOF creates a 

signal with less details than a large NOF.  
4. Direction of outliers, indicates whether high or low values (outliers) should be rejected during curve fitting.  
5. Fit Error Tolerance (FET), which determines the absolute deviation from the current value of the curve in the chosen direction that 

is still acceptable. After each repetition, the observations with deviations larger than the FET are designed as outliers and are 
eliminated by allocating zero weight to them.  

6. Degree of Over-Determinedness (DOD), e.g. the minimum number of additional data points that need to be used in curve fitting. 
The number of valid observations should always exceed the number of parameters needed for signal description (2 × NOF-1). On 
the other hand, DOD is effective only for a small FET. 

2.4. Fast Fourier Transform (FFT) 

Decomposition of alternating functions into their components provides a useful insight into the processes of observed signal 
determination and their relative weight. Fourier series analysis is used for the decomposition of a complex signal into its sines and 
cosine components [47]. Thus, equation (2) can be written as a matrix relation, following equations (4) and (5): 

⎛

⎝
y1
⋮
yN

⎞

⎠=

⎛

⎝
f1(t1) … fM(t1)

⋮ ⋱ ⋮
f1(tN) ⋯ fM(tN)

⎞

⎠

⎛

⎝
a1
⋮
aM

⎞

⎠ (4)  

y=Fa (5) 

By multiplying the two sides of the relation by the transpose of matrix F, we will have equation (6): 

Fig. 2. Hypothetical signal (black wave) and its harmonic components (A), and amplitude, phase, and phase difference concepts (B), following Fast 
Fourier Transform function. 
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FT y=FT Fa or a=
(
FT F

)− 1FT y (6)  

Here the vector a yields an estimate of amplitude and phase for each component by the least square method. The FFT of an algorithm is 
used for the calculation of matrix multiplication in equation (6) using a relatively small number of estimation operations. The results of 
using FFT in a time series with N data include the amplitudes and phases of all frequencies (N phases and N frequencies). 

According to the Fourier series expansion, each alternating function can be obtained from the sum of several sine and cosine waves 
with different frequencies [47]. Hence, a non-sinusoidal wave can be disintegrated into sinusoidal components with different fre-
quencies. If these sinusoidal waves are summed, the main waveform is obtained. For instance, we may assume that in Fig. 2A the main 
signal (black line) is a trend of changes for an annual NDVI. Then this wave is disintegrated in the HANTS algorithm into three cosine 
waves with different amplitudes and frequencies by selecting the default value of three frequencies. From the cosine waveforms, a 
wave with the same frequency as the main waveform is harmonic 1 and a wave with n frequency is harmonic n. Each sine or cosine 
wave has its own amplitude, phase, and frequency. These data are helpful in determining changes in vegetation coverage. The 
amplitude, phase, and phase difference concepts are shown in Fig. 2B. The wave amplitude is defined as the highest rate of transition 
from the mean and a phase to the fraction of the wave cycle that is elapsed relative to the origin. 

2.5. Implementation of NDVI at global scale 

The NDVI time series implemented for the past three decades might be different in terms of gaps and outliers. First, the percentage 
of invalid data (smaller than zero), in NDVI along each pixel of historical (1982, 1983, 1984, and 1985) and recent (2015, 2016, 2017, 
and 2018) annual time series were determined using equation (7): 

P=
K
N
× 100 (7)  

where P is the percentage of invalid data, including both negative NDVI values and NaN (due to clouds) at each pixel of time series, K is 
the number of invalid data, and N is the total number of data in the time series. After computing the percentage of invalid data in each 
annual time series (i.e, N = 356), the average of Ps for the four historical annual time series and for the four recent ones were 
calculated. Also, to visualize and compare the scatter of invalid data between both time series the average map of Ps in recent data was 
subtracted from the historical data. 

One of the disadvantages of HANTS algorithm is no clear way to set the input parameter. To do so, we need to implement a number 
of pre-tests by different set of parameters on the data to reach an optimum result for gap filling. Also, based on the previous studies on 
reconstruction of MODIS time series done by Refs. [20,48], the input parameters in the HANTS algorithm were considered according to 
Table 1. Using these parameters, the outliers and gaps were reconstructed and harmonic components of time series were generated by 
the HANTS algorithm for each annual time series. Maps of the mean harmonic components for the four-time series in the two 
investigated periods were obtained, as well as their differences. A statistical comparison of the four-year means was done by using a 
one-way ANOVA, and maps of significant changes at 95% probability level were drawn. The studied harmonic components included 
amplitude 0, amplitude 1 (annual amplitude), and phase 1 (annual phase). Higher frequencies corresponding to short periods of 
vegetation coverage were not considered, as these are influenced by noise, gaps, and short-term changes of vegetation coverage [18, 
49]. 

The baseline period was taken as 365 days based on the total number of images in an annual time series, and the number of 
frequencies (NOF) was set to 3. Dividing the baseline period by NOF, the smallest reconstruction period equals will be 122 days. Such a 
period is compatible with the seasonal periods of vegetation coverage changes (~four months) [20,48]. Further, the Fit Error 
Tolerance (FET) was set to 0.1 NDVI unit and the direction of outliers was set to ‘low’, given the direction of the outliers caused by 
cloud cover which reduces the infrared spectrum and NDVI from the actual global value. Finally, the Degree of Over-Determinedness 
(DOD) was set to 10. 

The Root Mean Squared Error (RMSE) was used to determine the accuracy of the HANTS algorithm as well as to measure the 
accuracy of the curves fitted to the raw data to generate the harmonic components in the NDVI time series. It was computed using 
equation (8): 

Table 1 
Parameters used for reconstruction of NDVI images by HANTS algorithm.  

Parameters Rate 

Valid data range 0–1 
Baseline period 365 images 
Number of Frequency (NOF) 3 
Fit Error Tolerance (FET) 0.1 
Direction of outliers LOW 
Degree of Over-Determinedness (DOD) 10  
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RMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(xi − yi)

2

n

√
√
√
√
√

(8)  

where xi and yi are the actual and estimated data, respectively, and n is the total number of data. 
Finally, the changes of amplitude and phase for each harmonic components of the historical and recent time series, both globally 

and for the individual biomes, were investigated. 

3. Results 

3.1. Invalid NDVI data and reconstruction of data series 

The percentage of invalid data (gaps) in each pixel (Eq. (7)) during the four historic and recent annual NDVI time series are shown 
in Fig. 3. The mean number of invalid data (Fig. 3A–B) in the historical and recent time series on the Earth’s surface are 53% and 42%, 
respectively, with gaps decreasing over the past three decades. Generally, the number of invalid data in the time series between 30◦ N 
and 30◦ S is smaller than that of around 60◦ N. 

The harmonic components are extracted based on the curve fitted to the original data. By investigating the reconstruction error, we 
noted that the HANTS algorithm effectively reconstructed the gaps and outliers in the time series. For example, Fig. 4 shows the results 
of the curve fitted to the original data along one pixel in 1982 (Figs. 4A) and 2018 (Fig. 4B) (temporal). The spatial differences in mean 
RMSE between the original and the reconstructed data during the four-years historical and recent time series are shown in Figs. 5A–6B, 
respectively. Mean RMSE around the world range between 0.08 and 0.10 NDVI unit, except in Antarctica (south pole), Greenland, and 
other vegetation-free regions (e.g. deserts and xeric shrublands in Fig. 1). On the whole, the reconstruction error in most regions is 
between 0.06 and 0.12 NDVI unit. 

3.2. Harmonic components (aplitudes and phases) of NDVI time series 

In this section, to illustrate and compare the status of global vegetation coverage in the recent and historic annual NDVI time series, 
the mean and difference between amplitudes and phases of harmonic periodic components are presented. 

At first, for example, the signal of changes in NDVI time series, and its harmonic components was studied on a selected pixel of 
deciduous tree areas (to see the sinusoidal variation of growing stages from spring through summer and fall to winter) in 1982 and 
2018. Fig. 6 (A) illustrates the reconstruction results of an annual time series along one pixel in 1982 and 2018, and Fig. 6 (B) shows the 
results of decomposition of these growth curves into harmonic components in 1982 and 2018. According to Fig. 6 (B), amplitude 0 (a0) 
in 2018 exceeded that in 1982, indicating a rise in the overall vegetation coverage. Furthermore, phase 1 (φ1) (red and black 
continuous lines) are decreased in 2018. The decrease of phase 1 shows that the growing season and phenological processes in 2018 
start earlier than in 1982 along this pixel. Moreover, harmonic amplitude 1 (a1) is increased in the 2018 time series. 

3.2.1. Spatial variation in mean NDVI between time series 
The maps of mean NDVI (or amplitude 0) of four historic annual time series and four recent annual time series are shown in 

Fig. 7A–B, respectively. As indicated, the areas close to the North Pole, central Australia, and central North America have a low 
amplitude 0 (<0.15 NDVI unit). Highest amplitude 0 (0.4–0.8 NDVI unit) is found in the northern forests, located around 60◦ N and 
other regions with high vegetation coverage percentage such as evergreen broadleaf, South American forests, center of African, Eastern 
North American and European forests. In general, the highest value of the amplitude 0 corresponds to the tropical and subtropical 
moist broadleaf forests and temperate broadleaf and mixed forests biomes. 

To clearly represent the changes during the past three decades, the mean harmonic 0 map of the present time was subtracted from 
the mean harmonic 0 map of the past time (Fig. 8). As shown in Fig. 8A, the areas close to the North Pole and some other regions like 

Fig. 3. Percentage of mean invalid data (NDVI<0) in four historic (1982, 1983, 1984, and 1985) (A) and four recent (2015, 2016, 2017, and 2018) 
(B) annual NDVI time series. 
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Fig. 4. Results of curve fitting on one pixel in 1982 (A) and 2018 (B).  

Fig. 5. Spatial distribution of the RMSE means of NDVI for the four historic annual time series (A), and four recent annual time series (B).  

Fig. 6. Reconstruction results of annual NDVI signal for one pixel in 1982 and 2018 (A) and the associated harmonic components (mean and 
annual) of each signal in 1982 and 2018 (B). 

Fig. 7. Mean amplitude 0 of four historical annual time series (A) and four recent annual time series (B).  
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central Australia and regions around the deserts of the globe have a reduced amplitude 0 (deserts and xeric shrubland and tundra 
biomes). In the other regions around the world, the amplitude 0 is increased. Generally, the average of the NDVI index in the recent 
time series compared to the past 0.034 has increased. 

Regions with significant increases of amplitude 0 (Fig. 8B) over the past three decades (F-value<0.05) are noticed in areas around 
60◦ N, with further expansion over Europe, southeast North America, Amazon forests in South America, Central Africa, and southeast 
China (confluence of 30◦ N and 120◦ E). Changes in other regions were not significant (F-value>0.05). 

3.2.2. Annual amplitude of NDVI time series 
The means harmonic amplitude 1of four annual time series in both historic and current periods are shown in Fig. 9. Harmonic 

amplitude 1 indicates the annual amplitude because when the baseline period (365 images) is divided by the harmonic 1, 365 is 
obtained, which indicates an annual period. Annual harmonic amplitude shows the changes in NDVI over a year. The annual amplitude 
is low in vegetation-free regions (central Australia) and biomes with evergreen plant species (e.g. tropical and subtropical moist 
broadleaf forests biome). Moreover, with an increase in vegetation coverage and its changes, the annual harmonic amplitude is 
increased. Maximum annual amplitude occurs when the amount of greenness in deciduous vegetation coverage is at its maximum 
level. According to Fig. 9A–B, the annual harmonic amplitude is higher in the deciduous forests of North America, Europe and Asia (e. 
g. temperate broadleaf and mixed forests biome) than in evergreen vegetation coverage. Further, the annual harmonic amplitude is 
increased in the vegetation coverage above 60◦ N. This is due to the elevated amplitude of changes occurring as a result of snow 
melting and consequent increase in NDVI. 

The differences between annual amplitude changes in recent and historic years are shown in Fig. 10A–B, respectively. Although 
harmonic amplitude 1 is increased in most regions of the world, significant changes (F-value<0.05) were noticed only in a few areas. 
The maximum increase in harmonic amplitude 1 is seen in areas above 30◦ N. 

3.2.3. Spatial changes in annual phases of NDVI time series 
Fig. 11A–B show the mean value of annual phases or harmonic phase 1 for both historic and recent annual time series. The annual 

phase shows the angular position of the start of the annual signal. Phases in the HANTS algorithm can translate to the start of growing 
season and plant phenology processes. The mean values of the annual phase of the globe in four historic annual time series and four 
recent annual time series are 195◦ and 186◦, respectively. Since in HANTS algorithm annual phases are divided into 360◦ in a trig-
onometric circle and each year includes 365 days, each degree of phase difference shows a one-day change in the growth and 
phenological processes. The results show an average of 9◦ phase difference all over the world between the four historic and recent 
annual time series. Therefore, annual cycles of vegetation coverage changes occur 9 days earlier on average around the world. The 
mean annual phase in the northern hemisphere is 212◦ in the historic time series and 200◦ in the recent time series, and the mean 

Fig. 8. Mean difference of amplitude 0 between four recent annual NDVI time series and four historical annual NDVI time series (A), and map of 
significant mean differences (B). 

Fig. 9. Mean annual amplitude of four historical annual time series (A) and four recent annual time series (B).  
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annual phase in the southern hemisphere is 128.7◦ in the historic time series and 127.9◦ in the recent time series. Hence, the maximum 
annual phase changes have occurred in the northern hemisphere so that the start of growth and plant phenology processes in the 
northern hemisphere have accelerated by 12◦ or 12 days compared to the past. Most of these changes can be seen in biomes such as 
boreal forests (Taiga), temperature broadleaf and mixed forests, temperature conifer forests, temperature grasslands, savannas and 
shrublands and Mediterranean forests, woodlands and scrub (Fig. 1). On the other hand, annual phase changes in the south hemisphere 
are minimal. However, mean annual phase changes between both periods are 78◦ higher in the northern than southern hemisphere. 
This means that the annual plant cycles start 2–3 months later in the northern hemisphere than in the southern hemisphere. 

The mean phase difference map of both time series as well as a significant difference map at 95% probability level are illustrated in 
Fig. 12A and B. As shown, the maximum annual phase changes are significant in the northern hemisphere at >30◦ latitude (F- 
value<0.05). 

Fig. 13 demonstrates the mean annual phase changes between both annual NDVI time series along different latitudes (40◦ S to 80◦

N) where changes were noticed. As indicated, the mean phase of the recent time series in each latitude of 18–72◦ N is lower than its 
corresponding mean phase in the past time series, and its curve is located beneath the historic annual phase curve. As mentioned, 
reduced phases in recent time series indicate the earlier start of growth and plant phenology processes in these regions. Fig. 13 also 
shows more intense annual phase changes in the northern hemisphere. 

Fig. 10. Mean difference of annual amplitude between both four historic and recent annual NDVI time series (A), and map of significant mean 
differences (B). 

Fig. 11. Mean annual phase of four historical annual time series (A) and four recent annual time series (B).  

Fig. 12. Mean annual phase difference between both recent and historic annual NDVI time series (A), and the map of significant mean differ-
ences (B). 
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3.3. Changes in harmonic components in different biomes 

Table 2 presents the mean changes of harmonic components in both time series in different global biomes. The amplitude 0 changes 
were not significant in deserts and xeric shrublands (F-value>0.05), but were significant in tundra, temperate grasslands, savannas, 
and shrublands (F-value<0.05) and in all the other biomes (F-value<0.01). In general, amplitude 0 and amplitude 1 in most biomes 
increased significantly from historic to recent time series (Table 2). Increased amplitude 0 indicates an overall increase in vegetation 
coverage, and increased amplitude 1 can be due to an increase in vegetation coverage in the growth season or higher presence of 
vegetation (e.g. deciduous trees or plants) which increase greenness rate in only one season of the year. Furthermore, the elevated 
amplitude can also be indicative of increased changes in vegetation (imbalance). According to Table 2, the annual phase changes were 
significant in the temperate regions between latitudes 30◦ and 60◦ as well as high latitudes (>60◦). In all these regions, annual phases 
significantly reduced, indicating that growth signals in these regions start earlier than before. 

Annual phases in boreal forests/taiga; Mediterranean forests, woodlands, and scrubs; temperate broadleaf and mixed forests; 
temperate grasslands, savannas and shrublands; and deserts and xeric shrublands significantly reduced by 14.1, 14.8, 10.6, 9.5, and 
22.8 days, respectively, compared to the past. However, annual phase changes of vegetation coverage in tropical and subtropical areas 
were not significant (F-value>0.05). 

4. Discussion 

The results showed that the gaps in remote sensing datasets are lower in the recent than historic time series, especially around 
60◦N. This decrease is mainly caused by a reduced cloud cover (NaN results, not shown) and related withdrawal of snow and ice cover 
due to global warming. The North Pole has undergone the largest and quickest amount of warming over the past thirty years [50]. This 
withdrawal of ice and snow cover has been accelerated by increasing absorption of radiation by the surface [51]. Many studies have 
documented the reduced snow and ice cover in the northern regions [52–55]. 

Reduced snow and ice cover and increased solar absorption along high latitudes can justify the elevated NDVI from historic to 
current periods and reduced annual phases. The results of the current study show that amplitude 0, annual amplitude, and annual 
phases have undergone significant changes, especially in high altitudes. Amplitude 0 or mean NDVI in most global biomes significantly 
increased (F-value<0.01). These changes show increased production and seasonal length growth in these regions, especially in the 
forest biomes along latitudes. This is thought to be a consequence of global warming in the past three decades. For example, amplitude 
0, with NDVI of 0.045 has increased (F-value<0.01) in the boreal forests-taiga biome compared to the last three decades. In the taiga 
biome and regions close to the pole, primary production is limited by temperature [56]. The increased production in these regions has 
been reported to be due to climatic changes [57,58]. 

Eastman et al. [11] determined three classes of changes in the 30-year NDVI time series. The first class included regions with 
increased amplitude 0 or overall vegetation coverage. The second class consisted of regions with elevated annual amplitude. The third 
class included regions with both elevated amplitude 0 and annual phase. These changes can be indicative of a change in the 
composition percentage of different growth patterns such as trees, shrubs, grasslands, and herbaceous cover. By analyzing the 
changing trends of global NDVI, Eastman et al. [11] found that NDVI has increased by 0.46 × 103, on average, per year from 1982 to 
2012. Other studies have also shown that NDVI changes are more intense in the northern than southern hemisphere [2] These results 
justify the elevated amplitude 0, especially in high latitudes in the present study (Fig. 8 and Table 2). In the present study, amplitude 
0 in the recent time series compared to the past 0.034 NDVI has increased. 

The annual phases significantly reduced in the recent compared to historic time series in the global biomes of boreal forests/taiga; 
Mediterranean forests, woodlands, and scrubs; temperate broadleaf and mixed forests; temperate grasslands, savannas, and 

Fig. 13. Mean annual phase changes in both historic and recent periods along latitude 40◦ S to latitude 80◦ N.  
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shrublands; and deserts, and xeric shrublands by 14.1, 14.8, 10.6, 9.5, and 22.8 days, respectively (Table 2). Yet, annual phase changes 
of vegetation coverage in tropical and subtropical areas were not significant. Reduced annual phases indicate earlier growth and plant 
phenology processes in these regions, as reported in previous studies. These biomes are mostly located in the latitudes above 30◦ N and 
below 30◦ S. The phenological processes are one of the most sensitive biological indicators to investigate the impact of global warming 
on terrestrial ecosystems [59,60]. Temperature is one of the most important factors in controlling plant phenology processes, espe-
cially in humid temperate regions and high latitudes [37,61]. As a result, the reduction of phases (earlier start of growth processes) and 
increase NDVI (amplitude 0 and 1) in biomes located in high latitudes indicate the effects of climate change and global warming in 
these areas. 

Varlamova and Solovyev [62] reported a positive trend of NDVI in East Siberia over the past three decades. Moreover, based on the 
analysis of phenological parameters they showed that the Start of Season (SOS) occurred earlier and End of Season (EOS) happened 
later in the conifer forests and tundra [62]. Based on [40], vegetation coverage in the Loess Plateau, in China, has also increased based 
on significant NDVI increases from 1991 to 2000 to 2001–2010. Furthermore, this study showed an increase in phonologic SOS from 
3.9 to 6.6 days earlier, while EOS occurred 3.6 and 9.6 days later during both periods, in response to global warming. Our study also 
showed that amplitude 0 increased and the annual phase decreased in this region. 

Our study showed the maximum rate of changes in harmonic components of time series, especially in the annual time series, in the 
northern hemisphere at latitude >30◦. Mean annual global phases have reduced 9 days over the past three decades. However [63], 
reported a mean annual increase in season length all over the world from 0.22 to 0.34 days during 1982–2012. These authors showed 
that SOS occurred 2.2 ± 0.6 days per decade earlier during 1982–2002 in vegetation types found at moderate (40◦) and high (60◦) 

Table 2 
Mean values of Fourier components (amplitudes and phases) for recent and historic time series and associated differences for global biomes.  

Biome Name Period Amplitude 0 Amplitude 1 Phase 1 

Boreal Forests/Taiga Recent 0.336 0.262 209.15 
Historic 0.290 0.235 223.32 
Difference 0.045** 0.027** − 14.17** 

Tundra Recent 0.060 0.127 229.51 
Historic 0.064 0.113 231.30 
Difference − 0.004* 0.014** − 1.78ns 

Mediterranean Forests, Woodlands and Scrub Recent 0.307 0.088 153.26 
Historic 0.262 0.070 168.06 
Difference 0.045** 0.018** − 14.80** 

Temperate Broadleaf and Mixed Forests Recent 0.406 0.217 189.43 
Historic 0.339 0.206 200.06 
Difference 0.067** 0.011ns − 10.63** 

Temperate Conifer Forests Recent 0.404 0.172 216.70 
Historic 0.341 0.160 222.176 
Difference 0.063** 0.012** − 5.472* 

Temperate Grasslands, Savannas and Shrublands Recent 0.261 0.195 194.04 
Historic 0.235 0.169 203.61 
Difference 0.026* 0.026** − 9.56* 

Deserts and Xeric Shrublands Recent 0.137 0.041 152.78 
Historic 0.139 0.034 175.60 
Difference − 0.002ns 0.007** − 22.82* 

Montane Grasslands and Shrublands Recent 0.178 0.100 188.64 
Historic 0.157 0.082 185.88 
Difference 0.021** 0.018* 2.75ns 

Flooded Grasslands and Savannas Recent 0.335 0.158 150.16 
Historic 0.288 0.140 151.42 
Difference 0.047** 0.018** − 1.26ns 

Mangroves Recent 0.244 0.080 169.60 
Historic 0.198 0.075 163.92 
Difference 0.046** 0.005* 5.68ns 

Tropical and Subtropical Dry Broadleaf Forests Recent 0.438 0.120 185.55 
Historic 0.388 0.103 184.92 
Difference 0.050** 0.017** 0.62ns 

Tropical and Subtropical Grasslands, Savannas and Shrublands Recent 0.376 0.111 144.99 
Historic 0.329 0.094 142.36 
Difference 0.046** 0.016** 2.62ns 

Tropical and Subtropical Coniferous Forests Recent 0.486 0.129 244.64 
Historic 0.410 0.107 241.75 
Difference 0.076** 0.021* 2.89ns 

Tropical and Subtropical Moist Broadleaf Forests Recent 0.556 0.089 186.14 
Historic 0.479 0.086 190.01 
Difference 0.077** 0.003ns − 3.87ns 

**: significant at 0.01 
*: significant at 0.05 
ns: not significant 
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latitudes in the northern hemisphere, while EOS happened 0.78 ± 0.6 days later. In broadleaf forests the SOS occurred earlier by 2 ±
0.5 days per decade, while EOS occurred later by 2.7 ± 0.6 days from 1982 to 2013 [63]. In the current study, it was also shown that 
the annual phase in the temperate broadleaf and mixed forests biome has significantly decreased (F-value<0.01) by 10.6 days during 
three decades. 

In general, the findings indicated the high capability of the HANTS algorithm and Fourier series in the analysis of plant phenology 
changes associated with environmental factors. 

5. Conclusions 

In the present study, the changes of NDVI harmonic components over the past three decades were investigated using four historical 
annual time series and four recent annual time series. The main conclusions can be summarized as follows.  

1. The number of gaps and errors in remote sensing data series (by cloud, snow and ice cover) at high latitudes (around the 60◦ N) has 
decreased from historic to current periods. This decrease is due to the effects of global warming in these areas and associated 
melting of snow and ice cover. 

2. The HANTS algorithm can effectively recover gaps and outliers in NDVI time series. Decomposition of time series into its com-
ponents can be used effectively to identify changes in vegetation.  

3. Most vegetation and biomes on Earth recorded significant changes on mean, annual and seasonal changes on NDVI (amplitude) 
from 1982 to 1985 to 2015–2018 time series, as well as in plant growth and phenological processes (phases). These changes were 
more severe in the northern hemisphere than in the southern hemisphere and more pronounced at latitudes above 30◦N and below 
30◦S. These were more noticed on boreal forests/taiga biome time series.  

4. Annual changes in vegetation related to the beginning of the growing season and phenological processes showed an average 
decrease of 9 days from historic to recent NDVI time series. This decrease attained 22.8 days in deserts, and xeric shrublands 
biomes, 14.8 days in Mediterranean forests, woodlands, and scrubs, 14.1 days in boreal forests/taiga, 10.6 days in temperate 
broadleaf and mixed forests, and 9.5 days in temperate grasslands, savannas, and shrublands. 

Changes in vegetation are thought to be a consequence of global warming, and thus they are expected to continue in the future, 
with relevant impacts on current spatial distribution of biomes. 
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