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Abstract

We aimed at identifying the developmental stage at which
leukemic cells of pediatric T-ALLs are arrested and at defining
leukemogenic mechanisms based on ATAC-Seq. Chromatin accessi-
bility maps of seven developmental stages of human healthy T
cells revealed progressive chromatin condensation during T-cell
maturation. Developmental stages were distinguished by 2,823
signature chromatin regions with 95% accuracy. Open chromatin
surrounding SAE1 was identified to best distinguish thymic devel-
opmental stages suggesting a potential role of SUMOylation in
T-cell development. Deconvolution using signature regions revealed
that T-ALLs, including those with mature immunophenotypes,
resemble the most immature populations, which was confirmed by
TF-binding motif profiles. We integrated ATAC-Seq and RNA-Seq and
found DAB1, a gene not related to leukemia previously, to be overex-
pressed, abnormally spliced and hyper-accessible in T-ALLs. DAB1-
negative patients formed a distinct subgroup with particularly
immature chromatin profiles and hyper-accessible binding sites for
SPI1 (PU.1), a TF crucial for normal T-cell maturation. In conclusion,

our analyses of chromatin accessibility and TF-binding motifs
showed that pediatric T-ALL cells are most similar to immature
thymic precursors, indicating an early developmental arrest.
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Introduction

T-cell acute lymphoblastic leukemia (T-ALL) is considered to result

from uncontrolled proliferation and developmental arrest at early

stages of differentiation of normal T-cell progenitors. T-cell lineage

commitment and differentiation is coordinated through an interplay

between signals from the thymic microenvironment such as cytoki-

nes, chemokines and antigens and intrinsic transcription factors
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which regulate and orchestrate the process (Yui & Rothenberg,

2014). Developing T cells are conventionally classified by the

expression of surface antigens (Bene et al, 1995). T-cell precursors

that immigrated from the bone marrow undergo a Notch signaling

dependent commitment to early double-negative stages (CD4� and

CD8�; DN1–DN2) (Osborne & Miele, 1999). Thymocytes failing to

produce a functional pre-TCR by V(D)J rearrangement of T-cell

receptors are eliminated by apoptosis (ß-selection), while the

remaining cells develop beyond the DN3-ISP stage. Following posi-

tive and negative selection of double-positive (DP: CD4+ and CD8+)

and single-positive stages (SP: CD4+ or CD8+), only those thymo-

cytes with a T-cell receptor capable of binding MHC molecules, but

without high affinity for self-antigens (Raulet et al, 1985; Pardoll

et al, 1987), survive and differentiate into either single-positive

CD4+ T helper cells or CD8+ T cytotoxic cells (Zerrahn et al, 1997).

T-cell leukemias are historically subclassified in analogy to T-

cell maturation by the expression of the surface markers into four

immunophenotypes: pre-, pro-, cortical- and mature-T-ALLs,

respectively (Bene et al, 1995). Additionally, T-ALLs arrested at

the early thymic progenitor (ETP) stage (Hosokawa & Rothenberg,

2018) have been recognized as a distinct subgroup (Coustan-Smith

et al, 2009; Inukai et al, 2012). A hallmark of T-ALL is the rear-

rangement and activation of the oncogenic transcription factors

TAL1, LMO2, TLX3, HOXA and NKX2 whose promoters are often

placed under the control of strong T-cell-specific enhancers. In

addition, the genomic landscape of T-ALL often includes “type B”

mutations such as activating NOTCH1-pathway mutations, dele-

tions of CDKN2A, activation of the IL7R/JAK-STAT pathway, and loss

of the PTEN tumor suppressor gene (Van Vlierberghe et al, 2008;

Girardi et al, 2017).

While cytogenetics and cell surface marker staining are used to

characterize the putative cell of origin of T-ALL, epigenomic analy-

ses have recently evolved as powerful methods to define the biology

of tumor cells and their relationship to the normal precursors

(Corces et al, 2016; Beekman et al, 2018). To identify the matura-

tion stages closest to T-ALLs and thus where T-ALL cells are likely

arrested, we employed the Assay for Transposase Accessible Chro-

matin Sequencing (ATAC-Seq) and analyzed the chromatin land-

scape for different developmental stages of sorted healthy thymic

progenitors obtained from otherwise healthy children undergoing

heart surgery. We generated a comprehensive map of stage-specific

regions of chromatin accessibility in the course of human T-cell

development and predicted transcription factor (TF)-binding motifs

in the footprints of ATAC peaks enriched in each developmental

stage. The signature served to identify T-cell maturation stages that

most closely resembled the ATAC landscape of pediatric T-ALL.

Finally, we integrated RNA-Seq with ATAC-Seq data and identified

overexpressed genes residing in highly accessible chromatin and

playing previously unknown roles in the biology of pediatric T-ALL.

Results

The genome-wide landscape of chromatin accessibility
undergoes gradual changes during T-cell development

Using ATAC sequencing, we generated chromatin accessibility maps

of seven populations of sorted healthy T-cell precursors (DN2, DN3,

ISP, DPCD3�, DPCD3+, SPCD4+, and SPCD8+) obtained from

thymi of six otherwise healthy children undergoing heart surgery

(Fig 1A). Of the 68,415 ATAC-Seq peaks (open chromatin regions;

OCRs) (Dataset EV1) identified in the combined analysis of the

six donors, the majority (85.2%; n = 58,294) fell into distal (non-

TSS; outside � 1 kb window of a TSS) regions, while 14.8%

(n = 10,121) fell into regions of transcription start sites (TSS; �1 kb

of a TSS). As previously shown, distal regulatory elements more

accurately classify different cell populations (Heinz et al, 2010;

Corces et al, 2016) than TSS regions and were therefore used in

downstream analyses in our study unless stated otherwise.

Chromatin accessibility as measured by the number of OCRs

decreased progressively with maturation and reached a minimum in

the DP and SP stages (Fig 1B, P-value = 0.035; Kruskal–Wallis

Test). These data indicate that the chromatin of developing T cells

becomes increasingly condensed with maturation, which is consis-

tent with previous observations that chromatin in undifferentiated

embryonic stem cells is globally decondensed in comparison to dif-

ferentiated cells (Gaspar-Maia et al, 2011; Ugarte et al, 2015).

Consequently, the number of accessible TF-binding motifs identified

in OCR footprints of seven developmental stages decreased significantly

during T-cell development (Appendix Fig S1A, P-value = 0.0028;

Kruskal–Wallis Test). Moreover, we have categorized 68,415 OCRs into

four patterns (increasing, decreasing, fluctuating, and steady) based on

the changes in accessibility patterns and found that the majority of

OCRs (59%) remain steady during thymocyte maturation (Fig 1C).

Steady peaks tended to have less accessibility (mean peak count: 20),

indicating that less open chromatin regions in early development tend

to remain closed as T cells develop. We found that 29% of OCRs

became less accessible, whereas only 0.3% became more accessible

demonstrating that chromatin organization in developing thymocytes is

characterized by closing/condensing those regions that are highly

accessible in the immature precursors (Fig 1C).

Unsupervised learning by principal component analysis (PCA) of

all distal OCRs grouped the sorted populations according to their

developmental stage (Fig 1D). Arrangement of the groups on the

PCA plot followed the hierarchy of their development and exhibited

overlapping profiles thus indicating a continuous process of chro-

matin remodeling during T-cell maturation (Fig 1D). Quality control

of the libraries revealed that potential batch effects do not detectably

influence the data quality and do not drive the clustering of samples

in the PCA (Dataset EV2). Moreover, the projection of bulk thymus

in the PCA space of sorted T cells is concordant with FACS results

showing that the majority of the cells in thymus belong to DPCD3+

and DPCD3� populations (mean DP 70%; Appendix Fig S2).

A comparison with previously published methylation/acetylation

datasets for the T-ALL cell line DND-41 (Knoechel et al, 2014), in

which we computed expected values based on randomly shuffled

ATAC-Seq peaks, shows a high degree of overlap between the OCRs

identified in purified subpopulations and the active promoters and

enhancers detected in ChIP-Seq datasets (Fig EV1).

Developmental stage-specific conformation of chromatin reveals
key regulatory regions of T-cell development

To define a set of OCRs differentially accessible across developmen-

tal stages, we performed pairwise contrasts of the different sorted

T-cell precursors using DESeq2 (Love et al, 2014). Out of 58,294
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distal OCRs, we identified a signature set of 2,823 OCRs that distin-

guish T-cell precursors (Dataset EV3). A heatmap of all signature

regions clustered seven T-cell populations in the order of their matu-

ration highlighting the continuous changes in chromatin accessibil-

ity during T-cell maturation (Fig 2A). Gradual changes in

consecutive developmental stages resulted in poor separation partic-

ularly between DN3 and ISP, and double-positive stages CD3� and

CD3+ (Fig 2A) resulting in a suboptimal prediction accuracy in

leave-one-out cross-validations (Appendix Fig S3A and B) using the

CIBERSORT (Newman et al, 2015) deconvolution algorithm to

predict cell types. Moreover, a time course experiment showed rapid

internalization of surface CD3 when DPCD3+ cells were incubated

on ice, indicating that the expression of CD3 on the surface DP cells

is not related to major functional differences (Appendix Fig S4).

Therefore, we merged ATAC-Seq datasets of populations that

showed most commonalities and used the following five groups for

all downstream differential analyses: DN2, DN3 & ISP, DPCD3� &

DPCD3+, SPCD4, and SPCD8 (Fig EV2; see Materials and

Methods—Generation of signature matrix for more details).

Using the rotations of principal components 1 and 2 (PC1 &

PC2), we quantified the importance of signature OCRs and found

that a peak on the SUMO1 Activating Enzyme Subunit 1 (SAE1;

Fig 2B), a crucial element of the SUMO modification system, contri-

butes most to PC1 differentiating developmental groups thus

indicating that SUMOylation may play an important role in T-cell

development. Further, SUMO-specific peptidase 3, 5, and 7 (SENP3,

5, and 7), E3 SUMO-protein transferase ERG2, BCL11A, which

colocalize with SUMO1 and SENP2, and two other genes contained

in the SUMOylation pathway (TPR and NUP214) were included in

the signature. Two out of the top five signature OCRs with the

highest PC1 contribution are identified near the T-cell receptor

gamma (TRG) locus (Dataset EV3) which is rearranged resulting in

the gamma-delta T-cell lineages to branch off from double-negative

populations thus separating this profile from that of the alpha-beta

T-cell lineage (Dataset EV3). Moreover, in the set of signature

OCRs we recapitulated differentially accessible OCRs surrounding

other well-known stage-specific genes such as CD8A (Ellmeier et al,

1999) and RAG1/2 (Rothenberg et al, 2008) (Fig 2B, Dataset EV3).

Functional enrichment analysis (FEA) by GREAT (McLean et al,

2010) showed that signature OCRs are enriched in the proximity of

genes related to T-cell development and the function of the immune

system (Dataset EV4). Signature OCRs assigned to the double-

positive group (790; Appendix Fig S5) were enriched in terms asso-

ciated with hemopoiesis and leukocyte differentiation and those

assigned to the single-positive group (1,169; SPCD4+ and SPCD8+,

Appendix Fig S5) were enriched in terms related to the regulation of

the immune system (Fig 2C and Dataset EV4). However, signature

peaks (864; Appendix Fig S5) in the double-negative group (DN2

and DN3&ISP) had only one exclusively enriched GO-term, namely

positive regulation of leukocyte migration, suggesting that OCRs

regulate more general functions as long as cells retain a multi-

lineage capacity (Fig 2C and Dataset EV4).

A

B C D

Figure 1. Chromatin accessibility by ATAC-Seq differentiates maturation stages of healthy T-cell precursors.

A Thymi collected from healthy donors (n = 6) were sorted by FACS to obtain seven populations of double-negative (DN2, DN3, and ISP), double-positive (DPCD3� and
DPCD3+), and single-positive (SPCD4+ and SPCD8+) stages. Sorted populations were subjected to the ATAC sequencing.

B Chromatin accessibility as measured by the number of all (TSS and distal) ATAC-Seq peaks (read count ≥ 10) detected in DN2 (n = 5), DN3 (n = 5), ISP (n = 5),
DPCD3� (n = 6), DPCD3+ (n = 6), SPCD4+ (n = 5), SPCD8+ (n = 5) populations. Horizontal lines of the box plot indicate the median, lower, and upper limits of each
box correspond to the first and third quartiles (the 25th and 75th percentiles) and the lower and upper whiskers extend from min to max; P-value = 0.035 (Kruskal–
Wallis test).

C Fraction of OCRs having increasing, decreasing, steady, and fluctuating accessibility pattern during T-cell development (x-axis). Average number of normalized reads
in OCRs (y-axis).

D Unsupervised learning by PCA of all distal peaks. Color represents developmental stage. The gray triangle indicates the projection of the bulk thymus sample on the
PCA space of sorted populations.
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Differential motif enrichment analysis reveals key transcription
factors regulating T-cell development

We annotated ATAC-Seq peaks with TF-binding sites using Alfred

(Rausch et al, 2019) and the JASPAR motif database (Khan et al,

2018). To enhance specificity of motif predictions, we further inter-

sected candidate motif-binding sites with TF footprinting predictions

from HINT-ATAC (Li et al, 2019) (Fig 3A). High motif counts

(> 1,000) for well-known T-cell-related TFs such as TCF3, RUNX1,

ETS1, and HES1 (Rothenberg et al, 2008) confirmed the accuracy of

our computational predictions in the footprints within OCRs.

Of altogether 354 analyzed TF-binding motifs, 77 (21%) were

specifically accessible in one developmental stage compared to the

other stages (Padj < 0.05; Fisher’s exact test; Dataset EV5). The

majority (44) was enriched in the most immature stage DN2

(Appendix Fig S6A), whereas in the other populations we identified

only 5–11 stage-specific TF-binding motifs (Appendix Fig S6A).

Moreover, the majority (49/84; 58%) of TF-binding motifs specifi-

cally depleted in OCRs of one developmental stage were identified

in the DP populations (Appendix Fig S6B). In order to assess if the

enrichment of TF-binding motifs in OCRs can be used to predict the

differential activity of TFs during T-cell development, we focused on

the top 50 TFs with the highest standard deviation of odds ratios

between the developmental stages. We first confirmed the hyper-

accessibility of TF motifs whose activities are known to be restricted

to certain developmental stages (Dataset EV5). These, marked by

green squares (18) in Fig 3B, include SPI1 (PU.1, highest

discriminating capacity; OR = 4.1 in DN2), Bach2, IRF1, and IRF2

(Ungerback et al, 2018) (Simon et al, 1997; Anderson et al, 2002a).

Further, these data reveal development-specific activity of 25 TFs

that have previously been linked to T-cell development but have so

far not been characterized for their differential activity during T-cell

maturation. These TFs are listed in Dataset EV5 and include MAF::

NFE2, Bach1::Mafk, ETS-related family TFs ELF1/4, ELK1/3, and

ETV3 (marked by pink squares in Fig 3B). Finally, we identify seven

additional TFs (blue squares in Fig 3B) that so far have not been

linked to T-cell development. Two of these are enriched in a stage-

specific manner (ONECUT1 and PAX3), whereas the remaining five

are enriched either in early (DN2, DN3&ISP) populations (ZBTB18)

or in intermediate and mature (DP, SPCD4, and SPCD8) populations

(ZBTB7A, USF2, ATF7, and HINFP).

Furthermore, we have performed a global TF motif enrichment

analysis on the ATAC-Seq peaks alone and compared the results of

this analysis to enrichment analysis of motifs occurring only within

footprints identified in ATAC peaks. Global analysis yielded a higher

number of TFs with no prior known relevance to T-cell biology than

intersecting peak calls with footprints (20 vs. 7 TFs; Fig EV3), indi-

cating that footprinting analysis adds substantial specificity toward

identifying T-cell-related factors.

We have next investigated the hierarchical trees defined by

JASPAR (JASPAR clusters), which are based on binding motif simi-

larities. This analysis showed that our top 50 TFs belong to 20

distinct clusters (Dataset EV5). We found that 7/11 (64%) TFs (in-

cluding IRF1–9 and Stat1–2) that are known to be highly relevant to

A B

C

Figure 2. Signature open chromatin regions distinguish T-cell developmental stages.

A Unsupervised hierarchical clustering based on the variance stabilizing transformation (VST) normalized read counts (each row is also normalized by the row mean) of
the 2,021 signature open chromatin regions of 7 stages (see Fig EV2 for five stages).

B ATAC-Seq genome tracks showing three signature peaks located near the genes SAE1, RAG1, and CD8A. Framed regions indicate cell-type-specific signature ATAC-Seq
peaks. Blue triangles indicate known promoter or enhancer regions, which are annotated in the GeneHancer (GH) Regulatory Elements database (Fishilevich et al,
2017).

C Functional enrichment analysis of the signature OCRs allocated to three developmental groups by GREAT. Top five unique GO-terms which have the lowest FDR q-val
are shown. In parenthesis: number of uniquely enriched GO-terms / total number of enriched GO-terms.
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T-cell development belong to the most represented cluster39 and are

among our top candidates. When inspecting the clusters of seven TFs

with no prior known relevance to T-cell biology, we noted that the

binding motifs of two of these (HINF and SP4) do not show similarities

to other top candidates (Dataset EV5). HINFP is the only TF in clus-

ter76 and SP4 is the only TF among our top 50 belonging to cluster34,

which includes a total of 29 TFs, suggesting a previously unrecognized

role of HINFP and SP4 in T-cell differentiation. By contrast, the bind-

ing motifs of five of these seven TFs show similarity with the binding

motifs of other members in the list of top 50 (Dataset EV5), and thus,

these TFs may merely confirm the role of previously known TFs.

Immature thymic T-cell precursors share open chromatin regions
with T-ALL

A map of chromatin accessibility and TF-binding motifs of the

five developing healthy T-cell populations (DN2, DN3&ISP,

DPCD3�&DPCD3+, SPCD4+, and SPCD8+) served as a basis for the

deconvolution of 19 pediatric T-ALLs reflecting different

immunophenotypes (pre-, pro-, cortical-, and mature-T-ALL; Dataset

EV6). Seven out of 29 PDX models corresponding to 4/19 patients

with T-ALL (Fig 4A) were previously shown to recapitulate the chro-

matin accessibility landscapes of primary leukemia samples and, in

comparison to primary patient samples, to yield technically compara-

ble material resulting in higher TSS enrichment scores of the ATAC

library (P-value = 0.03; Wilcoxon test; (Richter-Pechanska et al,

2018)). The projection of the leukemia samples into the PCA space of

2,823 T-cell signature OCRs, which distinguished sorted healthy T-cell

populations, positioned them in the vicinity of the early DN2 and

DN3&ISP developmental stages (Fig 4B).

We next quantified the contribution of each of the developmental

stages using the deconvolution algorithm CIBERSORT (Newman et al,

2015) trained on the 2,823 signature OCRs. Of the 19 leukemias, 16

had a contribution of at least 40% of one of the early developmental

groups DN2 or DN3&ISP (Fig 4C). The average contribution of these

early immature stages (DN2, and DN3&ISP) was 64% (DN2 = 36%,

DN3&ISP = 28%), while the contribution of double positives and

single positives was much lower (DP = 9%, SPCD4 = 13%,

SPCD8 = 13%). Signature OCRs specific to the most immature T cells

were particularly dominant (> 60%) in 4/19 T-ALL samples

(DN2 > 60%; patients P3, P4, and P27, and DN3&ISP > 60%; P11).

Notably, even the T-ALLs classified as mature by immunophenotyp-

ing exhibited a substantial contribution of the early DN2 chromatin

accessibility landscape (P8: 52% and P27: 78%) indicating that even

the subtype of T-ALL that is characterized by a mature immunopheno-

type resembles an immature thymic precursor (Fig 4C).

Chromatin accessibility, as measured by the number of ATAC-

Seq peaks, decreased with the maturation of T cells (Fig 4D).

Although T-ALLs (average peak count: 68,208) resembled most the

early DN2 populations (average: 59,120), the number of peaks in T-

ALLs was significantly higher than those of sorted T-cell populations

(Fig 4D, P-value = 4.4e-08; Kruskal–Wallis test). Similarly, in the

course of T-cell maturation we observed a decrease in the number

of TF motifs that are located in OCR footprints. By contrast,

the number of TF motifs counted in T-ALLs was significantly

higher than those of sorted normal human T-cell populations

(Appendix Fig S1B, P-value = 2.6e-05; Kruskal–Wallis Test).

Transcription factor-binding motifs analyzed in healthy T cells

clustered these cells in two major developmental groups: early

(DN2 and DN3&ISP) and intermediate together with mature T cells

(DP, SPCD4+ and SPCD8+; Fig 3B). Out of the total of 354 analyzed

TF-binding sites, 132 characterized early developmental stages

(Padj < 0.05 and ln[odds ratio] > 0) and 115 characterized interme-

diate and mature developmental stages (Dataset EV5). Out of the

132 early-specific TF-binding sites, such as motifs for Bach1/2, Maf

(k), and Nfe2l2, 109 (83%) were significantly enriched in leuke-

mias, whereas of the 115 intermediate- and mature-specific TFs only

12 (10%) were significantly enriched in T-ALLs (top 50 shown in

Fig 4E). Binding motifs for TFs which characterized normal DP and

SP stages, such as ZBTB7a, RORA/C, and CREB1, tended to be

depleted in T-cell leukemias (Fig 4E).

The chromatin of T-ALLs is substantially more accessible than
that of normal human immature T-cells

After identifying features of chromatin architecture shared between

leukemias and healthy T cells in different stages of their

A

B

Figure 3. Open chromatin regions contain maturation-specific
transcription factor-binding motifs.

A The rationale of footprinting analysis as illustrated by actual ATAC-Seq
peaks, HINT-ATAC footprint hits, and example TF motif instances near RAG1
gene in DN2 population of thymus donor 6.

B Heatmap of ln(odds ratio) of the 50 TFs showing the most differential
abundance of binding motifs in the open chromatin regions. TFs with an
SD of the motif counts < 10 are excluded.
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A

B

D

C

E

Figure 4. The chromatin accessibility landscape of T-ALLs is most similar to the immature stages of normal human T-cell development.

A T-ALL cells of n = 19 patients were engrafted into mice, cryopreserved after harvesting and enriched for viable cells after defrosting. Then, they were subjected to the
ATAC sequencing. Patients P7, P8, P10, P59 were published previously (Richter-Pechanska et al, 2018)

B Projection of 19 T-ALLs in the PCA space of 2,823 signature OCRs discriminating T-cell developmental stages.
C Deconvolution analysis by CIBERSORT trained on the 2,823 signature OCRs. Stacked columns represent the contribution of each developmental stage (indicated by

color) to each leukemia patient (x-axis).
D Chromatin accessibility as assessed by the number of ATAC peaks identified in the sorted populations of normal thymic T-cell precursors and in T-ALLs, respectively

(n = 10/19 patients have two biological replicates, n = 9/19 patients have one replicate). Horizontal lines of the box plot indicate the median, lower, and upper limits
of each box correspond to the first and third quartiles (the 25th and 75th percentiles) and the lower and upper whiskers extend from min to max; P-value = 4.4e�08
(Kruskal–Wallis test).

E Heatmap representing the enrichment and depletion of binding motifs of top 50 TFs in OCRs of T-ALLs in comparison to healthy T-cell precursors. Patients on the x-
axis; same order as in panel (C). Gray cells represent TFs having non-significant enrichment or depletion.
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development, we were interested in genuine chromatin hallmarks of

T-ALL. Of the 110,252 OCRs (non-TSS: 98,749, TSS: 11,503; Dataset

EV7) identified in the combined analysis of sorted thymic T-cell

populations and 19 T-ALLs, 52,821 were shared between healthy

T-cell precursors and T-ALLs. By contrast, 46,188 OCRs (non-TSS:

44,323, TSS: 1,865) were accessible only in T-ALLs and 11,243 OCRs

(non-TSS: 10,852, TSS: 391) were accessible only in healthy T-cell

precursors (Fig 5A). The T-ALL chromatin landscape was thus

substantially more accessible than that of even the most immature

of the sorted normal T-cell precursor population indicating a

particularly immature profile in the leukemias. The majority of

T-ALL-specific OCRs (44,323/46,188; 96%) were mapped to non-

TSS OCRs suggesting that leukemia-specific OCRs are enriched for

putative gene regulatory regions with an at least three-fold increase

in accessible motifs for TFs with a key role in T-ALL such as REST

and MAF:NFE2 (Dataset EV8).

Moreover, unsupervised learning by PCA using all OCRs resulted

in a clear separation of T-ALL and healthy T cells demonstrating

that the chromatin profiles of T-ALLs diverge fundamentally from

those of healthy T-cell precursors in the thymus (Fig 5B). Quality

A D

B

C

Figure 5. The integration of differential chromatin accessibility and expression analyses reveals recurrently dysregulated genes.

A Number of unique and shared OCRs (TSS and distal) in T-ALLs and in healthy T-cell precursors.
B Unsupervised learning by PCA of all TSS and distal peaks collected in the combined analysis of healthy and leukemic T cells.
C Log2 fold changes of 292 genes which are differentially expressed (x-axis, RNA-Seq: non-sorted bulk thymi vs. T-ALLs) and differentially accessible (y-axis, ATAC-Seq:

sorted T-cell populations vs. T-ALLs) in T-ALLs in comparison to healthy T-cell precursors. Dot size and color indicate the frequency (number of patients having
dysregulation of the gene). Genes with ≥ 5/19 frequency are shown on the plot. Protein coding genes with ≥ 12/19 frequency are labeled. For plotting, the average
LFC values of ATAC and RNA are used per gene per quartile. Q1–4 stands for the quadrant 1–4.

D Heatmap of VST normalized read counts (each row is also normalized by the row mean) of differentially expressed genes (P-value < 0.1; DESeq2) in three patients in
comparison to remaining 16. Orange triangles indicate three patients with no DAB1 but high SPI1 expression and motif counts.
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control of the libraries revealed that the higher number of OCRs in

T-ALLs and the separation of T-ALLs and sorted T cells are not

driven by potential batch effects or other technical parameters

detailed in Dataset EV2.

T-ALLs form two subgroups characterized by overexpression of
DAB1 or SPI1

We next integrated ATAC-Seq and RNA-Seq data thus focusing on

chromatin regions and differentially expressed genes with a more

likely biological relevance. Because of the high interpatient hetero-

geneity (Fig 5B), differential analyses by DESeq2 were performed

separately for each of the patients, which enabled us to identify

recurrent events (Dataset EV9). When compared to healthy T-cell

precursors, we identified a total of 292 genes to be both differen-

tially expressed and contained in significantly differentially accessi-

ble OCRs in at least five T-ALLs (Fig 5C). Of these peak/gene

combinations, 102 were more accessible and overexpressed (quad-

rant—Q1), whereas 191 were less accessible with low RNA expres-

sion levels (Q3; Fig 5C).

The validity of this analysis was confirmed by the finding that

the CDKN2A gene was identified to be not accessible/hypo-acces-

sible and not to be expressed/under-expressed in the 16 patients

with a homozygous CDKN2A deletion and one patient with a

heterozygous CDKN2A deletion, respectively (data not available for

two patients; Dataset EV10). CDKN2A was found to be among the

most recurrently differentially accessible and expressed T-ALL-

specific regions and contributes most to the discrimination between

leukemias and healthy T cells (PC1 loading = 0.000597; Appendix Fig S7

and Dataset EV11).

The most recurrent differentially accessible OCR in T-ALLs (15/

19; 79%) was assigned to the regulatory region of DAB1 (PC1 load-

ing = 0.000454, Appendix Fig S7 and Dataset EV11). The expression

of DAB1 was 41-times higher in the T-ALLs than in bulk thymus

(fold change min: 14, median: 37, max: 218; DESeq2). We further

validated DAB1 expression by qPCR in four T-ALL cell lines, in four

samples obtained from T-ALL patients, and in healthy bulk thymus

(PCC = 0.97; Fig EV4), which confirmed the strong overexpression

of this gene in the T-ALLs. We have also analyzed publicly available

microarray expression profiling data of sorted human thymocyte

populations (GEO Accession No.: GSE33470) and showed that DAB1

expression is exceedingly low and similar to the expression of

hemoglobin subunit alpha 1 (HBA1), which is known not to be

expressed in T cells in all subpopulations (Appendix Fig S8). These

data indicate that RNA-Seq of bulk thymi is representative for the

expression of DAB1 in all subpopulations.

Moreover, publicly available datasets generated with Affymetrix

microarrays (U133) in larger patient cohorts demonstrated higher

expression signal of DAB1 in leukemias, particularly in T-ALLs

(Appendix Fig S9; R2: Genomics Analysis and Visualization Plat-

form). The role of DAB1 in T-ALL is unexpected, because the biolog-

ical function of this gene has so far been best documented in

neurodevelopment (Bock & May, 2016; Lee & D’Arcangelo, 2016).

Further, we discovered that T-ALLs express a novel transcript of

DAB1 that is not annotated in the GTEx database but expressed in

T-ALLs (Fig EV5). Expression of exons 10–15, which are not

normally co-expressed, was validated by RT–PCRs and Sanger

sequencing in two patients (P7 and P9) and three T-ALL cell lines

(Fig EV5). The integration of ATAC-Seq and RNA-Seq data

combined with an exon usage analysis thus revealed that the leuke-

mias overexpress a previously unannotated isoform of DAB1 includ-

ing additional exons. This discovery indicates that the combination

of methodologies used here is sensitive to uncover leukemia-specific

abnormalities that were not called by previous RNA-Seq analyses

alone. Future work will be required to investigate whether this

previously unrecognized transcript of DAB1 affects the viability or

proliferation of leukemia cells in T-ALL.

Four patients who did not express DAB1 (P3, P4, P27, and P69)

formed a distinct subgroup (Appendix Fig S10) characterized by

SPI1 overexpression, a particularly high contribution (> 60%) of the

early developmental stage DN2 (Fig 4C) and a high accessibility of

the binding motif of the TF SPI1 (PU.1) in three patients (Fig 4E).

As expected, normalized read counts generated by RNA-Seq analysis

showed a high correlation with counts for the SPI1-binding motifs in

OCRs (Spearman’s rank correlation = 0.72, P-value = 0.00048;

Appendix Fig S11).

Differential analysis of gene expression and chromatin accessibil-

ity showed that SPI1 expressing patients are characterized by an

overexpression/hyper-accessibility of genes which determine the

very early phase 1 of T-cell development (Seki et al, 2017). These

genes included MEF2C, MEIS1, and HOXA9 (Fig 5D, Padj < 0.05;

DESeq2) and genes that are characteristic for the B-cell lineage

precursors such as LYN, BTK, cyclin D2, CD79A, CD79B, and CD72

(Fig 5D, Padj < 0.05; DESeq2). These findings indicate a particularly

early cell type of origin of these T-ALLs with shared features of the

B-cell lineage. By contrast, DAB1 overexpressing and hyper-acces-

sible T-ALLs tend to overexpress genes of the later phase 2 and 3 of

T-cell development (Seki et al, 2017) such as TCF7, LEF1, and

RUNX1 (Fig 5D, Padj < 0.05; DESeq2). In sum, these data implicate

a previously unrecognized and mutually exclusive biology of DAB1

and SPI1, and place the T-cell developmental stage, pediatric T-ALLs

likely originate, at different albeit consistently early levels of the

hierarchy of the developmental pathway of maturing T cells.

Discussion

It has recently emerged that the differentiation and maturation of

cells is paralleled by robust epigenomic changes reflected by DNA

methylation and chromatin accessibility (Corces et al, 2016;

Beekman et al, 2018; Yoshida et al, 2019). As a result, epigenetic

analyses carry the potential to define the lineage and identity of cells

more accurately than conventional methods (Corces et al, 2016;

Rendeiro et al, 2016). Previous epigenomic analyses of pediatric

T-ALL have demonstrated that T-ALL patients with a CpG island

methylator-negative phenotype (CIMP-) reflecting generally low

DNA methylation levels have a significantly worse clinical outcome

in comparison to CIMP+ patients (Borssen et al, 2016). Considering

that medically most relevant features of pediatric T-ALLs such as

treatment resistance have not been consistently possible to define

by genetic and genomic analyses (Van Vlierberghe & Ferrando,

2012), we reasoned that epigenetic profiling of these leukemias and

defining the thymic maturation stage leukemia cells likely originate

may unveil previously unrecognized mechanisms of leukemogenesis

in this challenging type of pediatric leukemia. Further, previously

available methods to analyze chromatin structure such as ChIP-Seq
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require large numbers of cells thus challenging a differential analy-

sis of the various and rare subtypes of maturing T-cell precursors in

the human thymus. Therefore, the development of ATAC-Seq which

allows a highly reproducible and sensitive assessment of chromatin

accessibility in small numbers of cells (Buenrostro et al, 2013)

enabled us to answer fundamental questions such as how chromatin

accessibility defines different maturation stages of T-cell develop-

ment and at what point in this maturation hierarchy T-cell precursor

ALLs originate. We report here that the physiological maturation of

T cells is characterized by progressive condensation of the chro-

matin and a progressive decrease in the number of binding motifs

for TFs. These findings are consistent with data obtained by quanti-

tative high-resolution microscopy, which showed that embryonic

stem cells contain significantly more euchromatin than hematopoi-

etic stem cells, with a further reduction in mature cells (Ugarte et al,

2015).

Specifically, our data exhibit that the chromatin landscape of

maturing healthy T cells is remodeled gradually reflecting the

continuous transition from early double-negative to mature single-

positive CD4+ T helper cells and CD8+ T cytotoxic cells. The higher

fraction of OCRs with a closing profile than those with an opening

profile (29% vs. 0.3%) in the course of maturation implicates that

chromatin remodeling during T-cell maturation is mediated by

condensing accessible regions instead of decondensing packed

regions. FEA of the signature open chromatin regions revealed

expected GO-terms which were almost exclusively related to T-cell

biology (Dataset EV12). Notably, however, the signature peak with

the highest PC1 contribution was identified in the body of SAE1

which is a key enzyme in the process of SUMOylation. This finding

implicates activation of SUMOylation in T-cell development and is

consistent with a previous report linking activity of the SUMO-

specific protease 1 (SENP1) to be essential for the development of

early T- and B cells (Nguyen et al, 2008). Moreover, SAE1 is

required for cell-autonomous definitive hematopoiesis, suggesting

SAE1 importance for maintenance of hematopoietic stem/progenitor

(Li et al, 2012). In this context, it is interesting to note that the anal-

ysis of chromatin accessibility reported here suggests a potential

role of SAE1 in normal T-cell development.

In parallel to the condensation of the chromatin in the course of T-

cell maturation, the number of open TF-binding motifs diminished

gradually across the developmental stages. This global condensation

of the chromatin is consistent with the previously observed shutdown

of housekeeping genes during transition to the DP stages during

murine thymocyte differentiation (Mingueneau et al, 2013). Specifi-

cally, the data presented here identified the TF SPI1 (PU.1), a pioneer-

ing TF during T-cell development (Ungerback et al, 2018) together

with the small Maf proteins, Bach1/2, NFE2 and NF-E2 Related Factor

2 to be the most discriminating regulators of T-cell differentiation,

displaying progressive losses during maturation. In the recently

published results of the ImmGen Project, the expression of murine

TFs was correlated with changes in chromatin accessibility of TF-

binding sites. Thereby, a cis-regulatory atlas of 86 primary cell types

spanning the mouse immune system was established (Yoshida et al,

2019). Comparison of TF-binding motifs, which distinguish differenti-

ation stages, in human and mouse datasets showed that 26/50 of our

top candidates are also differentially accessible in mouse immune

cells, indicating a large degree of conservation of these regulatory

factors between human and mice (Dataset EV5). The genome-wide

chromatin accessibility atlas of human T cells that we have generated

in this project will thus be a valuable resource for future studies of T-

cell maturation and the dysfunction of T cells in human cancer.

The projection of OCRs from T-ALLs into the chromatin accessi-

bility maps of human thymic T-cell precursors, combined with the

deconvolution analysis, revealed that T-ALLs resemble immature

T-cell precursors. All leukemias, even those that are categorized as

mature by immunophenotyping, exhibit an immature pattern of

chromatin structure and an early profile of accessibility of TF-

binding sites. Moreover, the chromatin of the T-ALLs was signifi-

cantly and substantially more accessible than that of the most

immature of the sorted normal T-cell precursor population.

Based on the profiles of accessible TF-binding motifs, we identi-

fied two distinct groups of T-ALLs. The first group consisted of 3/19

patients who were characterized by highly accessible SPI1-binding

sites, overexpression of SPI1 when compared to bulk thymus paral-

leled by a particularly high contribution (> 60%) of cells deconvo-

luted to the early developmental stage DN2. For normal T-cell

development to occur, SPI1 downregulation is required at the

double-negative stage when cells are committed to the T-cell lineage

(Anderson et al, 2002b). Further, constitutive expression of SPI1 in

fetal thymic organ culture has been reported to result in reduced

thymocyte expansion and blocked differentiation at the DN3 stage

(Anderson et al, 2002b). Interestingly, fusions of SPI1 have previ-

ously been detected in a small subgroup of pediatric T-ALL patients.

The cells of these patients showed a double-negative (DN;

CD4�CD8�) or CD8+ single-positive (SP) phenotype and marked a

subset of patients with a very poor outcome (Seki et al, 2017). We

did not identify a fusion event explaining the high SPI1 expression

in the patients reported here, which indicates that an increased

accessibility of SPI1-binding motifs resulting in its overexpression

may be an alternative mechanism leading to the early developmental

arrest. It will now be interesting to analyze the fusion-independent

effect on prognosis and treatment resistance of an open SPI1 chro-

matin structure and RNA expression in a clinically well documented

larger cohort of patients.

The second larger group of 15/19 patients did not display hyper-

accessible SPI1-binding sites but was characterized by a hyper-

accessibility and expression of DAB1, which codes for an adaptor

protein in the Reelin signaling pathway, inhibiting Notch-ICD degra-

dation via Fbxw7 (Hashimoto-Torii et al, 2008) and activating PI3K

and Akt (Jossin & Goffinet, 2007) in response to Reelin. Considering

the overexpression of DAB1 in the analyses reported here, it is

remarkable that DAB1 was not reported to be overexpressed in

previous studies, possibly due to the lack of a contrast group of

healthy T cells to detect differential expression. We verified our

RNA-Seq-based findings with respect to DAB1 using qPCR analyses

of T-ALL cell lines, thymic cells and patient-derived T-ALL cells and

recapitulated overexpression in Affymetrix microarray data. We

have also identified a previously unrecognized DAB1 transcript in

T-ALLs. Future work will be required to investigate whether this

novel transcript affects the viability or proliferation of leukemia

cells. As for the role of SPI1, it will now be interesting to evaluate in

a larger number of patients in how far DAB1 hyperaccessiblity/over-

expression impacts on prognosis and treatment resistance.

In conclusion, integrated analyses of chromatin accessibility and

RNA expression implicate activation of the SUMOylation pathway in

the maturation of thymic T-cell precursors and identify particularly
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immature developmental stages to be the closest to pediatric T-

ALLs, which are characterized either by activated DAB1 or SPI1 in

our patient cohort.

Materials and Methods

Patients’ clinical characteristics

The primary cells were obtained from patients recruited in ALL-BFM

2000, ALL-BFM-2009, CoALL03 and CoALL09 trials. For patients’

clinical characteristics, see Dataset EV6.

The clinical trials including scientific analyses of the samples

obtained from recruited patients have been approved by the relevant

institutional review boards or ethics committees. Written informed

consent had been obtained from all the patients and the experiments

conformed to the principles set out in the WMA Declaration of

Helsinki and the Department of Health and Human Services

Belmont Report.

Establishment of the patient-derived xenograft models

Patient-derived xenografts (PDX) were generated as described (Sch-

mitz et al, 2011) by intrafemoral injection of 1 × 105 to 5 × 106

viable primary ALL cells in NSG (NOD.Cg-PrkdscidIl2rgtm1Wjl/SzJ)

mice. Transplanted mice were both male and female, aged 5–

8 weeks. Animals were housed in individually ventilated cages with

access to food and water ad libitum. Leukemia progression was

monitored in the peripheral blood by flow cytometry using anti-

mCD45, anti-hCD45, anti-hCD19, or anti-hCD7 antibodies. Cells had

been harvested after engraftment reached 75% in the peripheral

blood or mice health score reached either three at single item or the

total score had reached five. T-ALL cells were collected from spleen

and cryopreserved as described (Schmitz et al, 2011). Blast enrich-

ment in the sample had been evaluated by flow cytometry using

same antibody panel. Xenograft identity was verified by DNA finger-

printing using the commercial AmpFlSTR� NGM SElect kit. In vivo

experiments were approved by the veterinary office of the Canton of

Zurich, in compliance with ethical regulations for animal research.

Thymic cell collection

Thymic samples were collected from otherwise healthy children

who underwent cardiac surgery. Cell Sorting and ATAC-Seq experi-

ments using thymic samples was approved by the ethics committees

of Heidelberg University Hospital and EMBL Heidelberg. Written

informed consent was obtained from the donors’ parents.

For disaggregation, collected thymus was cut into small pieces

and placed between two nylon meshes in a petri dish. Complete

RPMI 1640 media (GIBCO, life technologies) were added to the dish,

and thymocytes were released by gently pushing the tissue with a

syringe plunger. The cell suspension was filtered with a 40 lm cell

strainer (Falcon, Corning) and labeled as described below.

Multicolor fluorescence activated cell sorting

Isolated cells were incubated with human Fc Block for 15 min at

4°C, washed, and stained 30 min at 4°C with an antibody mix

containing APC-conjugated CD7 (M-T701; 1:100), BV421-conjugated

CD34 (581; 1:50), PE-Cy7-conjugated CD38 (HIT2; 1:10,000), PE-

conjugated CD1a (HI149; 1:200), APC-Cy7-conjugated CD3 (SK7;

Leu-4; 1:100), FITC-conjugated CD4 (RPA-T4; 1:100), and BV605-

conjugated CD8 (SK1; 1:200). All antibodies and Fc Block were

purchased from BD Biosciences.

Stained samples were analyzed, and several populations of early

T-cell precursors and mature T cells were identified. Seven of these

populations were sorted following the gating strategy depicted in

Appendix Fig S12, using a BD FACSAriaTM Fusion cell sorter (BD

Biosciences) equipped with an 85 lm nozzle. Dead cells were

excluded by adding 7-AAD (7-aminoactinomycin D; BD Biosciences)

to the cell suspension, and doublets were carefully removed by plot-

ting SSC-area vs. SSC-width and FSC-height vs. FCS-area; cells with

increased width/area were not considered.

A fraction of the sorted cells was re-analyzed to verify the purity

of each population. Purity was > 95% for the seven sorted fractions.

Post-acquisition analysis was done with FlowJo software 10.0.8

(Tree Star, Inc.). The details of the fractions of each population

identified in six donor thymi are summarized in Appendix Table S1.

ATAC sequencing

Analysis as described in the PDX models recapitulate the genetic

and epigenetic landscape of pediatric T-cell leukemia (Richter-

Pechanska et al, 2018). OCRs were assigned to the TSS category if

they fell into the � 1 kb window of the transcription start site of a

CCDS (The Consensus Coding Sequence, (Pruitt et al, 2009)) gene.

All other OCRs, outside the � 1 kb window, were assigned to the

non-TSS/distal category.

Peak categorization into four patterns (increasing, decreasing,

fluctuating, and steady) was based on the standard deviation in the

normalized read counts and the accessibility profile of a peak in the

course of maturation: increasing: SD ≥ 12 and RCs of consecutive

stages increase, decreasing: SD ≥ 12 and RCs of consecutive stages

decrease, fluctuating: SD ≥ 12 and RCs going up/down during

development, steady: SD ≤ 12 or SD ≥ 12 and difference between

RCs of consecutive stages between �24 and 24.

Generation of signature matrix

One-versus-all testing was used to collect significantly different

peaks for each of the developmental stages. The thymus dataset of

58,294 distal peaks was used as input for differential accessibility

analysis by DESeq2 (LFC = 0, FDR = 0.3) (Love et al, 2014). For

every developmental stage, the n-peaks were selected with the

largest LFC and added to a signature peak list keeping track of

unique peaks. The base number n was optimized for the lowest

Cohen’s Kappa value of the signature matrix; with a parameter

sweep from 300 to 800 in intervals of 10. Variance stabilizing trans-

formation (VST) was used to normalize the read counts in the signa-

ture matrix. For a base number n = 790, the final signature matrix

after removing duplicates contained 2,823 peaks.

Cross-validation was performed using a standard leave-one-out

approach. Signature matrices with the same base number n were

created from all samples excluding one, and this is repeated as

many time times as there are samples. Instead of recollecting peaks,

a read count matrix was used with the column of that sample
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removed to ensure the same joined set of peaks was used through-

out the cross-validation process. Subsequently, the excluded sample

was deconvoluted with CIBERSORT (Newman et al, 2015) using the

signature matrix constructed without that sample. For every sample,

the test was marked as a pass/fail based on a match between the

most dominant population according to the deconvolution and the

developmental stage the sample was sorted as.

The signature matrix of the seven sorted developmental stages

(2,021 peaks, n = 375) performed poorly in leave-one-out cross-

validation. Only 25 out of 37 (68%) samples could be identified as

the stages as they were sorted as. Only the CD4s and CD8s were

identified correctly. However, the double-positive populations

(DPCD3� and DPCD3+) and the double-negative populations (DN2,

DN3 and ISP) could not be distinguished.

In a time course experiment, we showed that high similarity

between two DP populations is caused by the internalization of CD3

surface markers of DPCD3+ cells during long periods of sorting

(Appendix Fig S4). As a result of internalization, the cells which are

actually CD3+, fell into the CD3� cells’ gate, which explained why

DPCD3� populations had DPCD3+ contribution in deconvolution

analysis. Merging of two DP populations to generate signature

matrix improved the cross-validation results to 84%, yet the uncer-

tainties in the classification of double-negative populations

remained.

Several efforts were made to improve the classification of DN

populations. Merging the DN2 and DN3 populations resulted in a

correct rate of 92%, excluding DN3 populations from the analysis

resulted in 97%, and merging DN3 and ISP populations resulted in

95% correct rate (30/32; Appendix Fig S3A and B). Instead of

excluding the DN3 population, this population was therefore

merged with the ISP population.

Principal component analysis was performed on the signature

peaks to sort the peaks by importance or contribution using the

rotations of PC1 and PC2.

Functional enrichment analysis

Functional enrichment analysis of signature OCRs of five develop-

mental groups was performed by Genomic Regions Enrichment of

Annotations Tool (GREAT) version 4.0.4 (McLean et al, 2010).

OCRs were assigned to the group with the highest VST normalized

read count. Each developmental group contributed different

numbers of peaks to the final signature matrix (Appendix Fig S5).

FEA did not yield any results when it was run separately for each

of the five groups because of the low number of peaks per group.

Therefore, peaks contributed by DN2 and DN3.ISP stages and

SPCD4+ and SPCD8+ stages were combined to obtain three

groups of DN, DP, and SP populations when running GREAT

analysis.

Motif enrichment analysis

The thymus dataset of 58,294 distal peaks was annotated using

Alfred (Rausch et al, 2019) with motifs from the non-redundant

JASPAR CORE vertebrate PFM catalog (Khan et al, 2018). To

define expressed genes, a threshold of > 0.5 FPKM was used as

defined by the ENCODE project. Only the motifs of TFs that were

identified to be expressed in T cells were considered. Motif

positions were intersected with footprint positions inferred by

HINT-ATAC (Li et al, 2019) using the distal peaks (non-TSS peaks)

of every sample. These footprints represent possible TF-binding

sites which are dips within the accessible peaks. For downstream

analyses, the motif occurrences within a footprint score > 25 were

considered. This cutoff is approximately the average score of foot-

prints in most samples, and these footprints were also verified

with manual inspection. Since many TFs are highly similar, we

pre-filtered motifs that shared greater than 90% of their mapping

locations.

Fisher’s exact test was used to calculate whether a motif is

enriched within a developmental group. First, a count matrix was

constructed with rows for every motif and columns for each group.

Hereto, the motif occurrences were summed per motif per sample

and subsequently per group. These counts were used to fill out the

contingency table for each motif-group pair. An example of a contin-

gency table is given in Table 1 for the enrichment of BACH1 in the

DN2 group. The P-value was adjusted for multiple testing with

Bonferroni and FDR (P.adjust R function).

For visualization in Fig 3A, TFs which have < 10 standard devia-

tion in the motif counts were excluded first. Then, the top 50 signifi-

cant TFs (Padj < 0.05) which exhibit the highest standard deviation

in the odds ratios were selected to highlight motifs that discriminate

between developmental stages.

Deconvolution analysis

The deconvolution algorithm CIBERSORT (Newman et al, 2015)

was used to deconvolute the T-ALL samples. An in-house generated

signature matrix of T-cell developmental stages was used as input

for the algorithm. The reads in the 2,823 signature peaks in T-ALL

samples were counted and normalized with variance stabilizing

transformation. CIBERSORT predicted the contribution of each

developmental stage as a fraction with a correlation and root mean

square error to display the goodness of fit.

Differential analyses

Global differential accessibility analysis of all T-ALLs and sorted

populations was run by DESeq2 (LFC = 0.5, FDR = 0.05) (Love

et al, 2014) using all TSS and distal peaks. Mean read counts were

used for 10/19 T-ALL samples having biological replicates. Global

differential expression analysis of all T-ALLs and three bulk thymi

was run by DESeq2 (LFC = 0.5, FDR = 0.05) (Love et al, 2014).

Genes with low expression were excluded using a threshold of < 20

mean read count. Mean read counts were used for 7/19 T-ALL

samples having biological replicates.

Table 1. Example contingency table for Fisher’s exact test to
calculate BACH1 enrichment in DN2.

DN2
Other groups (excluding
DN2)

BACH1 Occurrences of BACH1
in peaks of DN2 cells

Sum of BACH1 occurrences
in groups other than DN2

Other motifs
(excluding
BACH1)

Sum of motif
occurrences other than
BACH1 in DN2 cells

Sum of motif occurrences
other than BACH1 in groups
other than DN2
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Integration of ATAC- and RNA-Seq data

To account for patient heterogeneity (Fig 5B) and to quantify recur-

rence of dysregulation of a gene, differential analysis of ATAC- and

RNA-Seq data described above was done on a per patient basis with

a parameter change: genes with < 5 mean RNA read count were

excluded. ATAC peaks were annotated using Alfred’s (Rausch et al,

2019) annotate subcommand using �d 10,000 bp, resulting in zero

or more genes assigned to a peak. The 1000 Genomes reference

genome (Homo sapiens GRCh37+ decoy sequences) was used for

alignment and peak calling. Differential peaks and genes were inter-

sected based on this annotation, resulting in the association of one

peak with multiple genes and vice versa. The combination of all

patients’ results was divided into 4 quartiles as shown in Fig 5c: Q1

(logarithmic fold change [lfc] RNA > 0, lfc_ATAC > 0), Q2

(lfc_RNA > 0, lfc_ATAC < 0), Q3 (lfc_RNA < 0, lfc_ATAC < 0), and

Q4 (lfc_RNA < 0, lfc_ATAC > 0). To quantify the recurrence of a

dysregulation of a gene, each gene–patient pair was counted once

per quartile.

Total RNA-Seq

Total RNA was extracted using TRIzol (Invitrogen Life Technolo-

gies). RNA was than treated with TURBO DNase (Thermo Fisher

Scientific, Darmstadt, Germany) and purified using RNA Clean &

Concentrator-5 (Zymo Research, Freiburg, Germany). A minimal

RIN (RNA Integrity Number) of 7 as measured using a Bioanalyzer

(Agilent, Santa Clara, CA) with the Agilent RNA 6000 Nano Kit was

required for the sample to be sequenced. Cytoplasmic ribosomal

RNA was depleted by Ribo-Zero rRNA Removal Kit (Illumina, San

Diego, CA), and the libraries were prepared from 1 lg of RNA using

the TruSeq RNA Library Prep (Illumina, San Diego, CA) at the Geno-

mics Core Facility of the EMBL, Heidelberg. Six RNA samples were

pooled and sequenced on one Illumina NextSeq 500 (Illumina, San

Diego, CA, USA) lane in 75 bp paired-end mode. Adapters were

removed using cutadapt, and upon classification, only the human

reads were aligned using STAR aligner (Dobin et al, 2013). Gene

fusion discovery in RNA-Seq data was performed using Arriba and

deFuse algorithms. Genes with less than 20 reads in all samples were

ignored. FPKM (Fragments Per Kilobase of transcript per Million

mapped reads) normalized RNA read counts are in Dataset EV13.

qPCR and Sanger sequencing

RNA of the five T-ALL cell lines and four T-ALL patients were

isolated by either Qiagen AllPrep DNA/RNA/Protein Mini Kit or by

the standard phenol-chloroform extraction protocol. RNA concentra-

tion was assessed by NanoDrop and 1 lg of RNA is used for cDNA

synthesis. Forward and reverse primer sequences can be found in

Table 2.

Software and bioinformatical tools

Graphical representation and statistics were done using: R (R Core

Team, 2017) and GraphPad Prism version 6.00 for Windows (La

Jolla, California, USA, www.graphpad.com).

Functional enrichment analyses for hyper-/hypo-accessible

ATAC-regions and their graphical representation were done using

GREAT version 4.0.4 (Genomic Regions Enrichment of Annotations

Tool) (McLean et al, 2010).

Visualization of publicly available data of Affymetrix microarrays

were done using R2: Genomics Analysis and Visualization Platform

(http://r2.amc.nl).

Differential expression analysis of publicly available microarray

dataset of sorted human thymocyte populations was performed with

GEO2R (Barrett et al, 2013).

Table 2. Primer sequences used for qPCR and Sanger sequencing.

Forward Reverse

qPCR ACCAGCGCCAAGAAAGACTC TGTTCTCCTTTGGAACGAGCG

Sanger
sequencing

TACACAGCTTGTTCACACTGC GGCCCTTGGGAGCTTTTAGA

The paper explained

Problem
Precursor T-cell leukemias in children are a particular challenge,
because relapses are exquisitely treatment resistant and because the
mechanisms of leukemogenesis and progression are poorly under-
stood. Recent genomic analyses revealed that mutations in epigenetic
modulators are common in this type of leukemia suggesting that
epigenetic mechanisms may play an important part in the process of
leukemogenesis. We have thus aimed at defining epigenetic dif-
ferences between normal and leukemia cells by performing analyses
of chromatin structure and the accessibility of TF-binding motifs in
normal human T-cell precursors and in pediatric precursor T-cell
leukemias (T-ALL).

Results
We found that chromatin accessibility decreased gradually in the
course of maturation and that pediatric T-ALLs highly resembled the
most immature developmental stages of healthy T cells in terms of
both, genome-wide chromatin accessibility in general and accessibility
of TF-binding motifs in particular. The T-ALL chromatin landscape was
substantially more accessible than that of even the most immature of
the healthy T-cell precursor populations.
Integration of epigenomic (ATAC-Seq) and transcriptomic (RNA-Seq)
analyses identified differentially accessible chromatin regions
surrounding differentially expressed genes in T-ALLs in comparison
to normal thymic precursors. DAB1, a gene that has previously been
noted to be highly expressed during neural development but not in
leukemia, was the most recurrently dysregulated gene in the T-ALLs
and also exhibited the highest capacity to distinguish between
leukemia cells and healthy T-cell precursors. In a smaller subgroup
of patients showing the most immature epigenetic signature,
we identified accessibility and overexpression of SPI1(PU.1) as a
defining feature thus implicating an important role of this well-
known hematopoietic transcription factor in this specific subtype of
T-ALL.

Impact
Our results indicate a progressive condensation of the chromatin in
the course of human T-cell maturation and, for the first time, docu-
ment the changes in the chromatin accessibility profile of T-ALLs in
comparison to normally differentiating T-cell precursors.
We conclude that the chromatin of T-ALL is substantially more open
than that of healthy thymic precursors and that leukemia-specific
alterations of chromatin conformation reveal previously unrecognized
mechanisms of pediatric T-ALL leukemogenesis.

12 of 14 EMBO Molecular Medicine 12: e12104 | 2020 © 2020 The Authors

EMBO Molecular Medicine Büs�ra Erarslan-Uysal et al

www.graphpad.com
http://r2.amc.nl


Data availability

Sequence data have been deposited at the European Genome-

phenome Archive (EGA, http://www.ebi.ac.uk/ega/), which is

hosted by the EBI, under accession number EGAS00001003248

(https://ega-archive.org/studies/EGAS00001003248).

Expanded View for this article is available online.
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