
Citation: Nantanee, R.;

Jantarabenjakul, W.;

Jaru-Ampornpan, P.; Sodsai, P.;

Himananto, O.; Athipunjapong, J.;

Sophonphan, J.; Nanthapisal, S.;

Hirankarn, N.; Puthanakit, T., on

behalf of the Study Team. A

Randomized Clinical Trial of a

Fractional Low Dose of BNT162b2

Booster in Adults Following

AZD1222. Vaccines 2022, 10, 914.

https://doi.org/10.3390/

vaccines10060914

Academic Editors: S. Louise Cosby

and Antonella Caputo

Received: 14 April 2022

Accepted: 6 June 2022

Published: 8 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

A Randomized Clinical Trial of a Fractional Low Dose of
BNT162b2 Booster in Adults Following AZD1222
Rapisa Nantanee 1,2, Watsamon Jantarabenjakul 1,3 , Peera Jaru-Ampornpan 4, Pimpayao Sodsai 5,
Orawan Himananto 6, Jitthiwa Athipunjapong 1, Jiratchaya Sophonphan 7, Sira Nanthapisal 8 ,
Nattiya Hirankarn 9 and Thanyawee Puthanakit 1,*,† on behalf of the Study Team

1 Center of Excellence in Pediatric Infectious Diseases and Vaccines, Department of Pediatrics,
Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; rapisa.n@chula.ac.th (R.N.);
watsamon.j@chula.ac.th (W.J.); jitthiwa.a@chula.ac.th (J.A.)

2 Pediatric Allergy and Clinical Immunology Research Unit, Division of Allergy and Immunology,
Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand

3 Thai Red Cross Emerging Infectious Diseases Clinical Center, King Chulalongkorn Memorial Hospital,
Bangkok 10330, Thailand

4 Virology and Cell Technology Research Team, National Center for Genetic Engineering and
Biotechnology (BIOTEC), Pathum Thani 12120, Thailand; peera.jar@biotec.or.th

5 Center of Excellence in Immunology and Immune-Mediated Diseases, Department of Microbiology,
Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; pimpayao.s@chula.ac.th

6 Monoclonal Antibody Production and Application Research Team, National Center for Genetic
Engineering and Biotechnology (BIOTEC), Pathum Thani 12120, Thailand; orawanh@biotec.or.th

7 The HIV Netherlands Australia Thailand Research Collaboration (HIV-NAT),
The Thai Red Cross AIDS Research Centre, Bangkok 10330, Thailand; jiratchaya.w@hivnat.org

8 Department of Pediatrics, Faculty of Medicine, Thammasat University,
Pathum Thani 12120, Thailand; nsira@tu.ac.th

9 Department of Microbiology, Faculty of Medicine, Chulalongkorn University,
Bangkok 10330, Thailand; nattiya.h@chula.ac.th

* Correspondence: thanyawee.p@chula.ac.th; Tel.: +66-2-2564930
† Additional study team members are listed in the Acknowledgments.

Abstract: In the era of globally predominant omicron strains, a COVID-19 booster vaccine is needed.
Our study aimed to evaluate the immunogenicity of a half-dose BNT162b2 booster after AZD1222 in
healthy adults. A randomized trial of volunteers aged 18–69 years who received two-dose AZD1222
was conducted. The participants were randomized to receive the BNT162b2 vaccine intramuscularly—
half (15 µg) vs. standard dose (30 µg). The immunogenicity was evaluated by a surrogate virus
neutralization test (sVNT) against omicron variants and anti-spike-receptor-binding-domain IgG
(anti-S-RBD IgG). From November–December 2021, 100 adults with a median age of 59.3 years
(IQR 33.4–65.5) were enrolled. A booster dose was given at median of 98 days (IQR 92–128) after
AZD1222. At day 14, the geometric means (GMs) of anti-S-RBD IgG in half- vs. standard-dose group
were 2329.8 vs. 2574.7 BAU/mL, with a geometric mean ratio (GMR) of 0.90 (0.77–1.06). The GMs
of sVNT against the omicron variant in the half- and standard-dose groups were 74.4% inhibition
(95% CI 68.8–80.5) and 67.3% inhibition (57.9–78.1), respectively, with GMR of 0.95 (0.69–1.30). At
day 90, the sVNT indicated 22.3% inhibition (95% CI 14.9–33.4) and 20.4% inhibition (13.1–32.0),
respectively, with GMR of 1.09 (0.60–1.98). The fractional low-dose BNT162b2 mRNA booster vaccine
provided non-inferior immunogenicity responses. During a shortage of vaccine supply, a fractional
low dose should be considered for a booster vaccination program.

Keywords: SARS-CoV-2 vaccine; booster dose; neutralizing antibody titer; anti-SARS-CoV-2 IgG;
BNT162b2 vaccine; ChAdOx1 nCoV-19 vaccine; AZD1222; SARS-CoV-2 omicron variant; heterologous
prime-boost COVID-19 vaccination
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1. Introduction

Since the COVID-19 pandemic, several variants of concern of SARS-CoV-2 have
emerged. The delta variant (B.1.617.2) was the predominant circulating variant from June
to December 2021 [1]; the omicron variant (B.1.1.529) has replaced it as a dominant global
variant since January 2022 [2]. This variant has been shown to more rapidly spread com-
pared with previous variants, and transmission has also occurred among vaccinated or
previously SARS-CoV-2-infected individuals [2]. The omicron variant contains 15 muta-
tions in the receptor-binding domain (RBD) in the spike protein [3], which might contribute
to immune evasion, as shown by the reduced neutralizing activities from post-vaccination
or previous-infection sera [4,5], and lower effectiveness of previous infection [6]. COVID-19
vaccine effectiveness wanes over time, as shown by the increased rate of infection, and
symptomatic and severe disease [7]. Considering both the changes in the virus and waning
of antibodies leading to a decline in vaccine effectiveness, a booster dose is needed, espe-
cially in at-risk groups, e.g., elderly and immunocompromised persons [8]. Booster doses
were shown to reduce COVID-19-associated emergency department visits and hospitaliza-
tions during both periods of delta and omicron predominance, with vaccine effectiveness
for hospitalizations of 93% for three-dose mRNA vaccination vs. 82% for two doses [9].

Heterologous prime-boost vaccination, a vaccination with a combination of different
vaccine platforms, have demonstrated robust immunogenicity and good safety profiles
for both primary-series [10] and boosting regimens [11]. The adenoviral vectored vaccine
ChAdOx1 nCoV-19 (Oxford–AstraZeneca; AZD1222) and the mRNA vaccine BNT162b2
(Pfizer–BioNTech) have been shown to be effective [12,13] and rolled out worldwide,
including in Thailand. Based on data from the COV-BOOST study from the UK, a standard-
dose BNT162b2 booster after two-dose AZD1222 priming showed higher antibody and
cellular response than a homologous booster with AZD1222, with SARS-CoV-2 anti-spike
IgG geometric mean ratios (GMRs) of 24.48 (95% CI 19.50–30.79) and 3.25 (2.52–4.20)
compared with controls, respectively [11].

A fractional low dose of booster vaccine has been approved for mRNA-1273 (Spike-
vax, Moderna, Cambridge, MA, USA) [14]. Half-dose mRNA-1273 (50 µg) booster was
demonstrated to boost neutralizing antibody titers higher than those after the completion
of the primary series at 1 month, with GMR of 1.7 (95% CI 1.5–1.9) for the wild-type
and 2.1 (95% CI 1.8–2.4) for the delta variant [15]. According to the COV-BOOST study,
half-dose BNT162b2 booster showed comparable immunogenicity to the standard dose in
AZD1222-primed individuals, with anti-spike IgG GMR of 16.80 (95% CI 12.97–21.76) and
24.48 (19.50–30.79) compared with controls, respectively [11], and anti-receptor binding
domain (anti-RBD) IgG GMR of 7.04 (4.69–8.84) and 8.49 (5.71–10.44) compared with the
post-primary series [16]. A low-dose BNT162b2 booster after AZD1222 also showed lower
adverse events, e.g., fatigue, fever, and local reaction, than the standard-dose booster [16].
Based on the correlation between neutralizing antibody titers and vaccine efficacy against
symptomatic infection [17], a model using data from dose-finding trials suggested that half
or one-fourth doses of mRNA-1273 have 90 to 95% efficacy, similar to a standard dose [18].
One-third and two-third doses of BNT162b2 also showed predicted efficacy of 70 to 85%,
compared with 95% for a standard dose [18]. Using a fractional dosing strategy might ease
the limited vaccine supply, thus speeding up vaccine coverage and reducing mortality,
even if it yields lower efficacy [18].

This study aimed to compare the immunogenicity of half- and standard-dose BNT162b2
vaccine boosters in healthy adults post-AZD1222 primary immunization.

2. Materials and Methods
2.1. Study Design and Participants

This study was conducted at the Faculty of Medicine, Chulalongkorn University,
Bangkok, Thailand. This was a double-blinded, randomized, controlled trial in healthy
adults aged 18–69 years old, who received 2-dose AZD1222 for more than 60 days, with
an interval of at least 8 weeks apart. Any participants receiving blood products within
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3 months, any vaccines (within 2 weeks for inactivated vaccines or 4 weeks for live vaccines),
or with previous SARS-CoV-2 infection, by history or positive anti-nucleocapsid antibody,
were excluded. All participants signed written informed consent prior to study enrollment.

This study was registered in the Thai Clinical Trials Registry (thaiclinicaltrials.org,
TCTR20211027002). The Institutional Review Board of the Faculty of Medicine, Chula-
longkorn University (IRB No. 873/64) approved this study.

2.2. Study Procedures

The participants were stratified according to their age—adult, 18–59 years of age, and
elderly, 60–69 years of age, then randomized correspondingly to include equal participants
of both age groups in each arm due to potentially different antibody responses, as in the
previous report [19]. The randomization process was performed using a block of four
in a sealed envelope. The participants were vaccinated with intramuscular BNT162b2,
0.45 mL per vial (6 doses per vial), lot number FK6268; 0.15 mL (15 µg, half dose); or
0.3 mL (30 µg, standard dose). Unblinded nurses performed vaccination in a participant-
blinded fashion. Therefore, the participants and blinded study team were not aware of
the randomization arms. During the first week post-vaccination, the solicited local and
systemic reactogenicity were logged by the participants using a diary. Unsolicited adverse
events were also described by the study team at every visit.

Blood samples were obtained prior to booster vaccination (day 0), and 14 days and
90 days post-booster-vaccination. All samples were tested for spike receptor binding do-
main IgG (anti-S-RBD IgG) and a surrogate virus neutralization test (sVNT) was conducted.
At baseline, sVNT against B.1.617.2 (delta variant) and the wild type was evaluated. With
the rapid spread of B.1.1.529 (omicron variant) in Thailand and globally, sVNT against the
omicron variant was assessed at day 14 and day 90, along with the delta variant at all time
points and the wild type at day 14.

The enzyme-linked immunospot (ELISpot) assay was conducted in 20 random partici-
pants per group at day 0, day 14, and day 90 to evaluate the cell-mediated immune response.

2.3. Immunogenicity Outcomes
2.3.1. Quantitative Spike Receptor Binding Domain IgG (Anti-S-RBD IgG) ELISA

The ELISA protocol was adapted from Amanat et al. (2020) [20]. Briefly, diluted serum
samples were incubated in 96-well plates coated with purified recombinant Myc-His-tagged
S-RBD residues 319–541 from SARS-CoV-2 (Wuhan-Hu-1). Then, ELISA was performed.
The anti-S-RBD IgG level was reported in binding antibody units (BAU/mL) following
the conversion of OD450 values with the standard curve using known units of the WHO
international standard (NIBSC 20/136).

2.3.2. Surrogate Virus Neutralization Test (sVNT)

A surrogate virus neutralization test was set up as previously described in Tan et al.
(2020) [21]. Recombinant SRBD (residues 319–541) from the wild-type (Wuhan-Hu-1),
delta (B.1.617.2), and omicron (B.1.1.529) strains and the ectodomain of human ACE2
were produced and purified from Human Embryonic Kidney (HEK) 293T cells transfected
with expression plasmids carrying these genes. Serum samples (at 1:10 dilution)—SRBD
mixture were incubated in 96-well plates coated with 0.1 µg/well recombinant human
ACE2 ectodomain. Then, ELISA was performed. Pre-2019 human serum was used in
the above procedure to give negative OD450. The % inhibition was calculated based on
the ratio between negative OD450 and sample OD450. The % inhibition was calculated
as follows:

% inhibition = 100 ×
[

1 − sample OD450
negative OD450

]
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2.3.3. Enzyme-Linked Immunospot (ELISpot) Assay

An ELISpot assay by a Human IFN-γ ELISpotProTM kit (Mabtech, Stockholm, Sweden)
was used for assessing the T cell responses. Freshly isolated peripheral blood mononuclear
cells (PBMCs) with 250,000 cells per well were activated with 2 µg/mL of overlapping
peptide pool from 100 peptides of SARS-CoV-2 spike (S)-defined peptides (Mabtech, Stock-
holm, Sweden) for 20 h. A negative control and positive control, anti-CD3, were also
included. The spots were quantified with an ImmunoSpot analyzer. To evaluate positive S
peptide-specific responses, spot counts of negative control wells were subtracted from S
peptide-stimulated wells, and these spot counts were reported as spot forming units (SFUs)
per million PBMCs.

2.4. Reactogenicity

The solicited reactogenicity was recorded during the first week post-booster vacci-
nation by self-recording in a diary. The solicited local reactogenicity included pain at the
injection site, swelling, and erythema. The solicited systemic reactogenicity included fever,
headache, fatigue, myalgia, arthralgia, vomiting, and diarrhea. Unsolicited adverse events
were also described by the study team at every visit.

Adverse events were graded according to the Guidance for Industry Toxicity Grad-
ing Scale for Healthy Adult and Adolescent Volunteers Enrolled in Preventive Vaccine
Clinical Trials, 2007 [22]: grade 0 for no symptoms; grade 1 for mild symptoms with no
interference with activity, vomiting 1–2 times/day, or diarrhea 2–3 times/day; grade 2 for
moderate symptoms with some interference with activity, vomiting more than 2 times/day,
or diarrhea 4–5 times/day; grade 3 for severe symptoms, including incapacitation, vomit-
ing/diarrhea requiring outpatient intravenous hydration, or diarrhea 6 or more times/day;
and grade 4 for potentially life-threatening symptoms requiring emergency hospital visit or
hospitalization. The grading of fever was grade 1 for 38.0–38.4 ◦C, grade 2 for 38.5–38.9 ◦C,
grade 3 for 39–40 ◦C, and grade 4 for more than 40 ◦C. Feverish was defined as a feeling
of fever but body temperature being less than 38.0 ◦C. Local reactogenicity, e.g., erythema
and swelling, was graded by size: grade 1 for 2.5–5 cm, grade 2 for 5.1–10 cm, grade 3 for
>10 cm, and grade 4 for necrosis.

2.5. Statistical Analysis

The sample size was calculated using a non-inferiority criterion for the geometric
mean ratio (GMR) of sVNT against variants of concern, comparing the half dose with a
standard dose. Assuming a GMR of 0.75 with 0.67 non-inferiority margin, 80% power,
and a significance level of 0.05, the number of required participants was 22 per group.
Considering a 10% loss-to-follow-up rate, the number of required participants was 25 per
half-dose or standard-dose group in each age cohort (adult 18–59 years of age and elderly
60–69 years of age).

The demographic, laboratory data, and other continuous variables were presented as
the median (interquartile range (IQR)), while the categorical variables were presented as
the number with percentage. The Wilcoxon rank-sum test, chi-square, or Fisher’s exact test
were calculated to determine the differences in the continuous and categorical variables
between two groups, respectively. The primary endpoints, GMR of sVNT against variants
of concern, and anti-S-RBD IgG, comparing the half- with the standard-dose groups at day
14 and 90 after booster, were compared in terms of non-inferiority. Non-inferiority was
established if the lower bound of the 95% confidence interval (CI) of GMR was greater
than 0.67 [23]. The geometric means (GMs) were calculated as the exponentiated means
of the logarithmic transformation of the assay results. The two-sided 95% CIs were the
antilogarithm of titers from the difference of two independent t-tests. The reactogenicity
rates were compared using a chi-square test. All reported p values were two-sided. p values
of <0.05 were considered to be statistically significant. Statistical analysis was performed
using Stata version 15.1 (Stata Corp., College Station, TX, USA).



Vaccines 2022, 10, 914 5 of 13

3. Results
3.1. Baseline Characteristics

From November to December 2021, 100 adults with a median age of 59.3 years (IQR
33.4–65.5) were enrolled. The median interval between AZD1222 was 79 days (IQR 70–84).
The median time to booster doses was 98 days (IQR 92–128). Prior to the BNT162b2 booster,
the GMs were 32.8% inhibition (95% CI 27.5–39.1) for sVNT against the delta variant, and
199.1 BAU/mL (170.1–233.0) for anti-S-RBD IgG. The baseline characteristics of the study
participants are shown in Table 1. At day 90, 46 participants in both groups were tested for
immunogenicity parameters due to 2 participants being lost to follow-up and 6 participants
with breakthrough COVID-19 (3 in half-dose and 3 in full-dose, and 4 in 60–69-year-old
group) with a range of 58–89 days post-booster during the omicron-predominant period,
as shown in Supplementary Table S1. Four participants had mild symptoms of COVID-19
and two participants were asymptomatic.

Table 1. Baseline characteristics of study participants.

Characteristics Total
(n = 100)

Half-Dose BNT162b2
Booster (15 µg/Dose)

(n = 50)

Standard-Dose BNT162b2
Booster (30 µg/Dose)

(n = 50)

Age (years), median (IQR) 59.3 (33.4–65.5) 59.3 (32.2–65.5) 57.9 (33.6–65.8)
- Group 18–59 years 33.4 (28.1–43.0) 32.3 (28.1–42.1) 33.6 (29.7–43.4)
- Group 60–69 years 65.5 (63.3–67.8) 65.5 (63.2–67.8) 65.8 (64.0–67.8)
Female, n (%) 61 (61) 31 (62) 30 (60)
BMI (kg/m2), median (IQR) 23.3 (21.8–26.1) 22.8 (21.1–25.3) 23.8 (22.3–27.5)
Interval between 2nd dose of
AZD1222 to BNT162b2 (days),
median (IQR)

98 (92–128) 98 (92–131) 98 (92–126)

sVNT to delta variant
(% inhibition), GM (95% CI) 32.8 (27.5–39.1) 36.9 (29.9–45.6) 29.2 (22.0–38.9)

sVNT to wild type
(% inhibition), GM (95% CI) 39.4 (33.5–46.5) 42.8 (34.8–52.6) 36.4 (28.1–47.2)

Anti-S-RBD IgG (BAU/mL),
GM (95% CI) 199.1 (170.1–233.0) 193.7 (156.2–240.2) 204.6 (161.5–259.3)

BMI: Body mass index; GM: Geometric mean; S-RBD: Spike receptor-binding domain; sVNT: Surrogate virus
neutralization test; Baseline characteristics between participants who received half-dose BNT162b2 and standard-
dose BNT162b2 showed no statistically significant difference (p > 0.05).

3.2. Reactogenicity

After BNT162b2 boosters, most participants had pain at the injection sites. Only the
standard-dose recipients graded local pain as grade 3 (severe), as shown in Figure 1 and
Supplementary Table S2. Fever also developed only in the full-dose arm. The full-dose
recipients tended to have more moderate–severe systemic reactogenicities, e.g., myalgia,
arthralgia, fatigue, and headache. Myalgia occurred more frequently in the standard-dose
group (42% vs. 32% in the half-dose group, p 0.04).
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Figure 1. Local and systemic reactogenicities after the BNT162b2 booster in adults following 2 doses
of AZD1222, according to half-dose and standard-dose groups. HD: Half dose; SD: Standard dose.

3.3. Immunogenicity
3.3.1. SARS-CoV-2-Neutralizing Antibody by Surrogate Virus Neutralization Test (sVNT)

At day 14, the GMs of sVNT against the omicron variant were 74.4% inhibition
(95% CI 68.8–80.5) post-half-dose BNT162b2 boosters, and 67.3% inhibition (57.9–78.1) post-
standard-dose boosters, as shown in Table 2 and Figure 2A. The GMR of sVNT against the
omicron variant was 1.11 (95% CI 0.93–1.30), showing the non-inferiority of the half-dose
to the standard-dose booster. After 90 days, the neutralizing activity against the omicron
variant declined, with GMs of 22.3% inhibition (95% CI 14.9–33.4) in the half-dose arm
and 20.4% inhibition (13.1–32.0) in the standard-dose arm. The sVNT against the omicron
variant in the half-dose vaccinees did not meet the pre-defined non-inferiority criteria to
the standard dose, with GMR of 1.09 (95% CI 0.60–1.98).

The results of sVNT against the delta variant were higher than those against the
omicron variant at the same time points. At day 14, both groups had sVNT against delta
variant GMs of 100.0% inhibition, as shown in Table 2 and Figure 2B. At day 90, the sVNT
against delta variant GMs slightly dropped, with 75.7% inhibition (95% CI 67.6–84.7) in the
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half dose and 79.9% inhibition (69.7–91.7) in the standard dose. GMRs of sVNT against the
delta variant showed non-inferiority at both time points.

Table 2. Results of sVNT for variants of concern and anti-S-RBD IgG at day 14 and day 90 among
adults who received half-dose or standard-dose BNT162b2 booster.

Immunogenicity Outcomes
Half Dose

GM (95% CI)
(n = 50)

Standard Dose
GM (95% CI)

(n = 50)
GMR (95% CI)

sVNT to omicron variant (% inhibition)
Day 14 74.4 (68.8–80.5) 67.3 (57.9–78.1) 1.11 (0.93–1.30)
Day 90 22.3 (14.9–33.4) 20.4 (13.1–32.0) 1.09 (0.60–1.98)

sVNT to delta variant (% inhibition)
Day 14 100.0 (99.6–100.4) 100.0 (99.8–100.3) 1.00 (0.99–1.00)
Day 90 75.7 (67.6–84.7) 79.9 (69.7–91.7) 0.95 (0.79–1.13)

Anti-S-RBD IgG (BAU/mL)
Day 14 2329.8 (2109.3–2573.4) 2574.7 (2262.5–2929.9) 0.90 (0.77–1.06)
Day 90 549.6 (479.1–630.5) 676.1 (573.8–796.7) 0.81 (0.66–1.00)

GM: Geometric mean; GMR: Geometric mean ratio; S-RBD: Spike receptor-binding domain; sVNT: Surrogate
virus neutralization test. Day 90: 46 participants in each arm due to lost to follow-up and COVID-19 infection.
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Figure 2. Geometric means (95% CI) of (A). sVNT for omicron variant of SARS-CoV-2 (% inhibition)
at day 14 and day 90 after BNT162b2 booster doses, (B). sVNT for delta variant of SARS-CoV-2 (%
inhibition) at day 0 (before BNT162b2 booster doses), day 14, and day 90 after booster doses, in adults
post-2 doses of AZD1222, according to half-dose and standard-dose groups. sVNT: Surrogate virus
neutralization test.

3.3.2. SARS-CoV-2 Binding Antibody by Anti-S-RBD IgG

The anti-S-RBD IgG results, which were based on the RBD of the wild-type virus,
showed a similar trend to sVNT. At day 14, anti-S-RBD IgGs were comparably boosted in
the half- and standard-dose groups, with GMs of 2329.8 BAU/mL (95% CI 2109.3–2573.4)
and 2574.7 BAU/mL (2262.5–2929.9), respectively, and GMR of 0.90 (0.77–1.06). At day 90,
anti-S-RBD IgG waned and failed to meet predefined non-inferiority criteria, with GMR of
0.81 (95% CI 0.66–1.00). However, the quantitative assay of anti-S-RBD IgG was based on
the RBD of the wild-type virus due to the lack of a universally recognized and standardized
serum sample for anti-S-RBD IgG against other variants. Therefore, the levels of anti-S-RBD
IgG might not well correlate with protection against the omicron variant.

In this study, participants were stratified and randomized according to their age—
18–59 years and 60–69 years. Adults, aged 18–59 years, who received full-dose BNT162b2,
had higher anti-S-RBD IgG than half-dose recipients, with GMs of 2837.3 BAU/mL (95% CI
2446.7–3290.3) and 2272.0 BAU/mL (1962.6–2630.2) at day 14 (p 0.03), respectively; and at
day 90, 821.5 BAU/mL (666.4–1012.7) and 549.7 BAU/mL (446–677.4), p 0.01, respectively.
However, no differential responses were seen in the other immunological outcomes and all
immunological outcomes of the 60–69-year-old age group.
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3.3.3. Cell-Mediated Immune Response by ELISpot Assay

Prior to BNT162b2 boosters, the frequency of T cell responses to S peptide, as measured
by the IFNγ ELISpot assay, was 80 SFU/106 PBMCs (IQR 32–176) without statistically
significant differences between the half- and standard-dose groups (half dose: median
116 SFU/106 PBMCs, IQR 44–186; standard dose: median 78 SFU/106 PBMCs, IQR 30–162;
p 0.40), as shown in Figure 3. At 14 days after boosters, the T cell responses were significantly
enhanced to 406 SFU/106 PBMCs (IQR 206–718, p < 0.001) in the half-dose and 402 SFU/106

PBMCs (148–678, p < 0.001) in the full-dose groups, without a difference between the
dosage groups (p 0.80). After 90 days, the T cell responses of both arms reduced but were
still higher than the baseline, with a median of 194 SFU/106 PBMCs (IQR 60–284) in the
half-dose and 112 SFU/106 PBMCs (56–228) in the full-dose groups.

Vaccines 2022, 10, x FOR PEER REVIEW  9  of  14 
 

 

3.3.3. Cell‐Mediated Immune Response by ELISpot Assay 

Prior  to  BNT162b2  boosters,  the  frequency  of  T  cell  responses  to  S  peptide,  as 

measured  by  the  IFNγ  ELISpot  assay, was  80  SFU/106  PBMCs  (IQR  32–176) without 

statistically significant differences between the half‐ and standard‐dose groups (half dose: 

median 116 SFU/106 PBMCs, IQR 44–186; standard dose: median 78 SFU/106 PBMCs, IQR 

30–162; p 0.40), as shown in Figure 3. At 14 days after boosters, the T cell responses were 

significantly enhanced to 406 SFU/106 PBMCs (IQR 206–718, p < 0.001) in the half‐dose and 

402 SFU/106 PBMCs  (148–678,  p  <  0.001)  in  the  full‐dose groups, without  a difference 

between  the dosage groups  (p  0.80). After  90 days,  the T  cell  responses of both  arms 

reduced but were still higher than the baseline, with a median of 194 SFU/106 PBMCs (IQR 

60–284) in the half‐dose and 112 SFU/106 PBMCs (56–228) in the full‐dose groups. 

 

Figure 3. IFNγ ELISpot assay to detect S peptide‐specific T‐cell responses, presented as the median 

(IQR), at day 0 (before BNT162b2 booster doses), day 14, and day 90 after booster doses in adults 

post‐2 doses of AZD1222, according to half‐dose and standard‐dose groups. SFU: spot forming unit; 

S: Spike of SARS‐CoV‐2. Adult: age 18–59 years; Elderly: age 60–69 years. 

4. Discussion 

Booster with an mRNA vaccine, BNT162b2, after an AZD1222 primary series showed 

enhanced immunological outcomes for at least 3 months after the booster, as shown by 

the  sVNT  against  the  omicron  and  delta  variants,  anti‐S‐RBD  IgG,  and  cell‐mediated 

immune  response using  the  IFNγ ELISpot  assay. Non‐inferiority  responses were  seen 

between the half‐dose 15 μg of BNT162b2 and full‐dose 30 μg arms. The immunogenicity 

responses between the half‐dose vs. full‐dose groups were not different among the older 

age group, but there was a higher response of anti‐S‐RBD IgG among adults aged from 

18–59 years who received full‐dose BNT162b2. 

Since  January 2022, omicron variants have been  the main cause of  the COVID‐19 

pandemic [2]. The vaccine effectiveness against symptomatic infection study in England 

[24] showed lesser protection against the omicron variant, with 48.9% effectiveness at 2–4 

weeks after  the  second dose of AZD1222. The protective effect  in AZD1222  recipients 

declined  to  nearly  no  protection  against  the  omicron  variant  after  20–24 weeks  [24]. 

Considering  the  reduced  protection  against  the  omicron  variant,  booster  doses  are 

needed. The U.S. Food and Drug Administration has shortened the interval for booster 

doses from 6 months [14] to 5 months [25] in BNT162b2 or mRNA‐1273 primary‐series 

recipients  since  January  2022. The  Joint Committee on Vaccination  and  Immunisation 

(JCVI),  United  Kingdom,  advised  to  shorten  the  interval  from  primary  to  booster 

vaccinations from 6 to 3 months [26]. With a shorter interval between primary vaccination 

and booster dose,  there  is a public health  threat of vaccine supply shortage, especially 

among  developing  countries,  e.g.,  in  Africa  continent with  the  coverage  of  primary 

vaccination being lower than 20% of the population [27]. 

Figure 3. IFNγ ELISpot assay to detect S peptide-specific T-cell responses, presented as the median
(IQR), at day 0 (before BNT162b2 booster doses), day 14, and day 90 after booster doses in adults
post-2 doses of AZD1222, according to half-dose and standard-dose groups. SFU: spot forming unit;
S: Spike of SARS-CoV-2. Adult: age 18–59 years; Elderly: age 60–69 years.

4. Discussion

Booster with an mRNA vaccine, BNT162b2, after an AZD1222 primary series showed
enhanced immunological outcomes for at least 3 months after the booster, as shown by the
sVNT against the omicron and delta variants, anti-S-RBD IgG, and cell-mediated immune
response using the IFNγ ELISpot assay. Non-inferiority responses were seen between the
half-dose 15 µg of BNT162b2 and full-dose 30 µg arms. The immunogenicity responses
between the half-dose vs. full-dose groups were not different among the older age group,
but there was a higher response of anti-S-RBD IgG among adults aged from 18–59 years
who received full-dose BNT162b2.

Since January 2022, omicron variants have been the main cause of the COVID-19 pan-
demic [2]. The vaccine effectiveness against symptomatic infection study in England [24]
showed lesser protection against the omicron variant, with 48.9% effectiveness at 2–4 weeks
after the second dose of AZD1222. The protective effect in AZD1222 recipients declined to
nearly no protection against the omicron variant after 20–24 weeks [24]. Considering the
reduced protection against the omicron variant, booster doses are needed. The U.S. Food
and Drug Administration has shortened the interval for booster doses from 6 months [14]
to 5 months [25] in BNT162b2 or mRNA-1273 primary-series recipients since January 2022.
The Joint Committee on Vaccination and Immunisation (JCVI), United Kingdom, advised
to shorten the interval from primary to booster vaccinations from 6 to 3 months [26].
With a shorter interval between primary vaccination and booster dose, there is a public
health threat of vaccine supply shortage, especially among developing countries, e.g., in
Africa continent with the coverage of primary vaccination being lower than 20% of the
population [27].
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BNT162b2 or mRNA-1273 booster in adults post AZD1222 vaccination showed im-
proved protection against the omicron variant [24]. The increased neutralizing activity
following booster vaccination might play a major role, since the neutralizing antibody
levels were demonstrated to be predictive of vaccine efficacy [17]. Despite the lack of an
omicron-specific vaccine, the mRNA vaccine booster offered protective benefits. Half-dose
BNT162b2 boosters in AZD1222-primed individuals showed the ability to boost immune
responses, both antibody and cellular-mediated, with anti-spike IgG GM of 16,045 ELU/mL
and cellular response to wild type of 135.9 SFU/106 PBMCs [11]. Our study showed that,
after boosting with a full dose of BNT162b2, the geometric mean of neutralizing titer against
the omicron variant was 67.3% inhibition.

A fractional low dose of BNT162b as a booster dose has been studied in Thailand
among adults who received a primary series of the CoronaVac vaccine [28]. The study was
conducted among 222 healthy adults with a median age of 39.1 years who received two-
dose CoronaVac for 6 months. The neutralizing antibody against the omicron variant was
71.2% inhibition vs. 53.5% inhibition among participants who received 15 µg BNT162b2 vs.
30 µg BNT162b2, respectively. The finding was similar for participants who received 50 µg
of mRNA-1273 vs. 100 µg of mRNA-1273, respectively (61.1%, and 76.7%).

Another study conducted among 100 healthy adults who received a primary series of
AZD1222 and received 15 µg vs. 30 µg of BNT162b2 as boosters showed a slightly lower
immunogenicity response among half-dose vs. full-dose groups [16]. The anti-RBD-IgG
concentrations were 1961 and 2363 BAU/mL at 2 weeks post-booster and significantly de-
clined to 314 and 431 BAU/mL at 16–20 weeks post-booster, respectively. For pVNT against
the omicron variant, participants who received a half-dose had a lower titer than those
receiving a full dose of BNT162b2; (at 2 weeks post-booster: 232 vs. 521; at 16–20 weeks
post-booster: 14 vs. 116).

Our study found that BNT162b2 mRNA boosters after AZD1222 primary series in-
creased cell-mediated immune responses. This finding was similar to the report from the
COV-BOOST study and provided a benefit over AZD1222 as a third dose, which did not
boost cellular responses after a homologous AZD1222 primary series [11]. SARS-CoV-2-
specific T cell responses were shown to be essential for viral clearance and providing im-
munological memory, and might provide protection against severe infection and death [29].
A recent study showed that, compared with the wild type, T cell responses to the omicron
variant were preserved in the majority of cases and enhanced by booster vaccination [30].
The T cell cytokine responses, used to demonstrate responses to SARS-CoV-2, included
IFNγ, TNFα, IL-2, and/or granzyme B [31]. In this study, IFNγ was used as a marker of
the T cell response.

The most frequently reported reactogenicity of booster BNT162b2 in participants post
two-dose AZD1222 was pain at the injection site in 71% of recipients. This was markedly
higher than the previous report [11], but comparable to that post-BNT162b2 primary
series [13]. A similar trend was observed in systemic reactogenicities e.g., headache, fatigue,
myalgia, and arthralgia [13]. Half-dose BNT162b2 recipients experienced less myalgia,
fever, moderate-to-severe local pain, headache, fatigue, and arthralgia than standard-dose
recipients, which might lead to more acceptability of a booster dose.

The strengths of this study were the double-blinded, randomized, controlled study de-
sign and several immunogenicity outcomes, including omicron-variant sVNT and cellular
responses. The limitation for generalizability is that we did not include immunocompro-
mised patients or participants older than 70 years old. Half-dose BNT162b2 or 0.15 mL
might be considered burdensome for real-world implementation; however, using low-
dead-space syringes, this volume of vaccine was manageable. After 3 months of boosters,
the neutralizing antibodies waned, which might reduce vaccine effectiveness against any
infection, but with the cell-mediated immune response, vaccine effectiveness against hospi-
talization and severe COVID-19 should remain. The immunogenicity results presented in
this study included anti-S-RBD IgG, which was based on RBD from wild-type SARS-CoV-2
and could not represent the binding antibody level against the RBD of the omicron variant.
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However, sVNT against the omicron variant was conducted and could demonstrate a neu-
tralizing antibody against the omicron variant. Further study on the vaccine effectiveness
of half-dose BNT162b2 boosters in the era of the omicron variant is required.

To provide protection against the omicron variant, COVID-19 vaccines might need to
be updated [32]. Several omicron-specific vaccines are being developed with promising
results against the omicron variant in animal models [33–36], but one with comparable
result to the original vaccine [37]. Phase 2 and phase 3 clinical trials of mRNA-1273.529 [38]
and BNT162b2 OMI are underway [39]. The multivalent vaccine, based on different
variants, or pan-sarbecovirus vaccines are a call to action to alleviate this pandemic [32]. The
Coalition for Epidemic Preparedness Innovations (CEPI) has funded the development of
broadly protected vaccines against variants and other betacoronaviruses, including severe
acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome
coronavirus (MERS-CoV), and SARS-CoV-2, the causes of recent outbreaks [40].

5. Conclusions

Half-dose BNT162b2 mRNA vaccine booster after AZD1222 primary series provided
non-inferior immunogenicity responses, as shown by the sVNT against the omicron variant
and cell-mediated immune response. During the shortage of vaccine supply, a fractional
low dose should be considered for a booster vaccination program.
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//www.mdpi.com/article/10.3390/vaccines10060914/s1, Supplementary Table S1. COVID-19 in
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inance, Supplementary Table S2. Local and systemic reactogenicities within 7 days after BNT162b2
booster in adult post-2 doses of AZD1222, according to half-dose and standard-dose group.
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