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Abstract: Spinocerebellar ataxia type 7 (SCA7), a neurodegenerative disease characterized by
cerebellar ataxia and retinal degeneration, is caused by an abnormal CAG repeat expansion in the
ATXN7 gene coding region. The onset and severity of SCA7 are highly variable between patients,
thus identification of sensitive biomarkers that accurately diagnose the disease and monitoring its
progression are needed. With the aim of identified SCA7-specific metabolites with clinical relevance,
we report for the first time, to the best of our knowledge, a metabolomics profiling of circulating
acylcarnitines and amino acids in SCA7 patients. We identified 21 metabolites with altered levels
in SCA7 patients and determined two different sets of metabolites with diagnostic power. The first
signature of metabolites (Valine, Leucine, and Tyrosine) has the ability to discriminate between SCA7
patients and healthy controls, while the second one (Methionine, 3-hydroxytetradecanoyl-carnitine,
and 3-hydroxyoctadecanoyl-carnitine) possess the capability to differentiate between early-onset and
adult-onset patients, as shown by the multivariate model and ROC analyses. Furthermore, enrichment
analyses of metabolic pathways suggest alterations in mitochondrial function, energy metabolism,
and fatty acid beta-oxidation in SCA7 patients. In summary, circulating SCA7-specific metabolites
identified in this study could serve as effective predictors of SCA7 progression in the clinics, as they
are sampled in accessible biofluid and assessed by a relatively simple biochemical assay.
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1. Introduction

Spinocerebellar ataxia type 7 (SCA7) is an inherited neurodegenerative disorder characterized by
progressive degeneration of the cerebellum, gait ataxia, cone-rod retinal dystrophy, and progressive
loss of central vision, which ultimately leads to complete blindness [1–3]. SCA7 is caused by a
Cytosine-Adenine-Guanine (CAG) repeat expansion in the ATXN7 gene coding region, which in turn
leads to a polyglutamine (polyQ) expansion at the amino terminus of the encoded protein, ataxin-7 [4,5].
The polyQ tract ranges from 4 to 18 glutamines in healthy individuals and from 36 to 460 in affected
subjects [6,7]. A correlation has been observed between the number of CAG repeats and the age at
onset, with repeats below 46 CAGs corresponding to adult-onset (AO) and CAGs expansions above 70
repeats related to early-onset (EO) [3,8]. EO has a rapid and aggressive course of the disease, and it is
commonly associated with regression of motor milestones. At the cellular level, different processes are
altered in SCA7, including transcriptional regulation, oxidative stress, mitochondrial function, protein
turnover, autophagy, and cell death [9–18].

The clinical spectrum of SCA7 is broader than previously recognized, with heterogeneous
phenotypes originating from particular compositions of cerebellar and non-cerebellar symptoms.
Apart from the CAG repeat length, environmental and genetic modifiers might contribute to SCA7
pathophysiology [8]; thus, identification of sensitive biomarkers will facilitate the monitoring of
disease progression and assessing of treatments, which ultimately will improve clinical management
of patients. Metabolomics has emerged as a powerful technique to identify potential biomarkers in
neurodegenerative diseases [19–21] as alterations in brain function can be reflected in the metabolite
composition of biofluids such as the serum, plasma, and cerebrospinal fluid (CSF) [22–24]. Indeed,
recent reports have described the detection of some neurometabolites associated with specific changes
in neuronal and astrocytic cells in patients with different SCAs [25].

In order to identify the metabolic pathways and potential biomarkers in SCA7, we carried out
a metabolomics profiling of free carnitine, acylcarnitines (ACCs), and amino acids (AAs) in the
patients’ plasma samples. We focused on the metabolites mentioned above because these are associated
with mitochondrial dysfunction and oxidative stress [26–28], two main pathophysiological features
of SCA7 [13,15,16]. We found diverse circulating metabolites to be altered in SCA7 patients and
identified a signature of metabolites with the ability to discriminate between patients and healthy
subjects. Moreover, we determined a second set of metabolites, whose altered levels appear to be
associated with the specific disease phenotype, thereby serving potentially as biomarkers for disease
severity progression.

2. Materials and Methods

2.1. Study Participants

Twenty patients with SCA7 and twenty age- and gender-matched healthy relative controls
(confirmed by genetic testing) were recruited by the National Rehabilitation Institute (INR) and the
Rehabilitation and Social Inclusion Center of Veracruz-DIF (CRISVER-DIF). Patients and healthy
controls individuals had similar nourishment and lifestyle conditions. A complete medical history of
each participant was obtained by structured interviews. Patients who had a clinical stroke, systemic
disorders, or other brain diseases that could produce progressive neurodegeneration, as well as patients
with secondary ataxias due to neoplasias, malformations, alcoholism, autoimmune or inflammatory
diseases, neuropharmacological treatment, vascular pathology, and other non-genetic causes, were
excluded. Likewise, participants with any of the following conditions were also excluded: fever,
infection, pregnancy, dementia, alcohol abuse, liver damage, kidney failure, current therapy with
immunosuppressive or anticonvulsant medicines or antioxidants, autoimmunological disorders, or
other severe illnesses.

The study was approved by the INR Ethics/Research Committee, and informed consent from each
participant was obtained.
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2.2. Clinical Assessment

Patients were clinically examined according to the Mayo Clinic procedures [29].
Dysdiadochokinesia and dysmetria were identified through the examination of motor control of
the limbs, while the detection of gait ataxia, tremor, or dysarthria was performed by the evaluation
of cerebellar signs. Altered ocular movements were determined by the examination of the cranial
nerve, while involuntary movements were evaluated by the exploration of extrapyramidal signs.
Other clinical features analyzed included muscle strength and pathological reflexes. Information
about the age at which the first symptom had appeared was provided either by the patients or their
relatives. The severity of ataxia-associated features was evaluated with the Scale for the Assessment
and Rating of Ataxia (SARA), while the assessment of extra-cerebellar symptoms was performed with
the Inventory of Non-Ataxia Symptoms (INAS) [30,31]. Patients with SCA7 were classified into two
clinical phenotypes: AO and EO. This categorization was based on the age at onset of the first referred
symptoms (AO patients, > 20 years; EO patients, < 20 years) [3]. Commonly, EO patients exhibited
visual symptoms (macular dysfunction or decreased visual acuity) within the first two decades of their
life, while AO patients showed motor alterations as the first symptom until after the third decade
of life.

2.3. Metabolomics Analysis

Fasting blood samples were collected from all subjects at the same time in the morning. Blood
was collected by venipuncture and placed in EDTA tubes (BD Vacutainer, NJ, USA). Samples were
centrifuged at 2,500 rpm for 10 min to obtain plasma, and the white buffy layer (leukocytes) was
removed. Plasma samples were stored at −70 ◦C until analysis. A targeted metabolomics approach
was employed to determine the concentration of AAs, free carnitine, and ACCs using electrospray
tandem mass spectrometry. Plasma levels of metabolites were determined with a commercial kit
(NeoBase Non-derivatized MS/MS Kit, Perkin Elmer, Waltham, MA, USA), following the fabricant´s
specifications. In brief, 20 µL of plasma samples were dropped onto filter paper cards (Whatman 903™,
Schleicher & Schüell, Dassel, Germany) and dried for 4 h at room temperature in a sterile environment.
The resulting spot was precisely cut off in 2 mm circles and placed into a 96-well plate, and then 190 µL
of extraction solution containing a mixture of 22 stable isotope-labeled internal standards were added.
The plate was sealed, incubated under stirring (30 ◦C at 650 × g for 30 min), and then placed in a Waters
autosampler. An HPLC pump (Waters 2795) was employed for the delivery of solvent, supplying
a 0.1 mL/min stream of a mixture of acetonitrile:water (80:20 v:v%). Ten microliters of each sample
were directly administered into the flow at 4-min intervals. A blank sample containing extraction
solution and internal standards was included in each plate in triplicate, as reference. A Micromass
Quattro instrument (Waters Inc., Milford, MA, USA) coupled to an ESI source in positive mode was
employed. For desolvation and nebulization, nitrogen gas was utilized, while argon was employed as
the collision gas.

2.4. Statistical Analysis

Means and standard deviations (SD) were calculated for the descriptive statistics of the
demographic and clinical characteristics of subjects. The normality of variables was analyzed
by the Kolmogorov-Smirnov test, while a Kruskal-Wallis test was performed to analyze differences in
age and CAG repeats between AO and EO patients and healthy controls. Differences between AO
and EO patients for age at onset of visual symptoms, age at onset of motor symptoms, age at onset
of the first symptom, SARA, and INAS were calculated by the Mann-Whitney test or unpaired t-test.
P values < 0.05 were considered significant in all cases. Partial Least Squares Discriminant Analysis
(PLS-DA) was performed to identify independent predictors that best correlated with SCA7. In order
to minimize the possibility that the observed separation on PLS-DA was by chance, permutation
testing was carried out. This testing involved repeated (2000 times) data sampling, with different
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random labeling. A Variable Importance in Projection (VIP) plot was performed for ranking the
metabolites based on their importance in discriminating study from healthy volunteers. VIP cutoff >

1.0 was selected since the number of variables in this study was less than 100. The differences between
the group with SCA7 and healthy volunteers were evaluated through an analysis of Random Forest
decision trees according to the distribution of the variables. In order to evaluate the association and
contribution of the variables to differentiate the SCA7 group from the healthy volunteers, an analysis
of Random Forest decision trees was performed according to different selection criteria: frequency and
average. Based on the variables that presented a higher frequency or average, a model was generated
that allowed classifying the group with SCA7. To evaluate the diagnostic power of each biomarker
alone, we performed univariate Receiver Operating Characteristic (ROC) analysis on each biomarker
in order to obtain its ROC curve, ROC Area Under the Curve (AUC), and standard error (SE) of the
AUC and these were plotted in an R-environment. After univariate ROC analysis on each of the three
markers, multivariate ROC analysis on each model was performed. Our goal was to select the panel
with the highest ROC AUC. We performed a Metabolite Set Enrichment Analysis (MSEA) to confirm
biologically meaningful patterns between healthy vs. SCA7 patients. Quantitative enrichment analysis
(QEA) was performed using the “globaltest 3” package. All statistical analyses were performed in
Prism version 6.01 (GraphPad Software, San Diego, CA, USA), R version 64, Metabo Analyst 4.0
(McGill University, Toronto, Canada), Stata version 13 (Stata Corporation, College Station, TX, USA),
and statistical significance was assumed if the probability value was less than 0.05.

3. Results

3.1. Characteristics of Study Subjects

The study sample included 20 patients with SCA7 and 20 age- and gender-matched healthy
relatives. Clinical characteristics and demographic features of the studied subjects are described in
Table 1. Clinical features of patients included gait ataxia and cerebellar syndrome, hyperreflexia,
dysmetria, dysdiadochokinesia, and visual impairment. No significant differences were observed in
the demographic characteristics between the two groups (p > 0.05). Patients were categorized into EO
and AO phenotypes (see Material and Methods); as expected, EO patients exhibited a more severe
form of the disease and a larger CAG repeat tract than AO subjects.

Table 1. Demographic and Clinical Features of Studied subjects.

Control Patients with SCA7 Patients with SCA7
Patients with SCA7 Healthy Subjects Adult Onset (AO) Early Onset (EO)

N 20 20 10 10
Female/Male 10/10 10/10 4/6 6/4

Age 41.95 ± 12.62 43.95 ± 12.8 53.2 ± 6.2 30.7 ± 5.8
Visual: age at onset 29.9 ± 12.50 NA 41.2 ± 7.5 18.6 ± 2.6
Motor: age at onset 31.35 ± 10.75 NA 40.8 ± 6.9 21.9 ± 3.2
First symptom age 29.05 ± 12.11 NA 40 ± 7.4 18.1 ± 2.1

CAG Repeats 46.15 ± 4.25 10.4 ± 0.8 42.5 ± 1.9 49.8 ± 2.5
SARA 18.15 ± 8.03 NA 17.2 ± 8.6 19.1 ± 8.2
INAS 4.6 ± 2.31 NA 4.6 ± 2.3 4.6 ± 2.5

NA. Not applicable. SCA 7: Spinocerebellar Ataxia type 7. SARA: Scale for the Assessment and Rating of Ataxia;
INAS: Inventory of Non-Ataxia Symptoms.

3.2. Differential Metabolic Profile of ACCs and AAs in SCA7 Patients

To determine whether the profile of free carnitine, AACs, and AAs is altered in SCA7, plasma
samples from 20 patients (10 EO and 10 AO) and 20 healthy relatives were analyzed using electrospray
tandem mass spectrometry. A total of 49 metabolites were accurately identified and quantified,
of which 21 metabolites were significantly different between patients and controls (p < 0.05). The
predictive power of the metabolite profile to discriminate between patients and healthy controls was
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tested by the supervised PLS-DA approach. PLS-DA score plots significantly separated patients from
healthy controls (Figure 1A) with an accuracy of 60.2% and with values of 0.80 and 0.61 for R2 and Q2,
respectively. Permutation testing showed that separation between the groups was highly unlikely to be
by chance (p < 0.0005), and the corresponding VIP plot showed that metabolites were responsible for
the separation between patients and healthy controls. Interestingly, valine, tyrosine, leucine, glycine,
free-carnitine, phenylalanine, and alanine showed VIP scores above 1.0 on VIP analysis, which made
them potentially useful for discrimination between groups (Figure 1B). We next applied a Receiver
Operating Characteristics (ROC) analysis, based on best predictor ratios, to assess the sensitivity and
specificity of single metabolites. The ROC AUCs and standard errors were based on complete data
from 40 samples; the AUC of each analyzed biomarker was more than 0.5, as expected. We obtained
AUC values of 0.792, 0.824, and 0.765 for Valine, Tyrosine, and Leucine, respectively (Figure 1C).

Biomolecules 2019, 9, x FOR PEER REVIEW 5 of 14 

for R2 and Q2, respectively. Permutation testing showed that separation between the groups was 
highly unlikely to be by chance (p < 0.0005), and the corresponding VIP plot showed that metabolites 
were responsible for the separation between patients and healthy controls. Interestingly, valine, 
tyrosine, leucine, glycine, free-carnitine, phenylalanine, and alanine showed VIP scores above 1.0 on 
VIP analysis, which made them potentially useful for discrimination between groups (Figure 1B). We 
next applied a Receiver Operating Characteristics (ROC) analysis, based on best predictor ratios, to 
assess the sensitivity and specificity of single metabolites. The ROC AUCs and standard errors were 
based on complete data from 40 samples; the AUC of each analyzed biomarker was more than 0.5, as 
expected. We obtained AUC values of 0.792, 0.824, and 0.765 for Valine, Tyrosine, and Leucine, 
respectively (Figure 1C). 

Finally, unsupervised hierarchical clustering of correlation heatmap was obtained, which 
showed a decreased concentration of Tyrosine, Phenylalanine, Leucine, and Valine in SCA7 patients 
and that these amino acids correlated similarly with all metabolites studied (Figure 1D). Enrichment 
analysis using MSEA identified alterations in a variety of metabolic pathways in SCA7 (Figure 1E), 
including the metabolism of different amino acids, ammonia recycling, glutathione metabolism, 
catecholamine biosynthesis, β-oxidation of long-chain fatty acids and oxidation of branched-chain 
fatty acids, purine metabolism, and carnitine synthesis. 

Figure 1. (A) Partial Least Squares Discriminant Analysis (PLS-DA) plot showing separation between groups; 

healthy group (blue circles) and SCA7 group (red circles). The explained variances are shown in brackets; (B) 

Variable Importance in Projection (VIP) analysis represents the relative contribution of metabolites to the 

variance between healthy controls and SCA7 patients. A high VIP score indicates a great contribution of the 

metabolites to the group separation. The green and red boxes on the right indicate whether metabolite 

concentration is increased (red) or decreased (green); (C) Receiver Operating Characteristics (ROC) curves of 

Valine, Tyrosine, and Leucine. The sensitivity is plotted on the y-axis, and the specificity is on the x-axis. The 

Area Under the Curve (AUC) is in blue. The right image is a boxplot of the two groups within the dataset. A 

horizontal red indicates the optimal cutoff; (D) Unsupervised clustering of Correlation heatmap; red and green 

colors indicate increased and decreased correlation, respectively. (E) Enrichment analysis using Metabolite Set 

Enrichment Analysis (MSEA) for metabolic pathways in SCA7. 

Figure 1. (A) Partial Least Squares Discriminant Analysis (PLS-DA) plot showing separation between
groups; healthy group (blue circles) and SCA7 group (red circles). The explained variances are shown
in brackets; (B) Variable Importance in Projection (VIP) analysis represents the relative contribution of
metabolites to the variance between healthy controls and SCA7 patients. A high VIP score indicates
a great contribution of the metabolites to the group separation. The green and red boxes on the
right indicate whether metabolite concentration is increased (red) or decreased (green); (C) Receiver
Operating Characteristics (ROC) curves of Valine, Tyrosine, and Leucine. The sensitivity is plotted
on the y-axis, and the specificity is on the x-axis. The Area Under the Curve (AUC) is in blue. The
right image is a boxplot of the two groups within the dataset. A horizontal red indicates the optimal
cutoff; (D) Unsupervised clustering of Correlation heatmap; red and green colors indicate increased and
decreased correlation, respectively. (E) Enrichment analysis using Metabolite Set Enrichment Analysis
(MSEA) for metabolic pathways in SCA7.

Finally, unsupervised hierarchical clustering of correlation heatmap was obtained, which showed
a decreased concentration of Tyrosine, Phenylalanine, Leucine, and Valine in SCA7 patients and that
these amino acids correlated similarly with all metabolites studied (Figure 1D). Enrichment analysis
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using MSEA identified alterations in a variety of metabolic pathways in SCA7 (Figure 1E), including
the metabolism of different amino acids, ammonia recycling, glutathione metabolism, catecholamine
biosynthesis, β-oxidation of long-chain fatty acids and oxidation of branched-chain fatty acids, purine
metabolism, and carnitine synthesis.

3.3. Assessment of ACCs and AAs as Disease Biomarkers for SCA7 by Multivariate Model and ROC Analyses

We sought to identify specific metabolites that may serve as prognostic markers in SCA7, using a
computational analysis based on Random Forest metabolite selection and regression analyses. Firstly,
multivariate ROC analyses to correlate the concentration of metabolites with clinical features (age,
gender, number of CAG repeats, age at onset of motor and visual symptoms, and SARA and INAS
scores) were performed (Figure 2A). A model consisting of three metabolic variables (Valine, Leucine,
and Tyrosine) was the best to discriminate between patients and healthy controls, with a prediction
accuracy of 100% (Figure 2B). The combination of metabolite data with clinical characteristics is shown
in Table S1. The predicted class probabilities using AUC scoring successfully classified cases (100%)
and healthy controls (100%) (Figure 2C). Permutation test for the user-created biomarker model (Valine,
Leucine, and Tyrosine) is plotted in Figure 2D, with an empirical p-value of 0.003. Based on both
the random forest analysis and the regression approach, we obtained a robust diagnostic metabolite
signature. Finally, ROC scores demonstrated that separately Valine (AUC = 0.820), Leucine (AUC =

0.848), and Tyrosine (AUC = 0.855), indeed, have the power to discriminate SCA7 patients from healthy
controls (Figure 2E). It is evident that the presence of these three metabolites decreases considerably in
the presence of SCA7 (Figure 2E) and confirms the diagnostic value of these metabolites for SCA7.

3.4. Differential Metabolic Profile between EO and AO Patients

Owing to the heterogeneous clinical presentation of SCA7, we next sought to identify specific
metabolites that may serve as prognostic markers as well as differentiate between EO and AO
phenotypes, using a computational analysis based on Random Forest metabolite selection and
regression analyses. Firstly, multivariate ROC analyses based on the combination of clinical and
metabolic variables were performed (Figure 3A and Table S2). A model that consisted of 10 variables
was the best to discriminate between SCA7 phenotypes with a prediction accuracy of 98.3% (Figure 3B).
The predicted class probabilities (average of the cross-validation) for each sample were calculated using
the AUC-based best classifier (Figure 3C). The model successfully classified EO and AO phenotypes,
as shown in the contingency table; ranking (from most to least important) of the characteristic that
allowed discrimination between AO and EO patients is shown in Figure 3D.

Interestingly, apart from clinical variables (age of onset of visual and motor symptoms
and patient age), the metabolites 3-hydroxyoctadecanoyl-carnitine (AC18OH), Methionine, and
3-hydroxytetradecanoyl-carnitine (AC14OH) could distinguish between disease phenotypes, thereby
increasing the prognostic power of the model. Decreased levels of AC18OH and Methionine, as well
as increased levels of AC14OH, were found in EO patients, compared to AO patients, as shown by VIP
analysis. ROC curves confirmed the robust prognostic power of the metabolites’ signature, with AUC
scores of 0.860, 0.920, and 0.990 for Methionine, AC14OH, and AC18OH, respectively (Figure 3E).

Finally, ROC analysis in AO patients and EO patients was applied using their respective
age-matched healthy subjects for adjustment. As expected, significant AUC values for Valine, Tyrosine,
and Leucine were obtained (Tables S3 and S4). Furthermore, decreased Methionine levels in EO
patients were confirmed, compared with AO patients and age-matched healthy subjects (Figure S1).
However, ROC curves from AC14OH and AC18OH showed no significant p values, probably due to
that EO and AO samples were not large enough to maintain significant adjusted p values (Tables S3
and S4).
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Figure 2. (A) ROC curves for all models are based on their average performance; (B) Predictive accuracy
of biomarker models with an increasing number of features. The most accurate biomarker model is
highlighted with a red dot; (C) Predicted class probabilities for all samples (healthy controls (open circle)
and SCA7 patients (filled circle)) using the created biomarker model. Due to balanced subsampling,
the classification boundary is at the center (x = 0.5, dotted line); (D) Permutations tests using the area
under the ROC curve or the predictive accuracy of the model as a measure of performance. The plot
shows the AUC of all permutations, highlighting the actual observed AUC in blue, along with showing
the empirical p-value (p = 0.003); (E) ROC curves of Valine, Tyrosine, and Leucine. The sensitivity is
plotted on the y-axis and the specificity on the x-axis. The Area Under the Curve (AUC) is in blue. The
graphs under ROC curves correspond to a boxplot of the two experimental groups within the dataset.
ROC analysis calculated by FRPmax (False positive rate).
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Figure 3. (A) ROC curves for all models based on its average performance; (B) Predictive accuracy of
the biomarker models with an increasing number of features. The most accurate biomarker model
is highlighted with a red dot; (C) Predicted class probabilities for all samples (Adult-Onset (open
circle) and Early-Onset patients (filled circle)), using the created biomarker model. Because of a
balanced subsampling, the classification boundary is at the center (x = 0.5, dotted line); (D) Plot of the
most important features of a selected model, ranked from most to least important. (E) ROC curve of
Methionine. The sensitivity is plotted on the y-axis and the specificity on the x-axis. The Area Under
the Curve (AUC) is in blue. The image on the right corresponds to a boxplot of the two groups within
the dataset. ROC analysis calculated by FRPmax (False positive rate).
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4. Discussion

Metabolomics profiling is a promising strategy for identifying relevant metabolites/biomarkers
in neurodegenerative pathologies [32,33]. Since the current evaluation of SCA7 patients is based on
Brief Ataxia Rating Scale (BARS), SARA, and INAS scores [3], time-consuming analyses that require
extensive examiner training to avoid bias, identification of sensitive biomarkers will surely improve
the clinical management of these patients.

In this study, we show for the first time, a metabolomics profile of circulating free carnitine, ACCs,
and AAs in SCA7 patients. These metabolites are involved in mitochondrial function and oxidative
stress, two cellular processes that are altered in SCA7 [13,15,16], and other neurodegenerative disorders,
including Alzheimer’s Disease (AD), Parkinson Disease (PD), and Huntington Disease (HD) [34–36].
Interestingly, significantly lower levels of branched-chain amino acids (BCAAs; Valine and Leucine)
and Tyrosine were found in the plasma samples of SCA7 patients. To our knowledge, the association of
BCAAs with the pathophysiology of SCA7 has not been observed previously. Thus, we were prompted
to analyze whether the assessment of these amino acids could have a diagnostic power in SCA7.
A predictive model based on the plasma concentrations of Valine, Leucine, and Tyrosine, as well as the
main clinical variables of the disease, was set up. Remarkably, this model had the ability to distinguish
between SCA7 patients and healthy control with a sensitivity of 60% and specificity of 86.7%, implying
that measurement of the concentration of these amino acids in plasma could serve as a biomarker in
SCA7. Interestingly, depleted levels of BCAAs are associated with neurodegeneration [37], an increased
risk of dementia [38], and with a faster cognitive decline and significant cerebral atrophy changes in
AD [39]. Furthermore, weight loss and sarcopenia have been linked with a deficiency of BCAAs [40].

Concerning the physiological relevance of AAs deficiency in cerebellar ataxias, decreased
concentrations of Valine, Leucine, and aromatic AAs (Tryptophan and Tyrosine) were recently
reported in the serum of SCA3 patients [41]. Since BCAAs serum levels are largely determined by
dietary protein intake [42], reduced plasma levels of these essential AAs in SCA7 patients might
indicate a subclinical nutritional deficiency. Consistent with this idea, supplementation of BCAA
alleviated cerebellar symptoms in SCA6 patients [43], while Tyrosine administration improved memory
and cognitive function in SCA3 patients [41]. Nevertheless, our enrichment analysis of metabolic
pathways suggests enhanced catabolism of BCAAs in SCA7; thus, deficiency of BCAAs in patients
could not be overcome only by dietary management. The enrichment analysis also revealed defective
ammonia recycling in SCA7. Since ammonia easily crosses the blood-brain barrier, blood-derived
ammonia leads to neurotoxic levels of ammonia in the brain [44]. Aside from primarily affecting the
brain, the toxicity of ammonia has also been demonstrated to affect other organs and tissues, including
muscle. Muscle plays a significant role in the ammonia-removing pathway during the amination of
glutamate to glutamine. Therefore, muscle mass depletion further reduces the body’s capacity to clear
ammonia, which in turn leads to a higher risk of developing hyperammonemia. Interestingly, both HD
and SCA7 patients have elevated plasma ammonia levels [44], therefore it is tempting to speculate that
dysregulated brain energy metabolism in SCA7 patients could be facilitated, at least in part, through
imbalances in ammonia homeostasis.

An additional goal of this study was to identify metabolites with the ability to discriminate
between SCA7 phenotypes (EO and AO) because stage-specific biomarkers would allow monitoring
the natural history of SCA7, as well as the response of patients under clinical trials. We found a
differential content of AC18OH, AC14OH, and Methionine between EO and AO patients; EO patients
exhibited significantly lower content of AC18OH and Methionine and higher levels of AC14OH,
compared to AO patients. We then established a predictive model with the power to discriminate
between EO and AO patients, which considered this metabolite signature and the main SCA7 clinical
features. Concerning the physiological relevance of these metabolites, Methionine plays a critical role
as an antioxidant in metabolism, immunity, and cell physiology [45–47]; indeed, Methionine has been
shown to chelate lead and remove it from tissues, which decreases oxidative stress [48]. It is worth to
note that a direct link between mutant ataxin-7 aggregation and oxidative stress was observed in a
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PC12 cell-based model for SCA7. These authors reported that expression and aggregation of mutant
ataxin-7 resulted in increased reactive oxigen species (ROS) levels and decreased levels of catalase, a
key detoxifying enzyme [13]. Furthermore, patients with SCA7 exhibited elevated levels of oxidative
stress markers in circulation, and deregulation of the redox system correlates [15]. Thus, Methionine
deficiency could lead to oxidative stress, a pathological feature of SCA7 [13,15].

Furthermore, Methionine has been implicated in lipid metabolism, because Methionine restriction
can reduce fat accumulation by caloric restriction, which increases de novo lipogenesis, lipolysis, and
fatty acid oxidation [46]. Interestingly, dietary Methionine restriction led to decreased amyloid-beta
levels and neuroprotection in APP-PS1 AD mice [49]. On the other hand, AC18OH and AC14OH have
been associated with mitochondrial dysfunction and -oxidation [50–52]; however, dysregulation in the
content of these metabolites appears to be specific of SCA7, because there is no report of such alteration
in other polyQ diseases. Therefore, this dysregulation could reflect altered mitochondrial oxidative
metabolism [16]. Recent evidence demonstrated impaired mitochondrial function in patients with
SCA7 and a murine SCA7 model [16]. Patients with SCA7 were unable to increase ATP production
in the visual cortex during the completion of a visual task, which reflects altered mitochondrial
oxidative metabolism. Furthermore, SCA7 266Q knock-in mice exhibited mitochondrial fragmentation
in cerebellar Purkinje cells and dendrites [16]. Remarkably, reduced NAD+ production in the nucleus
and low expression of the NMNAT1 gene (the main gene involved in NAD+ production) were
found in SCA7 neural progenitor cells (NPC), which might result in decreased NAD+ availability in
mitochondria; decreased levels of NADH can consequently disturb the electron donor system that
drives oxidative phosphorylation at the inner mitochondrial membrane [16]. Finally, perturbation of
the tryptophan-kynurenine pathway, which is upstream of the NAD+ precursor de novo synthesis, was
found in the plasma samples of SCA7 patients [16]. Disturbance of the synthesis of NAD+ could impact
multiple pathways, such as catabolism of fatty acids (FAs). Therefore, enrichment analysis points to
fatty acids and carnitine metabolism as ACCs-related metabolic pathways involved in SCA7. These
processes take place in mitochondria, where the role of ACCs is to transport long-chain fatty acids into
mitochondria for -oxidation [52]; in fact, fatty acids have been implicated in diverse neurodegenerative
diseases [50,51,53]. Furthermore, ACCs have been shown to possess diverse neuroprotective effects,
including improvement of mitochondrial function, modulation of gene expression, enhancement of
cholinergic neurotransmission, antioxidant activity, and membrane stabilization [18,23,45,54,55]. Thus,
metabolic changes in these metabolites could be an indicator of these mechanistic alterations. It should
be noted that the analysis of our study population is highly valuable due to the rare worldwide
incidence of SCA7 (<1/100,000) [8,18]. Future longitudinal studies on larger samples of patients, as
well as comparative analyses of SCA7 with other SCAs and polyQ diseases, are required to confirm the
existence of disease- and even disease-stage-specific metabolites in SCA7.

5. Conclusions

We carried out a metabolomics profiling of ACCs, free carnitine, and AAs in the plasma samples
of SCA7 patients. We identified promising metabolites that could serve as auxiliary biomarkers for the
diagnostic and prognosis of the disease because they are sampled in a relatively non-invasive manner
and are readily detected by easy biochemical assays that could be implemented in clinical laboratories.
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