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Abstract
Background: The formation of alloantibodies directed against class I human leuko-
cyte antigens (HLA) continues to be a clinically challenging complication after platelet 
transfusions, which can lead to platelet refractoriness (PR) and occurs in approxi-
mately 5%–15% of patients with chronic platelet support. Interestingly, anti-HLA IgG 
levels in alloimmunized patients do not seem to predict PR, suggesting functional or 
qualitative differences among anti-HLA IgG. The binding of these alloantibodies to 
donor platelets can result in rapid clearance after transfusion, presumably via FcγR-
mediated phagocytosis and/or complement activation, which both are affected by the 
IgG-Fc glycosylation.
Objectives: To characterize the Fc glycosylation profile of anti-HLA class I antibod-
ies formed after platelet transfusion and to investigate its effect on clinical outcome.
Patients/Methods: We screened and captured anti-HLA class I antibodies (anti-
HLA A2, anti-HLA A24, and anti-HLA B7) developed after platelet transfusions in 
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1  |  INTRODUC TION

Platelet transfusions are widely used for the prevention and treat-
ment of hemorrhagic complications in thrombocytopenic patients. 
The success of these transfusions is usually determined by calcu-
lating the corrected count increment (CCI), which measures the in-
crease in circulating platelets, after 1 and/or 24 h posttransfusion, 
by taking the total amount of transfused platelets and the patient's 
body surface area into account. The recurring absence of a platelet 
increase is known as refractoriness to platelet transfusion or platelet 
refractoriness (PR). This condition occurs in approximately 5%–15% 
of patients1–5 with chronic platelet support and is most frequently 
observed in hemato-oncological patients requiring frequent platelet 
transfusions due to chemotherapy-induced thrombocytopenia.

Both nonimmune and immune factors are known to cause PR. 
The nonimmune factors are often related to the clinical condition and 
therapy of the patient (e.g. sepsis, fever, splenomegaly, active bleed-
ing, medication). Immune PR occurs in approximately 20% of the 
PR cases and is primarily caused by alloantibodies, directed against 
class I human leukocyte antigens (HLA) and to a much lower degree 
to human platelet antigens (HPA).6–9 The binding of these alloan-
tibodies to donor platelets can result in their rapid clearance after 
transfusion, theoretically via several immunological pathways, such 
as complement-dependent cytotoxicity (CDC), antibody-dependent 
cellular cytotoxicity (ADCC), and antibody-dependent cellular 
phagocytosis (ADCP).10–16 Therefore, selecting HLA-matched donor 
platelets and considering recipient's HLA antibody specificity are 
common strategies to reduce the probability of PR.17–20 However, 
because of the polymorphic nature of HLA, finding compatible do-
nors in HLA-typed registries can be very challenging. On top of that, 
for yet-unknown reasons, only 30%–50% of the alloimmunized pa-
tients develop PR to unmatched platelet transfusions.21–23 Hence, 
more information is needed about the underlying antibody response 
that might explain the differences between alloimmunized patients.

IgG contains a highly conserved N-linked glycan in its Fc re-
gion at position 297, which is essential for the antibody's function, 

structure, and stability. The glycan consists of highly variable ex-
tensions of a bi-antennary core structure of N-acetylglucosamines 
(GlcNAc) and mannose residues. The extensions may include a fu-
cose, bisecting GlcNAc and up to two galactoses, each of which 
can be further extended by a sialic acid residue. The configuration 
of these sugar residues can strongly affect the antibody's effector 
functions and therefore the clinical course of the immune response. 
The lack of core fucosylation leads to an up to ~40-fold increase in 
binding affinity to FcγRIIIa/b, which directly translates into increased 
downstream effector functions, such as ADCC and ADCP.24–30 In 
combination with afucosylation, galactosylation further increases 
the affinity to FcγRIII,31,32 yet galactosylation is better known for 
its effect on complement activation.29,33–35 Recent work has shown 

hemato-oncology patients, who were included in the PREPAReS Trial. Using liquid 
chromatography-mass spectrometry, we analyzed the glycosylation profiles of total 
and anti-HLA IgG1 developed over time. Subsequently, the glycosylation data was 
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Essentials

•	 Alloimmunization to Human Leukocyte Antigens (HLA) 
remains a significant complication after platelet trans-
fusions, which can lead to immune platelet refractori-
ness (PR), but not all alloimmunized patients develop PR, 
suggesting functional or qualitative differences in HLA-
specific IgG responses.

•	 We characterized the Fc glycosylation profile of 
anti-HLA Class I antibodies, developed in hemato-
oncological patients after platelet transfusions, as the 
glycan composition can strongly affect antibody effec-
tor functions.

•	 The glycosylation profile of anti-HLA antibodies was 
highly variable between patients, especially with re-
spect to galactosylation, sialylation and fucosylation.

•	 The differences in composition of anti-HLA Fc-
glycosylation profiles could potentially explain the 
variation in clinical severity between patients receiving 
platelet transfusions.
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that galactosylation increases the antibody's capacity to activate the 
classical complement pathway, through enhanced hexamerization, 
which consequently enhances C1q binding and CDC activity.33,36 
Sialylation has been found to slightly increase complement activa-
tion even further,29,36,37 whereas the presence of a bisecting GlcNAc 
has been reported to have no effect on either complement activa-
tion nor FcγR binding.29 Previously, we characterized the glycosyla-
tion profile of anti-HLA class I antibodies in 13 patients diagnosed 
with PR.28 Although no differences were found in Fc fucosylation 
between anti-HLA IgG1 and total IgG1, a significant increase was 
observed in galactosylation and sialylation levels for approximately 
half of the patients.28

In the present study, we expanded on this pilot study by investiga-
tion a series of plasma samples from a large and well-defined patient 
cohort, included in the PREPAReS trial,38–41 a randomized multi-
center trial investigating the effect of pathogen reduction of plate-
let products on the prevention of bleeding in hemato-oncological 
patients, who received multiple platelet transfusions. As part of the 
study protocol, the clinical background of the patient, transfusion 
requirements and posttransfusion platelet increments were well 
documented. Moreover, as secondary outcome, HLA immunization 
was checked frequently, and plasma samples were regularly col-
lected over a 56-day period.

In the current study, we captured anti-HLA antibodies from 
plasma samples in a high-throughput manner using recombinant 
HLA-A*02:01, -A*24:02, and -B*07:02 monomers. Using liquid 
chromatography-mass spectrometry, we analyzed IgG1 glycosyla-
tion profiles of total and anti-HLA IgG1 over time and linked glyco-
sylation data to the patients' clinical information and posttransfusion 
increments.

2  |  MATERIAL AND METHODS

2.1  |  Human subjects

The plasma samples used in this study originate from the PREPAReS 
trial,38–41 including hemato-oncological patients from 10 different 
medical centers, located in Canada, Norway, and The Netherlands. 
The primary aim of this study was to assess the noninferiority of 
pathogen-reduced-plasma-platelet concentrates (PCs) compared 
with plasma-PCs in terms of World Health Organization (WHO) 
bleeding complications ≥grade 2 during one transfusion episode.38 
Patients (aged ≥ 18 years), with chemotherapy-induced thrombocy-
topenia, expected to need at least two platelet transfusions, were 
enrolled in the study. Patients were excluded based on the following 
criteria: microangiopathic thrombocytopenia (HUS), immune throm-
bocytopenia, active bleeding with WHO bleeding grade ≥2, known 
presence of anti-HLA/-HPA alloantibodies or clinically relevant au-
toantibodies, known immune platelet refractoriness, pregnancy or 
lactation, indications requiring hyperconcentrated platelets, prior 
treatment with pathogen-reduced platelet products, or known al-
lergy to riboflavin or its photoactive products. All patients gave 

written informed consent according to the Declaration of Helsinki. As 
part of the original study protocol, the patients' clinical background, 
fever, infection, mucositis, bleeding conditions, WHO performance 
status, the number of red blood cell/platelet/plasma transfusions, 
CCI at 1 and 24 h, fibrinogen levels, prothrombin time (PT), activated 
partial thromboplastin time (APTT), and the presence of anti-HLA 
class I and II antibodies were measured and documented.38,39

The Dutch transfusion guidelines were used as reference for the 
indication of platelet transfusions. The treating physician determined 
if or when a transfusion was ordered, as described previously.38

The presence of both anti-HLA class I and II antibodies was de-
termined using the LABScreen Mixed LSM12 Screening test (One 
Lambda). Anti-HLA class I antibodies were determined using 12 
different beads and anti-HLA class II antibodies with five beads, all 
beads presenting a broad array of HLA antigens. Samples were mea-
sured using a luminometer (Luminex, Luminex Corp.) and fluores-
cence intensities were presented relative to negative control serum 
provided by One Lambda as normalized background ratios (NBGs). 
Samples above the 3 SD cutoff (i.e., NBG ≥10.8 for HLA class I or 
NBG ≥6.9 for HLA class II) were considered positive.39 The number 
of positive HLA beads (panel reactivity) was used as an indication of 
the broadness of the HLA immunization.39

2.2  |  Production of recombinant HLA-monomers

Recombinant HLA-A*02:01, -A*24:02, and -B*07:02 heavy chains 
were produced in Escherichia coli. Peptide-HLA (pHLA) class I com-
plexes pHLA-A*02:01, pHLA-A*24:02, and pHLA-B*07:02 were gen-
erated through in vitro refolding reactions with E coli–derived β2M, as 
described previously,42 in the presence of EBV peptide GLCTLVAML 
(JPT Peptide Technologies GmbH), human GPR143 peptide 
LYSACFWWL (JPT Peptide Technologies GmbH), and RSV peptide 
NPKASLLSL (JPT Peptide Technologies GmbH), respectively. All 
pHLA class I complexes were, enzymatically biotinylated using BirA, 
purified by gel-filtration high-performance liquid chromatography in 
PBS (pH 7.4) and stored at −70°C, as reported elsewhere.42

2.3  |  HLA-specific IgG screening ELISA

Nunc MaxiSorp flat-bottom 96-well plates (Thermo Fisher Scientific) 
were coated overnight at room temperature (RT) with 100 μl 2 μg/ml  
streptavidin (Thermo Fisher Scientific) in coating buffer (0.05 M 
carbonate–bicarbonate buffer, pH 9.6). After washing 4 times with 
0.05% PBS-Tween 20 (PBS-T), the plates were incubated for 1 h at 
37°C with 1.4 μg/ml biotinylated HLA molecules (HLA-A2, -A24, and 
-B7) in PBS. The plates were washed with PBS-T and incubated with 
1:20 diluted plasma samples in PBS-T for 1 h at RT. Then the plates 
were washed with PBS-T and incubated for 1 h at RT with 1/1000 
100 μl anti-IgG-HRP (MH16-1, Sanquin Reagents). After washing 
with PBS-T, the plates were developed with 100 μl of 0.1  mg/ml 
tetramethylbenzidine solution with 0.11 M Na acetate and 0.003% 
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H2O2. The reaction was terminated with 100 μl of 2 M H2SO4 and 
the absorbance was measured at 450–540 nm. Longitudinal samples 
were screened in antichronological order, if the most recent samples 
were tested positive, earlier time points were examined in a second 
screening phase.

2.4  |  Liquid chromatography-mass spectrometry 
based IgG Fc glycosylation analysis and 
data processing

Total IgG was purified from 1 μl plasma using the AssayMAP Bravo 
platform (Agilent Technologies) with Protein G-coupled cartridges, 
as described elsewhere.27,43 As patients were continuously given 
platelet transfusions with products containing plasma (35%) and 
storage solution (65%), there might be a small possibility of crossover 
of donor antibodies.

The purification of HLA-specific IgG was described previously.44 
In brief, Nunc MaxiSorp flat-bottom 96-well plates (Thermo Fisher 
Scientific) were coated overnight at RT with 100 μl 10 μg/ml strepta-
vidin (Thermo Fisher Scientific) in coating buffer. After washing 4 
times with PBS-T, the plates were incubated 1 h at 37°C with 1.4 μg/ml  
biotinylated HLA molecules (HLA-A2, -A24, and -B7) in PBS. The 
plates were washed with PBS-T and incubated with 1:2 diluted 
plasma samples in PBS-T for 1 h at RT. Thereafter, the plates were 
washed 1 time with PBS-T, 2 times with PBS, and 2 times with 50 mM 
ammonium bicarbonate. Elution of HLA-specific IgG was performed 
by the addition of 100 μl 100 mM formic acid to the samples followed 
by 5-min incubation on a horizontal shaking platform. The eluted 
HLA-specific IgG was transferred to low-binding 96-well plates, 
dried by vacuum centrifugation at 50°C, and subjected to overnight 
tryptic digestion using 10 ng/μl sequencing grade trypsin (Promega) 
in 40 μl 25 mM ammonium bicarbonate at 37°C.

The resulting IgG Fc glycopeptides were separated and detected 
with an Ultimate 3000 high-performance liquid chromatography sys-
tem (Thermo Fisher Scientific) coupled to a maXis quadrupole time-
of-flight mass spectrometer (Bruker Daltonics) using a CaptiveSpray 
and a nanoBooster, as described previously.45 Data processing and 
analysis was performed in line with previous reports.46

2.5  |  Statistical analysis

To evaluate statistical differences between the distribution of pa-
tient characteristics of the two subgroups, both χ2 test and Mann–
Whitney U test were used. Two-tailed/sided p values, and for the 
Mann–Whitney U test also the interquartile range (25%/75% per-
centile), were calculated. The statistical differences between glycan 
traits of HLA-specific IgG and total IgG were evaluated using the 
paired t-test with two-tailed p value. Statistical differences between 
specific glycans of HLA-specific IgG and total IgG were assessed 
using Wilcoxon matched-pairs signed rank test with two-tailed 
p value. To evaluate the correlation between the CCI, number of 

transfusions, broadness of the HLA class I immunization, anti-HLA 
class I titer, and anti-HLA specific glycosylation, linear regression 
was used, from which the goodness of fit was determined by R2 and 
the 95% confidence bands were shown. All statistical analyses were 
performed using Graphpad Prism 8.02 (263) and the level of signifi-
cance was set at p ≤ .05. *, **, *** and **** denote a statistical signifi-
cance of p < .05, ≤.01, ≤.001, and ≤.0001, respectively.

3  |  RESULTS

To analyze the Fc glycosylation profile of HLA-specific antibodies, 
the patients included in the PREPAReS trial were divided into two 
subgroups, a group with anti-HLA class I antibodies and a group 
without anti-HLA antibodies (Table 1), excluding 24 alloimmunized 
patients with only anti-HLA class II antibodies. Based on the previ-
ously performed screening tests, as part of the study protocol, 77 
patients were tested positive for anti-HLA class I antibodies, either 
from the start or during the study. In total, 14 patients were diag-
nosed with PR during the PREPAReS study, of which 12 patients 
presented anti-HLA class I antibodies. As expected, patients with 
anti-HLA class I antibodies were more frequently female and had 
prior pregnancies and transfusion reactions. Also, significant dif-
ferences were found in the diagnosis and treatment phases. The 
patients who developed anti-HLA class I antibodies also showed 
more severe bleeding conditions, higher WHO performance status, 
and received more red blood cell (RBC) and platelet transfusions. 
Furthermore, the CCIs of the platelet transfusions and fibrinogen 
levels were significantly lower and longer PTs were observed for 
these patients compared with those without anti-HLA antibodies. 
Also, a larger proportion of the alloimmunized patients received 
pathogen-reduced platelet products.

The longitudinal plasma samples collected from these 77 anti-
HLA class I positive patients, were then screened for antibodies re-
active against recombinant HLA-A*02:01, -A*24:02, and -B*07:02, 
using a high-throughput ELISA set-(Figure  1A). This screening 
method resulted in overall 96 samples, originating from 35 different 
patients, who tested positive for antibodies reactive against at least 
one of the recombinant HLA monomers (Figure 1B). Seven of those 
35 patients were diagnosed with PR. From all 96 plasma samples, 
the HLA-specific IgG fraction was purified, in parallel with the total 
IgG fraction, followed by the assessment of their Fc glycosylation by 
liquid chromatography-spectrometry (Figure 1C–E).

The systematic analysis of the Fc glycosylation alterations, com-
paring the major glycosylation traits of the total IgG1 and the HLA-
A2 specific IgG1, revealed overall similar levels for Fc fucosylation 
but elevated galactosylation, elevated sialylation and decreased bi-
section, for the majority of the patients (Figure 2A–D and Table S1). 
However, it also highlighted notable exceptions and interpatient 
variation in glycosylation levels. For example, two patients showed 
considerably lower fucosylation levels compared with their total 
IgG1 levels (Figure 2A). These same patterns, particularly elevated 
galactosylation and sialylation, as observed for HLA-A2 specific 
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TA B L E  1  Patient characteristics

Characteristic
Patients without anti-HLA 
antibodies

Patients with anti-HLA class I 
antibodies Sign. p value

Patients 465 (85.79%) 77 (14.21%)

Age, median (IQR) 57 (49.0–63.0) 59 (49.5–65.5) ns .2482

Female 138 (29.68%) 36 (46.75%) ** .0030

Prior pregnancies (% of female) 93 (67.39%) 32 (88.89%) * .0107

Prior RBC transfusions 318 (68.38%) 60 (77.92%) ns .1103

Prior PLT transfusions 281 (60.43%) 52 (67.53%) ns .4290

Prior transfusion reactions 19 (4.09%) 8 (10.39%) * .0114

Prior transplant procedures 27 (5.81%) 3 (3.90%) ns .6982

Diagnosis * .0123

Acute myeloid leukemia (AML) 210 (45.16%) 50 (64.94%)

Acute lymphocytic leukemia (ALL) 39 (8.39%) 6 (7.79%)

Chronic myeloid leukemia (CML) 1 (0.22%) 1 (1.30%)

Chronic lymphocytic leukemia (CLL) 1 (0.22%) 0

Mantle cell lymphoma (MCL) 26 (5.59%) 1 (1.30%)

Multiple myeloma (MM) 78 (16.77%) 6 (7.79%)

Non-Hodgkin lymphoma (NHL) 73 (15.70%) 5 (6.49%)

Other 37 (7.96%) 8 (10.39%)

Treatment phase *** .0001

Remission induction course 187 (40.22%) 44 (58.67%)

Consolidation course 52 (11.18%) 12 (16.00%)

Autologous transplant 189 (40.65%) 12 (16.00%)

Allogeneic transplant 34 (7.31%) 4 (5.33%)

Maintenance 2 (0.43%) 1 (1.33%)

Other 1 (0.22%) 2 (2.67%)

Fever 246 (52.90%) 42 (54.55%) ns .7891

Infection 205 (44.09%) 38 (49.35%) ns .3896

Mucositis 208 (44.73%) 38 (49.35%) ns .4508

Bleeding conditions

No bleeding 73 (13.04%) 8 (10.39%) ns .5134

Grade 1 314 (67.82%) 53 (68.83%) ns .8600

Grade 2 254 (54.86%) 56 (72.73%) ** .0033

Grade 3 8 (1.73%) 6 (7.79%) ** .0019

Grade 4 10 (2.16%) 1 (1.30%) ns .6204

Grade 2 + 3 + 4 257 (55.51%) 57 (74.03%) ** .0023

WHO performance status ** .0003

WHO-0 66 (14.34%) 10 (13.16%)

WHO-1 293 (63.70%) 37 (48.68%)

WHO-2 61 (13.26%) 16 (21.05%)

WHO-3 16 (3.48%) 8 (10.53%)

WHO-4 9 (1.96%) 1 (1.32%)

WHO-5 12 (2.61%) 0

Unknown 3 (0.65%) 4 (5.26%)

RBC transfusions, median (IQR) 3 (2–6) 5 (4–8) *** .0001

Plasma transfusions, median (IQR) 0 (0–0) 0 (0–0) ns .6384

PLT transfusions, median (IQR) 4 (2–7) 6 (4–10.5) **** <.0001

(Continues)
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IgG1, were also found for HLA-A24- (Figure  2E–H) and HLA-B7-
specific IgG1 (Figure 2I–L). When we investigated individual glycan 
compositions, taking the overall glycosylation changes into account 
and comparing the differences between total and HLA-specific IgG1, 
the most prominent differences were observed as an up to 2.5-fold 
decrease in agalactosylated, fucosylated anti-HLA IgG1, and even 
more so for the nonbisected than the bisected variant (H3N4F1 
[G0F] and H3N5F1 [G0FN], respectively). An up to 1.7-fold increase 
in fully galactosylated, nonbisected anti-HLA IgG1 was observed, 
both without and with one sialic acid residue (H5N4F1 [G2F] and 
H5N4F1S1 [G2FS], respectively) (Figure 3A and B).

Because some patients developed antibodies reactive against 
more than one of the recombinant HLA monomers, we were able to 
compare the glycosylation profile of anti-HLA antibodies between 
the different specificities in the same patient and plasma samples 
(Figure  4A–L). In general, the glycosylation profile of all anti-HLA 
antibodies, originating from the same plasma samples, was very sim-
ilar. However, the glycosylation profile of anti-HLA A24 antibodies 
showed the largest differences when comparing to either anti-HLA 
A2 or B7 antibodies. In particular, one of the two patients presented 
with low fucosylation levels, indicated in gray, showed higher levels 
of fucosylation for anti-HLA A24 antibodies in multiple plasma sam-
ples (Figure 4A, I). Nonetheless, these fucosylation levels were still 
considerably lower compared with that of total IgG1.

Furthermore, as part of the original study protocol, plasma sam-
ples were collected weekly, from the start of enrollment until day 
28, and also around day 56.38 Therefore, for most of the selected 
patients, multiple samples were collected, which allowed us to ex-
plore the glycosylation dynamics over time (Figure 5A–O). For most 
patients, the glycosylation profile of the HLA-specific IgG remained 
similar during this relatively short time frame. However, some pa-
tients showed an increase in galactosylation and sialylation and de-
crease in bisection over time. These changes were most noticeable 
for anti-HLA A2 antibodies and were incidentally concomitant to an 
increase in the specific anti-HLA antibody levels (Figure  5D, G, J, 
and M).

Hereafter, we investigated the relationships between anti-
HLA class I titer, the broadness of the HLA class I immunization 

and the anti-HLA class I antibody glycosylation profile, the num-
ber of transfusions and their outcome by the CCI at 1 and 24 h 
(Figure  6). Both the titer (signal strength) and broadness of the 
immunization (panel reactivity) were calculated from the data of 
the LABScreen Mixed LSM12 Luminex assay, as described previ-
ously.39 The presence of anti-HLA class I antibodies impacted both 
the number of transfusions and the CCIs (Table 1). On top of that, 
a weak linear correlation was found between the anti-HLA class I 
titer and the number of platelet transfusions (Figure 6A) and the 
CCIs at 1 and 24 h (Figure 6B). Unsurprisingly, both CCIs, at 1 and 
24 h, showed strong correlation (Figure 6C). Generally, the CCI at 
24 h is lower than 1 h after the same transfusion. The broadness 
of the HLA class I immunization showed similar trends as the anti-
HLA class I titer, a weak correlation was found with the number of 
platelet transfusions and corresponding CCIs (Figure 6D and E). 
This was expected to some extent, as the broadness of the HLA 
class I immunization is also strongly correlated to the anti-HLA 
class I titer (Figure 6F).

Then, we investigated the relationship between the Fc gly-
cosylation profile of the anti-HLA antibodies and the number of 
transfusions or posttransfusion increment. Anti-HLA- glycosyla-
tion profiles of all specificities were combined for each patient. 
We focused on Fc galactosylation and sialylation levels as only 
two of 35 patients showed decreased fucosylation levels of the 
anti-HLA antibodies. These two patients received 18 or five dif-
ferent platelet transfusions during the study, respectively. The 
median CCIs of these transfusions were 4.71 or 7.02 at 1 h, and 
3.35 or 5.24 at 24 h, respectively. Neither Fc galactosylation 
nor sialylation of anti-HLA IgG1 showed a correlation with the 
number of transfusions events (Figure 6G, H). However, a clear 
negative correlation was found with the posttransfusion incre-
ment and both Fc galactosylation and sialylation levels of anti-
HLA antibodies (Figure 6I, J). No correlation was found between 
the antibody titer and the type of glycosylation (Figure  6K), 
highlighting their own predictive value. Because sialyltransfer-
ases require galactose as substrate, it was not surprising to see 
a strong correlation between anti-HLA IgG1 Fc sialylation and 
galactosylation (Figure 6L).

Characteristic
Patients without anti-HLA 
antibodies

Patients with anti-HLA class I 
antibodies Sign. p value

Pathogen reduction 218 (46.88%) 49 (63.64%) ** .0065

Age platelet concentrate, median (IQR) 4 (3–5) 4 (3–5) ns .3356

CCI 1 h, median (IQR) 13.71 (8.76–24.00) 8.56 (6.00–11.90) **** <.0001

CCI 24 h, median (IQR) 6.93 (4.34–11.39) 5.17 (2.73–7.28) *** .0007

Fibrinogen levels, median (IQR) 4.5 (3.7–5.3) 4.1 (3.5–4.9) * .0156

PT (s), median (IQR) 12.01 (11.10–13.58) 12.50 (11.12–13.70) ns .4739

PT (INR), median (IQR) 1.10 (1.05–1.20) 1.15 (1.1–1.23) * .0227

aPTT (s), median (IQR) 30.50 (27.83–33.55) 29.58 (26.69–33.00) ns .0668

Note: Statistical significance was tested using Mann–Whitney or χ2 tests (significant values are depicted in bold).
The level of significance was set at p ≤ .05. *, **, *** and **** denote a statistical significance of p < .05, ≤.01, ≤.001, and ≤.0001, respectively.

TA B L E  1  (Continued)
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F I G U R E  1  Fc glycosylation analysis of total and anti-HLA IgG1. (A) Flow chart of the entire workflow. (B) Venn diagram showing the 
HLA-specific antibodies shared between 35 investigated patients. (C) Depiction of the N297-linked glycan structure with symbols depicting 
individual monosaccharides. (D-E) Representative mass spectra illustrating the observed interindividual variability between two patients' 
anti-HLA-A2 specific IgG1 Fc glycosylation profile analyzed on the glycopeptide level. Left: neutral IgG1 glycopeptides; right: acidic IgG1 
glycopeptides shown for both the total and the HLA-A2-specific IgG1 fraction of two patients.
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Last, we investigated the differences in alloimmunized patients 
who were diagnosed with PR (Figure S1). From all study participants, 
14 were obliged to leave the study prematurely because of severe 
platelet refractoriness. Twelve patients developed anti-HLA class I 
antibodies, from which seven patients had either anti-HLA A2, A24, 
and/or B7 antibodies, of which the Fc glycosylation was analyzed. 
For the patients diagnosed with PR significantly lower CCI's at both 
1 and 24 h were observed than the other alloimmunized patients 
(Figure S1A,B). The PR patients also developed a broader alloimmu-
nization with higher anti-HLA class I titers (Figure S1C,D). In addi-
tion, although nonsignificant because of a small sample size, a larger 
increase in galactosylation and sialylation and larger decrease in bi-
section of HLA specific IgG was observed in PR patients in compari-
son to the other alloimmunized patients (Figure S1E–L).

4  |  DISCUSSION

Alloimmunization after platelet transfusions remains a clinically 
challenging complication that could lead to PR, which is associated 
with numerous detrimental consequences including increased 
number of required transfusions, increased risk for bleeding,47,48 
decreased survival rate,47 longer hospitalization and higher hos-
pital costs,49 particularly for patients requiring long-term platelet 
support (e.g., during treatment for oncological and/or hematologi-
cal conditions) Anti-HLA antibodies can be formed during previ-
ous incompatible platelet transfusions, organ or bone marrow 
transplantations or pregnancies. Binding of these alloantibodies to 
donor platelets can result in rapid clearance after transfusion, sup-
positionally via CDC, ADCC, and/or ADCP.10–16 Interestingly, not 

F I G U R E  2  Fc glycosylation profiles of anti-HLA specific (y-axis) and total IgG1 (x-axis) for 35 patients. (A-P) The glycosylation profile was 
divided into the major glycan traits depicted in the columns as fucosylation, galactosylation, sialylation, and bisection. The x- and y-axes 
show the relative abundance of the glycan traits of either the total IgG1 or anti-HLA specific IgG1 (1.0 = 100%). Each dot represents the 
combined glycosylation profile of all available samples of an individual patient; patients are color-coded. Patients diagnosed with platelet 
refractoriness (PR) are indicated with triangle symbols. A paired t test with two-tailed p value was performed. The diagonal, dotted line 
represents the equal ratio between total IgG1 and the HLA-specific IgG1. Fc galactosylation and sialylation were significantly increased for 
anti-HLA antibodies compared with the total IgG1. Bisection was decreased for the majority of the patients and two patients showed lower 
levels of fucosylation of anti-HLA antibodies.
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F I G U R E  3  Differences in individual Fc glycan levels between HLA-specific IgG1 and total IgG1. (A) Fc glycan levels for total IgG1, anti-
HLA -A2, -A24, and -B7 specific IgG1. The y-axis shows the relative abundance of the different glycans (1.0 = 100%). Bars represent the 
median of all patients with 95% CI. Each dot represents an individual patient. The statistical difference was calculated using the Wilcoxon 
matched-pairs signed-rank test with two-tailed p value. (B) Heatmaps of the differences in Fc glycosylation between HLA-specific IgG1 and 
total IgG1 on glycan level. The absolute differences were calculated using paired data by subtracting the percentages of the total IgG1 from 
the HLA-specific IgG1 levels per patient. The fold change was calculated by dividing the percentages of the HLA-specific IgG1 by the total 
IgG1 levels per patient. Values represent the median of all patients. The differences between HLA-specific IgG1 and total IgG1, were most 
prominently observed as a decrease in H3N4F1 (G0F) and H3N5F1 (G0FN), and an increase in H5N4F1 (G2F) and H5N4F1S1 (G2FS).
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all alloimmunized patients develop PR to random platelet trans-
fusions, which indicates interpatient variation and differences in 
HLA-specific IgG responses.

Here, we characterized the Fc glycosylation profile of anti-HLA 
class I antibodies, developed in hemato-oncological patients, as the 
glycan composition can strongly affect antibody effector functions 
and consequently the immune response and clinical course.27,28,50,51 
We observed a prominent increase in both galactosylation and si-
alylation and a decrease in bisection of HLA specific IgG1 in 30 of 
35 the patients. Only two of 35 investigated patients showed high 
levels of afucosylation of the HLA antibodies. These results were 
observed for all investigated anti-HLA specificities and mostly in line 
with our previous observations in 13 patients diagnosed with PR,28 
with the notable exception that afucosylation of anti-HLA antibod-
ies has not been observed earlier, most likely because of the limited 
size of the previously investigated cohort.

Although the majority of human IgG responses are dominated by 
fucosylated IgG, we and others have observed a varying degree of 
afucosylated IgG to red blood cell and platelet antigens in alloimmu-
nization during pregnancy,28,30,52 to Plasmodium falciparum antigens 
expressed on infected RBC43 and to enveloped viruses.27,50,53 This 
afucosylation increases the binding affinity to FcγRIIIa and FcγRIIIb 
up to 40-fold, with even stronger changes being observed in asso-
ciated effector functions, such as ADCP and ADCC by myeloid or 
NK-cells.26,29,43 Based on our findings, we hypothesized previously 
that afucosylated IgG responses are primarily targeted to antigens 
expressed on the membrane of host cells and not towards soluble 
antigens or antigens presented on pathogens.27 Although this hy-
pothesis seems to fit all cases in which afucosylated IgG responses 
have been observed, being particularly strong for infected RBC, 
RhD, and HPA-1a,30,43,51,52 some RBC antigens seem to form notable 
exceptions (e.g., RhE and Rhc to some degree).54 A similar situation 

F I G U R E  4  Comparison between Fc glycosylation profiles of anti-HLA specific antibodies, originated from the same plasma samples. 
(A-L) The glycosylation profile was divided into the major glycan traits; fucosylation, galactosylation, sialylation, and bisection. The x- and 
y-axes show the relative abundance of the glycan traits of the different anti-HLA specific IgG1 (1.0 = 100%). Each dot represents an 
individual plasma sample, patients are color-coded. Patients diagnosed with platelet refractoriness (PR) are indicated with triangle symbols. 
The statistical difference was calculated using the paired t test with two-tailed p value. The diagonal, dotted line represents the equal ratio 
between compared HLA-specific IgG1.
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F I G U R E  5  The glycosylation profile of anti-HLA specific IgG1 over time. (A–L) The glycosylation profile of HLA-specific IgG1 was divided 
into the major glycan traits; fucosylation, galactosylation, sialylation, and bisection. The y-axis shows the relative abundance of the different 
glycan traits (1.0 = 100%). Plasma samples were collected weekly, from the start of enrollment up until day 28, and at approximately day 56. 
Each colored line represents multiple time points of the same patient. The black line represents the mean of all patients with 95% confidence 
bands. (M-O) Anti-HLA specific antibody levels determined by anti-IgG Fc ELISA (absorbance, OD at 450–540 nm).
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seems to apply to HLA alloimmunizations, both in our present and 
previous studies,28,44 the majority of patients have normal levels of 
fucosylated IgG, except for two patients, indicating that the mem-
brane association seems to be necessary yet not sufficient for the 
induction of afucosylated IgG. As for these two patients presented 
with low fucosylated anti-HLA IgG, no common characteristics were 

found. They differed in sex, type of oncological disease, treatment 
phase, study arm, and in the intensity and panel reactivity of the 
HLA alloimmunization.

On the other hand, for the majority of the patients, both Fc galac-
tosylation and sialylation levels were increased. These results are in 
agreement with previous studies showing that Fc galactosylation and 

F I G U R E  6  Association between anti-HLA class I antibody and transfusion parameters. The linear correlation between: (A) anti-HLA class 
I titer vs. number of red blood cell (RBC) and platelet (PLT) transfusions. (B) Anti-HLA class I titer vs. the corrected count increments (CCI) at 
1 and 24 h. (C) CCI at 1 h vs. CCI at 24 h. (D) The broadness of HLA class  . Immunization vs. number of transfusions (E). The broadness of HLA 
class I immunization vs. CCI (F) the broadness of HLA class I immunization vs. anti-HLA class I titer. (G) Anti-HLA class I Fc galactosylation 
vs. number of transfusions. (H) Anti-HLA class I Fc sialylation vs. number of transfusions. (I) Anti-HLA Class I Fc galactosylation vs. CCI. (J) 
Anti-HLA class I Fc sialylation vs. CCI. (K) Anti-HLA Class I titer vs. anti-HLA Class I Fc galactosylation and sialylation. (L) Anti-HLA class I Fc 
galactosylation vs. Fc sialylation. The titer of anti-HLA class I antibodies was determined using the LABScreen Mixed LSM12 Screening test 
(One Lambda). Fluorescence intensities were presented as normalized background ratios (NBG). The number of positive HLA class I beads 
was used as an indication of the broadness of the HLA class I immunization. The average anti-HLA class I titer and the maximum number 
of positive beads was used per patient. Anti-HLA class I glycosylation levels from HLA-A2, -A24, and -B7 were combined per patient. To 
evaluate the correlation between parameters, linear regression was used, from which the goodness of fit was determined by R2. The 95% 
confidence bands are indicated with dotted lines.
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sialylation are often increased with recent or active immunization, as 
seen after COVID-19 infection,27 vaccination,55,56 and alloimmuniza-
tion.28,30 Therefore, we would indeed expect to see an increase in ga-
lactosylation and sialylation after the first and subsequent exposures 
to foreign HLA after incompatible platelet transfusions. Because no 
information was available about the HLA typing of the patient or the 
given platelet products, we were not able to pinpoint when patients 
were exposed to specific HLA. However, we did observe an increase 
in these glycan traits with increased anti-HLA levels in some patients.

Increased galactosylation and sialylation are both associated with 
increased complement activation and CDC activity.29,33–37 Recently, 
we have shown that these increased levels of galactosylation and si-
alylation of anti-HLA hIgG1 mAbs increased complement deposition 
and CDC activity on human platelets.57 We and others have reported 
that galactosylation increases the antibodies' capacity to activate the 
classical complement pathway, through enhanced hexamerization, 
which consequently enhances C1q-binding and CDC activity.33,36 
Furthermore, sialylation has been found to increase complement ac-
tivation slightly further, albeit to a varying degree.29,36,37 Originally, it 
was assumed that platelet clearance, observed after transfusion, was 
primarily mediated through FcγR-mediated phagocytosis. However, 
in agreement with our previous work on HPA-1a in FNAIT,30 we ob-
served that both the levels of galactosylation and sialylation were 
positively associated with decreased platelet count increments, which 
could be an indication for the involvement of the complement sys-
tem. These results are in line with other studies that have shown that 
selecting platelet donors based on C1q-fixing solid-phase screening 
improve posttransfusion platelet increment58 and that a single injec-
tion of the complement inhibitor, eculizumab, resolved PR in four of 10 
patients in a small pilot trial.59

The PREPAReS study, from which our plasma samples originated, 
was not originally designed for analyzing the glycosylation profile of 
anti-HLA class I antibodies but for the evaluation of pathogen re-
duction on platelet transfusion products. Although no differences 
were observed in the glycosylation profile of anti-HLA antibodies 
between patients in both study arms, it was previously shown that 
pathogen reduction could affect the transfusion increments, the 
number of transfusions, and the risk for alloimmunization.39 Also, 
a small bias can have occurred during patient selection as patients 
with known alloantibodies and severe immune refractoriness were 
not included in the study. Furthermore, no information was available 
about the (in)compatibility of the platelet products and only a subset 
of the present anti-HLA antibodies could be investigated without 
exploring the possible effects of loaded peptides, know to slightly 
affect binding of some antibodies.60

In summary, our data demonstrate the diversity in Fc glycosyla-
tion profiles of anti-HLA class I antibodies between patients. On 
the one hand, afucosylated IgG1 response was induced in two of 
the 35 patients, which could steer the immune response ADCC and 
ADCP. On the other hand, upregulation of galactosylation and si-
alylation levels in these antibodies, demonstrated enhanced activa-
tion of the classical complement pathway in PR, and associate with 
elevated platelet clearance. By characterizing these differences in 

IgG1 responses, our work leads to a better understanding of im-
mune PR, which could explain the variation in both the increment of 
platelet transfusions and perhaps also the occurrence of transfusion 
reactions of HLA incompatible transfusions. However, this should 
be further explored in larger prospective studies in which the HLA 
type of the transfused platelets is known. In addition, these finding 
highlight that more research is required into the immunomodulatory 
mechanisms and pathways that induce the observed glycosylation 
changes.
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