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Introduction
Recently, next-generation sequencing data sets have been 
wildly used for genomic analysis1-4 because of technical advan-
tage of free from the probe-specific hybridization of microar-
ray. MicroRNA (miRNA) and mRNA sequencing data sets 
have been applied to various diseases including kidney renal 
cell carcinoma.5-7 Feature selection (FS) methods are essential 
for building a model such as classification and/or clustering to 
better predict biomarkers for cancer classifiers. Even though a 
number of previous studies have been attempted to suggest 
new FS methods, FS methods are still limited. In this study, we 
focused on FS methods to identify biomarkers using 5 different 
statistical methods: information gain,8,9 gain ratio,10,11 and 
symmetrical uncertainty,12 Spearman rank correlation, and 
Pearson linear correlation. Information gain, gain ratio, and 
symmetrical uncertainty used the probability of the classes, 
whereas the Spearman rank correlation and linear correlation 
methods used expression values. Technically, each statistical 
method has its own unique advantage in predicting cancer bio-
markers and a disadvantage of losing some critical information. 
To overcome the drawback of a single statistical method, we 
selected the overlapping biomarkers from 5 different statistical 
methods so that information obtained from gene expression 
was enhanced or enriched. In this study, mRNA/miRNA fea-
tures were obtained to distinguish between tumors and normal 
specimens as well as between tumor clustering specimens.

Materials and Methods
Materials

We initially downloaded miRNA and mRNA of kidney cancer 
data sets from UCSC (https://genome-cancer.ucsc.edu/) in 
June 2017, uploaded in January 2015. The miRNA was gener-
ated from an illuminaHiSeq-miRNASeq platform, whereas 

the mRNA was generated from an illuminaHiSeq-RNASeqV2 
platform: the former included 326 samples and 1046 genes, 
and the latter included 606 samples and 20 530 genes. The 
miRNA and mRNA sequencing data sets were matched by 
patient samples for both tumors and normal specimens. We 
obtained 71 normal and 255 tumor samples of both miRNA 
(with 202 genes) and mRNA (with 13 268 genes) after remov-
ing unreadable data sets.

Methods

In this study, we tested 5 different statistical methods to 
identify biomarkers for distinguishing tumors from normal 
specimens, information gain,8,9 gain ratio,10,11 symmetrical 
uncertainty,12 Spearman rank correlation, and Pearson linear 
correlation from the R package, FSselector (https://cran.r-pro-
ject.org/web/packages/FSelector/index.html).

Here, we briefly introduce the individual advantages of the 
5 statistical methods. First, information gain is derived from 
the information content of a code −∑ p pi il og( ) , where pi  is 
the probability of i .

Information gain can also denote the difference between the 
entropy of 2 classes. Entropy, H ( )x , is defined as:
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χ

where X  is a finite set.11,13 The weaker is the entropy, the 
stronger are the classifiers. Gain ratio10,11,14 represents the ratio 
of information gain to split information. Therefore, the algo-
rithm first is processed to split the samples with possible size:
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Split information is calculated by:
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n

( ) ( ) log ( ( )).= − ×
=
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Finally, gain ratio is written as:

GR X G X
SI X

( ) ( )
( )

.=

The attribute with the maximum gain ratio is selected as the 
splitting attribute. As both information gain and gain ratio are 
used as univariate attributes, the advantage of the method is its 
short computational time with independent classifiers. In addi-
tion, correlation-based methods (such as Spearman rank and 
linear correlations) are used for multivariate attributes, with the 
computational time being slower than the information gain 
with dependent features.10

The advantage of symmetric uncertainty (SU)12 is the reduc-
tion in the number of comparisons because SU x y S y x( , ) ( , )= U , 
where x yand  are independent variables.12

SU X IG X Y H X H Y( , ) [ ( | ) / ( ( ) ( ))]Y = +2 , where 
IG X( | )Y  is noted as H X H X Y( ) ( | )− , which is the infor-
mation gain of feature X , which is an independent attribute; 
and Y  describes the class. H X( )  and H Y( )  are entropy fac-
tors of features X  and Y , respectively.15

The advantage of the Spearman rank correlation method is 
that it is a nonparametric (distribution-free) statistical method 
that measures the strength of association between variables. 
The Pearson correlation method is a parametric statistical 
model computed by covariance of the 2 variables divided by the 
product of their standard deviation.15

As the normal sample size is much smaller than the tumor 
sample size, all computational processes are based on balanced 
sample sizes. In the processes, we randomly selected the tumor 
samples to match the normal samples and executed the 5 

statistical methods 50 times. Consequently, we selected a total 
of 2500 features from each method.

Results
mRNA/miRNA features of tumor vs normal tissues

We compared tumor vs normal tissues and aggregated the 
genes selected more than 40 times out of 50 runs and discov-
ered information from 4 out of the 5 methods in Table 1. In 
each method, the probability of a hypergeometric test was less 
than 5.7e−28.

Human sperm–associated antigen 4 (SPAG4) was strongly 
suggested as a potential cancer marker.18,19 Knaup et al19 dis-
covered that SPAG4 was upregulated in human renal clear cells, 
and SPAG4 knockdown reduced the growth of renal tumors in 
vitro.

Recently, Cui et al20 discovered that plasmacytoma variant 
translocation 1 (PVT1) was related to well-known cancer 
region 8q24. Many studies have revealed that non-protein cod-
ing RNA, which is roughly divided into 2 groups based on size, 
plays important roles in cancer. One involves the short noncod-
ing group that consists of less than 200 nucleotides in length, 
whereas the long noncoding group is made up of more than 
200 nucleotides.21 As most studies have focused on short non-
coding RNA, such as miRNA,22 it is well understood com-
pared with long noncoding genes. Therefore, our findings on 
the long noncoding gene PVT1 determined that it is a mean-
ingful candidate oncogene. Chromosome 1 open reading frame 
226 (C1orf226) is a protein-coding gene.

Tumor clustering

Analysis of mRNA tumor samples. Among the 255 tumor sam-
ples of mRNA-seq, we separated the samples using nonnega-
tive matrix factorization (NMF)23 methods between groups (k) 

Table 1. Feature selection using 5 statistical methods.

GENES SElECTED USING mRNA–SEq

GENE INFORMATION 
GAIN

GAIN RATIO SyMMETRIC 
UNCERTAINTy

RANKING 
CORRElATION

lINEAR 
CORRElATION

SPAG4 44 48 46 50

PVT1 41 44 50 50

C1orf226 45 48 50 48

GENES SElECTED USING miRNA–SEq wITh TARGET SPAG4 (BOlD GENES) FROM TARGETSCAN AND COMpARED wITh A pREvIOUS 
STUDy.16

hsa.mir.106b hsa.mir.210 hsa.mir.199a.2 hsa.mir.429

hsa.mir.155 hsa.mir.224 hsa.mir.199b hsa.mir.452

hsa.mir.15a hsa.mir.2516 hsa.mir.200b16 hsa.mir.58417

hsa.mir.181a.1 hsa.mir.28 hsa.mir.200c16 hsa.mir.629

hsa.mir.181b.1 hsa.mir.362 hsa.mir.2116 hsa.mir.93



Kim 3

k = 2 to k = 6. When k = 2, cophenetic coefficients are the most 
ideal, with a value of 0.92, in Figure 1. When k values are equal 
to 3, 4, 5, and 6, cophenetic coefficients are 0.77, 0.50, 0.57, and 
0.56, respectively.

A total of 255 tumor samples were separated into 2 groups 
of 119, denoted as cluster 1, and 136, denoted as cluster 2. We 
selected features using those 2 separated tumor groups with 5 
statistical methods. The selected features were UTP14C, USP8, 
and FBXL6, which were found from the 5 different methods 
with 40 appearances out of 50 runs in Table 2. Figure 2 shows 
USP8 expression levers between 2 classes, with t-test rejected 
the null hypothesis with P ≅ 2.08e−25.

Analysis of miRNA tumor samples. Among the 255 tumor sam-
ples of miRNA-seq, 8 had missing information. Therefore, we 
used a final total of 246 samples. We tested the NMF method 

from k = 2 to 6 for the cluster. The data were separated into 2 
groups, because the highest cophenetic coefficient was obtained 
as 0.93 when k was equal to 2. When k values are equal to 3, 4, 
5, and 6, cophenetic coefficients are 0.79, 0.68, 0.61, and 0.48, 
respectively. One group denoted as cluster 1 consisted of 124 
samples, whereas the other group denoted as cluster 2 consisted 
of 122 samples. The Kaplan-Meier survival analysis24 is shown 
in Figure 3 with significance (<<.001) using IBM SPSS 
Statistics 20.

A total of 27 miRNA genes, presented in Table 3, were 
shown to be differentially expressed between the 2 clusters 
using the 5 statistical methods with 50 runs for each method. 
The selected genes were more robust than those of the single 
method because all the genes were selected in all iterations and 
methods.

In addition, Table 3 includes miRNAs’ target mRNA genes 
that are demonstrated in Table 2 using TargetScan (http://
www.targetscan.org).

Analysis using common samples of mRNA and miRNA. As the 
tumor samples contained different miRNA- and mRNA-seq-
based clusters, we selected the common samples from each of 
the 2 groups in Figure 4 (67 and 76 common samples) to iden-
tify enhanced biomarkers.

Table 4 presents mRNA genes selected from more than 40 
appearances out of 50 runs for all 5 statistical methods compar-
ing cluster 1 with cluster 2. All 5 selected genes rejected the null 
hypothesis based on t-test with P-values, and presented in sup-
porting file. We also selected 30 miRNA genes and described 
the target mRNA from TargetScan with values less than the 
Pearson coefficient. Interestingly, LIFR is underexpressed in 

Figure 1. (A) Cophenetic coefficients of rank 2 to rank 6. (B) NMF clustering with k = 2. NMF indicates negative matrix factorization.

Table 2. Genes selected from 5 statistical methods using based on 2 groups.

GENE INFORMATION 
GAIN

GAIN 
RATIO

SyMMETRIC 
UNCERTAINTy

RANKING 
CORRElATION

lINEAR 
CORRElATION

UTP14C 50 50 50 50 50

USP8 47 48 50 50 50

FBXL6 50 45 49 50 50

Figure 2. Comparison of expression levels of USP8 between cluster 1 

(red dots) and cluster 2 (blue dots).

http://www.targetscan.org
http://www.targetscan.org
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Figure 3. NMF clustering with k = 2 to 6 (A-E) and (F) Kaplan-Meier survival analysis of tumor cluster used by miRNA-seq with k = 2. NMF indicates 

negative matrix factorization.

Table 3. Genes selected from cluster 1 vs cluster 2 used by miRNA-
seq, and their target mRNAs were identified from TargetScan.

UTP14C USP8 FBXL6

hsa.mir.101.1 ○  

hsa.mir.1301  

hsa.mir.130b ○  

hsa.mir.142 ○  

hsa.mir.146b ○ ○

hsa.mir.155  

hsa.mir.16.1  

hsa.mir.16.2 ○ ○

hsa.mir.191 ○ ○

hsa.mir.193b ○  

hsa.mir.29b.1 ○ ○

hsa.mir.29b.2 ○  

hsa.mir.301a ○  

UTP14C USP8 FBXL6

hsa.mir.331 ○ ○ ○

hsa.mir.339 ○  

hsa.mir.342 ○  

hsa.mir.34a ○  

hsa.mir.3607 ○ ○ ○

hsa.mir.3647 ○ ○

hsa.mir.3653 ○ ○

hsa.mir.425 ○ ○ ○

hsa.mir.484 ○  

hsa.mir.590 ○ ○ ○

hsa.mir.671 ○ ○

hsa.mir.766  

hsa.mir.9.1 ○  

hsa.mir.9.2 ○  
(Continued)

Table 3. (Continued)
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Table 4. Genes selected from common samples of both mRNA- and miRNA-seq data sets with pearson correlation P-values (<−.2).

GENES SElECTED FROM mRNA-SEq

GENE INFORMATION 
GAIN

GAIN RATIO SyMMETRIC 
UNCERTAINTy

RANKING 
CORRElATION

lINEAR 
CORRElATION

P-vAlUE

TAF10 50 49 50 50 50 1.4e−30

NUDT1 50 50 50 50 50 2.2e−28

B3GNTL1 44 47 50 50 50 4.1e−27

LIFR 48 50 50 47 50 8.0e−29

EIF5A 50 50 50 50 50 1.0e−25

GENES SElECTED FROM miRNA-SEq wITh ThEIR TARGET MRNAS

hsa.mir.101.1 hsa.mir.142 hsa.mir.18a
−.242 (NUDT1)

hsa.mir.331
−.205 (TAF10)

hsa.mir.365.1
−.201 (B3GNT)

hsa.mir.590

hsa.mir.101.2 hsa.mir.146b hsa.mir.193b hsa.mir.339
−.2014 (TAF10)

hsa.mir.365.2 hsa.mir.625
−.2532 (TAF10)

hsa.mir.1301 hsa.mir.155 hsa.mir.21
−.224 (NUT1)
−.256 (B3GNT)

hsa.mir.342
−.288 (B3GNT)
−.306 (EIF5A)

hsa.mir.425 hsa.mir.671
−.255 (TAF10)
−.210 (NUDT1)
−.250 (B3GNT)
−.251 (EIF5A)

hsa.mir.130b
−.216 (TAF10)
−.229 (EIF5A)

hsa.mir.16.1 hsa.mir.29b.1
−.225 (NUDT1)

hsa.mir.34a hsa.mir.454
−.305 (TAF10)
−.227 (NUDT1)
−.274 (B3GNT)
−.205 (EIF5A)

hsa.mir.9.1

hsa.mir.139 hsa.mir.16.2 hsa.mir.29b.2
−.217 (NUDT1)

hsa.mir.3647 hsa.mir.484 hsa.mir.9.2

Abbreviation: eukaryotic translation initiation factor 5A.

Figure 5. (A) Kaplan-Meier survival analysis used by common samples of both miRNA- and mRNA-seq. (B) plot for inhibition between miRNA-342 and 

EIF5A (eukaryotic translation initiation factor 5A) used by cluster 1.

Figure 4. Overlapping samples between miRNA and mRNA clusters.

cluster 1; otherwise, TAF10, NUDT1, B3GNTL1, and eukary-
otic translation initiation factor 5A (EIF5A) are overexpressed 
in cluster 1.

Figure 5 shows Kaplan-Meier survival analysis, which inter-
preted that the mortality of patients in cluster 1 occurred at a 
much faster rate than patients in cluster 2. We calculated the 
Pearson correlation coefficient of selected miRNA and mRNA 
from cluster 1. We only considered correlation values less than 
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−.2 because the miRNA inhibited its target mRNA, as pre-
sented in the Table 4.

We uncovered pairs of miRNA and mRNA that had sig-
nificantly different relations compared with the 2 clusters. We 
present a graph of hsa.mir.342 and its target gene EIF5A, dis-
covered by calculating the Pearson correlation (−.3058) used by 
cluster 1 data sets.

Conclusions
In this study, we tested 5 different statistical methods for select-
ing enhanced significant cancer biomarkers using miRNA and 
mRNA sequence data sets of kidney cancer. We presented 3 
mRNA and 27 miRNA markers for predicting cancer compared 
with the normal samples. In addition, we clustered the kidney 
tumors samples using miRNA and mRNA data sets indepen-
dently and obtained 2 separate groups from both miRNAs and 
mRNAs. After matching the cluster samples, a total of 67 sam-
ples were contained in one group called cluster 1, and 76 samples 
were contained in cluster 2. According to the Kaplan-Meier 
analysis, the subtypes of kidney cancer were strongly related to 
mortality. We suggest the 5 strong candidate genes TAF10, 
NUDT1, B3GNTL1, LIFR, and EIF5A and 30 miRNAs that 
are differentially expressed between 2 subtypes in tumor samples 
related to mortality. Our enhanced methods discovered B3GNT1, 
whereas the rest of them were presented in https://www.protein-
atlas.org.25 In addition, we discovered 21 pairs of miRNAs and 
their target mRNAs including miR-342 and its target EIF5A.
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