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Key Points

• ADAP-, ARP2/3-,
WASp-, and PFN1-
deficient MKs show
reduced adhesion to
collagen.

• β1-integrin activation
and F-actin
organization is
impaired in ADAP-,
PFN1-, and ARPC2-
deficient MKs.
Mature bone marrow (BM) megakaryocytes (MKs) produce platelets by extending

proplatelets into sinusoidal blood vessels. Defects in this process can lead to

thrombocytopenia and increased risk of bleeding. Mice lacking the actin-regulatory

proteins Profilin 1 (PFN1), Wiskott–Aldrich Syndrome protein (WASp), Actin Related Protein

2/3 complex (Arp2/3), or adhesion and degranulation-promoting adapter protein (ADAP)

display thrombocytopenia and ectopic release of (pro)platelet-like particles into the BM

compartment, pointing to an important axis of actin-mediated directional proplatelet

formation. The mechanism underlying ectopic release in these mice is still not completely

understood. However, we hypothesized that similar functional defects account for this

observation. We analyzed WASp-, ADAP-, PFN1-, and ARPC2-knockout mice to determine

the role of actin reorganization and integrin activation in directional proplatelet formation.

ADAP-, ARPC2-, and PFN1-deficient MKs displayed reduced adhesion to collagen, defective

F-actin organization, and diminished β1-integrin activation. WASp-deficient MKs showed

the strongest reduction in the adhesion assay of collagen and altered F-actin organization

with reduced podosome formation. Our results indicate that ADAP, PFN1, WASp, and ARP2/

3 are part of the same pathway that regulates polarization processes in MKs and directional

proplatelet formation into BM sinusoids.
Introduction

Megakaryocytes (MKs) are the largest cells in the bone marrow (BM) and are responsible for constant
platelet production into the blood stream by a process known as proplatelet formation.1 Inherited
thrombocytopenias are a heterogeneous group of disorders characterized by a sustained reduction in
platelet count and are associated with increased bleeding risk.2 Underlying mutations responsible for
thrombocytopenia are found in genes encoding proteins important for MK differentiation, maturation,
proplatelet formation, platelet release, or platelet clearance.3,4 Cytoskeletal (-regulatory) proteins are
particularly important for the terminal stages of platelet biogenesis.5 Microthrombocytopenias (smaller
and fewer platelets in the circulation) in humans are rare and predominantly associated with mutations
in genes encoding for direct or indirect interaction partners of the F-actin cytoskeleton (WAS,6

ARPC1B7, ADAP8,9). In WASp-deficient as well as MK-/platelet-specific ARPC2, ADAP, and PFN1
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deficient mice it was shown that the mutant MKs release (pro)platelet-
like particles ((pro)PLPs) ectopically into the BM compartment, which
contributes to the low platelet count in the circulation.10-13 Little is
known about the regulatory processes in MKs that accomplish
directional proplatelet formation into the BM sinusoids. We recently
showed that impaired F-actin organization and β1-integrin activation in
ADAP-deficient MKs contribute to ectopic release of (pro)PLPs and
suggested that proper adhesion of MKs to extracellular matrices
(especially collagen I) is important for directional proplatelet forma-
tion.10 In this comparative study, we demonstrated that the ectopic
release of (pro)PLPs in ADAP-, PFN1-, WASp-, and ARPC2-deficient
mice is comparable. In all tested mutant mice, we found an increased
number of (pro)PLPs in the BM, a profound and selective adhesion
defect of MKs on Horm collagen, and altered F-actin organization.
Furthermore, β1-integrin activation was defective in ADAP-, PFN1-,
and ARP2/3-deficient MKs. We speculate that ADAP, PFN1, WASp,
and ARP2/3 are part of the same pathway that regulates polarization
processes in MKs and directional proplatelet formation into the BM
sinusoids, as described for the formation of the immunological syn-
apse in T-cells.14

Methods

Mice

Conditional Adapfl/fl,10 Pfn1fl/fl13 or Arpc2fl/fl12 mice were inter-
crossed with mice carrying the Cre-recombinase under the platelet
factor 4 promoter.15 ADAP- and WASp-deficient were described
previously.16,17 Animal studies were approved by the district gov-
ernment of Lower Franconia (Bezirksregierung Unterfranken).

Data analysis

Results are mean ± standard deviation. Differences between
control and knockout samples were statistically analyzed using
the Mann-Whitney U test or 2-way analysis of variance test.
P-values < .05 were considered as statistically significant: *P <
.05; **P < .01; ***P < .001. Results with a P-value > .05 were
considered as not significant. Adjustments of brightness/contrast
of images (cryosections) as well as analysis of mean fluorescence
intensities and number of podosomes-like structures/area of
spread MKs of unmodified images were performed using
ImageJ. The adjustments were applied linearly to the entire image.
Flow cytometry data were analyzed using FlowJo software.

MK and (pro)PLPs analysis using flow cytometry, MK cultivation,
MK adhesion assay, determination of α2 expression in MKs, and
immunofluorescence are described in detail in the supplemental
Methods.

Results and discussion

To investigate the extent and pattern of the ectopic release of (pro)
PLPs in the BM of ADAP-, PFN1-, WASP-, and ARP2/3-deficient
mice, we compared intact BM by cryosectioning and subsequent
staining of MKs/(pro)platelets and sinusoids. Intact mature MKs,
proplatelets, and PLPs were found in the BM of all the mutant
mouse lines (Figure 1A). The appearance of ectopically released
(pro)PLPs in the vessels and BM cavity was comparable based on
BM cryosections. In addition, the abundance of (pro)PLPs in the
BM of all knockout mice was significantly higher than that in the
control BM (Figure 1Bi-ii, supplemental Figure 1Ai-v), whereas
6136 SPINDLER et al
the MK number was not altered (Figure 1Biii, supplemental
Figure 1Bi-v). These data suggest that common mechanisms
may be responsible for ectopic release in those knockout mice.

The capacity to form proplatelets is inhibited by collagen I18,19 and it
was suggested that the spatial expression pattern of collagen types I
and IV in the BM cavity and at sinusoids is a mechanism for how
proplatelet formation is orchestrated across the endothelial bar-
rier.20 We found an activation defect for β1-integrin in ADAP-
deficient MKs on Horm collagen and speculated that it contributes
to the observed phenotype of ectopically released (pro)PLPs
in vivo.10 To test whether PFN1-, WASp-, and ARP2/3-deficient
MKs also display an integrin defect on Horm collagen we seeded
cultured control and mutant MKs on different extracellular matrix
(ECM) proteins and calculated the relative number of MKs, which
were able to establish a firm adhesion to the ECM. For all tested
knockout MKs, we found a strong adhesion defect onHorm collagen
compared with their respective control cells. However, adhesion to
fibronectin was unaltered (Figure 1Ci,iii, supplemental Figure 2A-D).
Interestingly, only PFN1-deficient MKs displayed an adhesion defect
on fibrinogen (Figure 1Cii, supplemental Figure 2B).

Because we observed impaired adhesion of mutant MKs from the
4 mouse lines on Horm collagen, we were interested in investi-
gating this defect in more detail. To analyze integrin activation in
MKs, we stained active β1-integrin and F-actin in MKs spread on
Horm collagen (Figure 2A). Measurements of the mean fluores-
cence intensity of the fluorophore-labeled antibody 9EG7-FITC
(recognizing active β1-integrin) revealed a significantly reduced
signal in ADAP-, PFN1-, and ARP2/3-deficient MKs, whereas
WASp-deficient MKs displayed normal β1-integrin activation
compared with the control (Figure 2B, supplemental Figure 3Ai-iv).
This was surprising, because WASp-deficient MKs showed the
strongest adhesion defects on Horm collagen. To exclude the
reduced expression of α2β1 integrin in cultured MKs, we analyzed
the cells via flow cytometry and detected overall comparable
expression profiles (supplemental Figure 4A-D, expression of α2
integrin). In addition, the expression of α2 and/or β1 integrin is not
or only mildly affected in ADAP-, PFN1-, and ARP2/3–deficient
platelets.10,12,13 A limitation of in vitro MK culture experiments is
that although enriched for mature MKs, the MK culture is not
synchronized. Therefore, we speculate that even though the MKs
are mature, only a fraction of WASp-deficient MKs can activate the
β1-integrin and adhere and spread on Horm collagen. Similar
results were obtained when we analyzed the F-actin content in the
lowest optical plane (Figure 2C, supplemental Figure 3Bi-iv).
Podosomes are actin-based structures involved in cell adhesion,
migration, and ECM degradation. It has been proposed that
podosome formation is important for transendothelial proplatelet
formation and the delivery of platelets into the bloodstream.21

Recently, a study showed that MKs use podosome-like structures
(PLS) to collectively penetrate the endothelium of BM sinusoids
in vivo.22 In support of this, cultured WASp-, PFN1-, ARP2/3-, and
ADAP-deficient MKs displayed a strong defect in the formation of
F-actin structures on Horm collagen reminiscent of podosomes
(further referred to as PLS; Figure 2A,D and supplemental
Figure 3Ci-iv and Spindler et al,10 Sabri et al,11 Paul et al,12 and
Bender et al13). These data suggest a possible link between
impaired PLS formation in vitro and platelet production defects,
characterized by the ectopic release of (pro)PLPs into the BM
compartment in vivo.
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Figure 1. Reduced adhesion of BM-derived ADAP-, PFN1-, WASp-, and ARP2/3-deficient MKs on ECM proteins. (A) Cryosections of BM from control (Adapfl/fl),

ADAP-, PFN1-, WASp-, and ARP2/3-deficient mice stained for GPIX (cyan) to visualize MKs, and (pro)PLPs and CD105 (red) to identify sinusoids. The images from the bottom

panel are magnified from the regions indicated in the upper panel. Scale bars represent 30 μm (upper panel) and 10 μm (lower panel). (Bi) Gating strategy for the detection of

(pro)PLPs and MKs in BM samples based on the size and expression of αIIbβ3. Shown is the dot plot of a Pfn1fl/fl-PF4-cre BM sample and the corresponding control (Pfn1fl/fl).

(Bii) Quantification of (pro)PLPs in the BM as percentage of the control mean. The percentage of (pro)PLPs in the BM was calculated and normalized to the mean of their

respective control MKs. The controls are indicated by dashed lines. (Biii) Quantification of MKs in the BM as percentage of the control mean. The percentage of MKs in the BM

was calculated and normalized against the mean of the respective control MKs. The controls are indicated by dashed line. Each data point represents a single mouse. N = 3-9. (C)

Normalized adhesion assay of in vitro cultured BM-derived MKs from the respective controls, ADAP-, PFN1-, WASp-, and ARP2/3-deficient mice on Horm collagen (Ci), fibrinogen

(Cii), and fibronectin (Ciii). The percentage of adherent mutant MKs after 3.5 hours incubation was calculated and normalized against the mean of their respective control MKs.

Controls are indicated with a dashed line. Each dot represents a technical replicate. The experiment was performed at least twice.
Platelet formation by MKs requires dynamic changes in the actin
cytoskeleton. We and others10-13 observed the ectopic release of
(pro)PLPs in mice lacking 1 of the 4 actin-regulatory proteins
(ADAP, PFN1, WASp, and ARP2/3). Furthermore, we found
defective PLS formation on collagen in MKs from all 4 mutant
mouse lines. Our data indicate that similar mechanisms account for
ectopic (pro)PLPs release in these 4 knockout mouse models. One
27 DECEMBER 2022 • VOLUME 6, NUMBER 24
explanation for the underlying mechanisms of ectopic (pro)PLPs
release might be that podosome-controlled proplatelet extension
into the sinusoid and, at the same time, the prevention of propla-
telet formation in other areas of the cell are impaired. Another
possible explanation could be deduced from the data obtained
from the T cells. Interestingly, in T-cells, ADAP is phosphorylated
upon T-cell receptor stimulation and is present in a complex with
REGULATION OF DIRECTIONAL PROPLATELET FORMATION 6137
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Figure 2. Cultured spread MKs from mutant mice exhibit reduced PLS formation, F-actin content, and β1-integrin activation. (A) Representative confocal images of

cultured BM-derived MKs from control (Adapfl/fl), ADAP-, PFN1-, WASp-, and ARP2/3-deficient mice spread on Horm collagen and stained for F-actin (red), the active form

of β1-integrin (cyan), and the nucleus (blue). Scale bars represent 50 μm (left) and 20 μm (right). (B) Mean fluorescence intensity of active β1-integrin, (C) F-actin, and (D) density

of PLS in the lowest optical section of spread MKs on Horm collagen, normalized to their respective control cells. Controls are indicated by a dashed line (B-D). (B-D) 35 to

59 MKs per genotype were analyzed. The data points represent individual MKs.
SLP-76, NCK, and VAV1 to regulate the F-actin cytoskeleton via
PFN1, WASp, and ARP2/3. These events lead to the formation of
a polarized structure called an immunological synapse, which
serves as a platform for the exchange of information between
antigen-presenting cells and T-cells.14,23 We speculate that similar
transient protein complexes act in concert in MKs, linking signaling
to the rearrangement of the actin cytoskeleton to facilitate trans-
endothelial proplatelet formation. However, considering the small
number of MKs in the BM and the formation of proplatelets, the
identification of such transient protein complexes is challenging
and requires further investigation.
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