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Abstract: To promote the application of entropy concepts in uncertainty analysis of water resources
complex system, a quantitative evaluation and obstacle factor diagnosis model of agricultural drought
disaster risk was proposed using connection number and information entropy. The results applied to
Suzhou City showed that the agricultural drought disaster risks in Suzhou during 2007–2017 were all
in middle-risk status, while it presented a decreasing trend from 2010. The information entropy values
of the difference degree item bI were markedly lower than those of the difference degree b, indicating
that bI provided more information in the evaluation process. Furthermore, the status of drought
damage sensitivity and drought hazard were improved significantly. Nevertheless, high exposure
to drought and weak drought resistance capacity seriously impeded the reduction of risk. Thus,
the key to decreasing risk was to maintain the level of damage sensitivity, while the difficulties were
to reduce exposure and enhance resistance. In addition, the percentage of the agricultural population,
population density, and percentage of effective irrigation area were the main obstacle factors of risk
and also the key points of risk control in Suzhou. In short, the results suggest that the evaluation and
diagnosis method is effective and conducive to regional drought disaster risk management.

Keywords: drought disaster risk evaluation; obstacle factor diagnosis; information entropy; evaluation
sample information; connection number; structural water resources science; Suzhou City

1. Introduction

Food security is a hot topic that arouses constant attention from the international
community [1,2]. With the increasing global climate change and the impact of human activ-
ities, the frequency, intensity, and scope of influence of drought increase significantly; thus,
the drought disaster risk continues to increase. Drought disaster has seriously threatened
food security in many countries and regions [3,4]. China is located in the southeast of
Eurasia, characterized by a remarkable monsoon climate, uneven spatial and temporal
distribution of precipitation, and frequent agricultural drought disasters [5–7]. According
to the statistics, the annual average drought-affected area in China from 2006 to 2020 is
1.39 × 107 hectares, causing grain losses of 2.14 × 1010 kg and direct economic losses of
RMB 8.19 × 109 billion [8]. Agricultural drought disaster has become one of the severe chal-
lenges facing food security and rural revitalization in China [9,10]. Since the 21st century,
with the transformation from passive drought relief and emergency management to active
drought relief and risk management, drought disaster risk management has gradually
emerged [11–13]. Quantitative evaluation and obstacle factor diagnosis of drought disaster
risks are the core contents and key points of risk management [14]. Therefore, the accu-
rate evaluation and diagnosis of agricultural drought disaster risk in China’s main grain
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production areas are of great significance for improving the human ability to cope with
droughts and providing guidance for regional drought disaster risk management [15,16].

Drought disaster risk evaluation is a hot spot in the field of natural disaster research.
The existing methods mainly include three kinds [17]: (1) A probability statistics-based
method. First, the great work of Kolmogorov [18] laid the foundation of probability and
stochastics, which realized the axiomatization of probability theory. Koutsoyiannis et al. [19]
pointed out that modern statistical and quantum physics promoted a new understanding
and modeling of physical processes, such as drought disaster risk formation. Hao et al. [20]
built a drought disaster loss frequency analysis model based on historical data and informa-
tion diffusion theory and analyzed the agricultural drought disaster risk. Koutsoyiannis [21]
proposed a general methodology for more theoretically justified stochastic processes, which
provided an important thought for drought disaster risk evaluation from a probability
statistics aspect. Xie et al. [22] used information diffusion and information matrix to an-
alyze the probability and distribution of agricultural drought disaster risk. Yu et al. [23]
established a natural disaster risk evaluation model composed of an evaluation index,
relative loss calculation, and information diffusion. (2) A system-theory-based method.
Kim et al. [24] built drought hazard index and vulnerability index, respectively, and mul-
tiplied these two to obtain the drought disaster risk index. Luo et al. [25] established a
drought disaster risk evaluation system from four aspects and proposed a panel-data-based
grey cloud clustering evaluation model. Hoque et al. [26] presented a comprehensive
evaluation method for agricultural drought disaster risk by fuzzy superposition of all risk
elements. (3) A formation cause-based method. Zhang et al. [27] used the CERES model
to fit the relationship between the physical vulnerability curve of crops and the drought
hazard index and established a dynamic evaluation model for drought disaster risk of
maize. Wang et al. [28] adopted the APSIM model to establish the relationship between
the frequency of drought intensity and the percentage of crop yield loss and evaluated the
drought disaster risk of spring maize. Yin et al. [29] used the GEPIC-Vulnerability–Risk
model to assess the occurrence probability and likelihood of yield losses from drought
and conducted a quantitative evaluation of drought disaster risk for global-scale maize.
However, considering the connection and evolution among drought disaster risk elements,
as well as the feasibility of evaluation principle, data, and model, the current most effective
and most widely used method for quantitative evaluation of drought disaster risk is to
select representative evaluation indexes from drought disaster risk system, and adopt a
system comprehensive evaluation thought [17,30].

Under the combined influence of natural conditions and social economy, the drought
disaster risk system is a typical complex system [31]. At present, the multi-index system
comprehensive evaluation by establishing an evaluation system and model is still an effec-
tive drought disaster risk evaluation method [17]. However, most models fail to take the
uncertainty between the evaluation sample and evaluation criteria into full consideration,
resulting in the deviation of evaluation results. Set pair analysis is a new quantitative
analysis method of uncertainty [32]. The identical–different–inverse relation structure
of the connection number for the set pair composed of two sets, i.e., evaluation sample
and evaluation criteria, can be used to fully reflect the certainty and uncertainty between
these two sets, which has been widely applied to natural disasters risk evaluation [33].
Wang et al. [34] proposed a set pair analysis method for the evaluation of flood damage
risk. Zou et al. [35] adopted a set pair analysis-variable fuzzy set model to evaluate flood
risk. Chen et al. [36] used set pair analysis and connection entropy to conduct a quantitative
evaluation and diagnosis of agricultural drought disaster resistance capacity. Ge et al. [37]
conducted an environmental impact risk evaluation of dam break based on set pair analysis
and cloud model. Lyu et al. [38] adopted interval fuzzy numbers and set pair analysis to
establish an evaluation model for urban water quality risk. Qu et al. [39] coupled unascer-
tained measurement evaluation and set pair analysis to assess the risk of limestone karst
water pouring out from the floor. Nevertheless, when set pair analysis is adopted for
comprehensive system evaluation, most studies only reflect the evaluation results by the
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components of the connection number; they cannot determine the complete connection
number value, which may cause information loss and restrict the development of set pair
analysis [40]. What is more, the calculation of the difference degree coefficient is the key
to determining the connection number value. In addition, only a few studies have been
conducted on the quantitative evaluation of agricultural drought disaster risk in grain
production areas, let alone the diagnosis of risk obstacle factors based on set pair analysis.

As an important part of the connection number, the difference degree coefficient is used
for describing the uncertainty of set pair at a micro level, which has a significant impact
on research results [32]. Some scholars have conducted studies on the calculation of the
difference degree coefficient. Li et al. [41] derived the difference degree coefficient from the
target value of the connection number. Tang [42] proposed an expert estimation approach
of the difference degree coefficient. Pan et al. [43] built a trapezoidal fuzzy number of the
difference degree coefficient and determined its value range within a confidence interval.
Li et al. [40] adopted a full and partial connection number to distribute the difference
degree coefficient. However, most of the calculation methods of the difference degree
coefficient are rough, and they can only obtain the approximate value or interval range,
which may cause a deviation between the research result and the actual situation. Moreover,
the difference degree coefficient should be calculated fully combined with the information
provided by evaluation samples. Therefore, a reasonable method for determining the
difference degree coefficient is urgently needed.

What is more, some key studies have been completed, which provide effective
thoughts for drought disaster risk evaluation and diagnosis. Wang et al. [44] assessed
the agricultural drought disaster risk based on the set pair analysis theory. Chen et al. [33]
conducted the risk assessment of agricultural drought disasters using the improved con-
nection number and entropy information diffusion. Jin et al. [30] adopted semipartial
subtraction set pair potential of ternary connection number to evaluate the drought disaster
risk and identify its influencing factors. However, the connection number value method
combined with the dynamic difference degree coefficient has not been used in the field of
drought disaster risk.

According to the analysis of the characteristics and problems of agricultural drought
disaster risk in China’s main grain production areas, an agricultural drought disaster risk
system is composed of four subsystems, i.e., drought hazard, drought damage sensitivity,
exposure to drought, and drought resistance, as well as the evaluation grade criteria, were
established, from the perspective of natural disaster risk system structure. Based on set pair
analysis theory, a calculation method of dynamic difference degree coefficient varying with
evaluation sample was used to determine the connection number value. In addition, the
information provided by connection number components and connection number value
in the evaluation process were compared according to the information entropy method.
Then a quantitative evaluation and diagnosis model of agricultural drought disaster risk
was established to assess the risk level and diagnose its key obstacle factors. Furthermore,
an empirical study was conducted in Suzhou City of Anhui Province, China, to provide an
important scientific basis for regional drought disaster risk regulation and control.

2. Materials and Methods
2.1. Agricultural Drought Disaster Risk Evaluation and Diagnosis Model Based on Connection
Number and Information Entropy

The establishment of the agricultural drought disaster risk evaluation and obstacle
factor diagnosis model included the following steps, as shown in Figure 1. Firstly, an agri-
cultural drought disaster risk system composed of four subsystems was built and based
on connection number and its adjoint function, the similarity degree, difference degree,
and opposition degree between evaluation index value and evaluation grade criteria were
calculated. Then, combined with the proposed dynamic difference degree coefficient, the
connection number value of each evaluation index was obtained. In addition, information
entropy theory was used to compare the information provided by connection number value
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and connection number components in evaluation process. Finally, according to the weights
of subsystem and evaluation index obtained by improved fuzzy analytic hierarchy process
method, a quantitative evaluation and diagnosis model of agricultural drought disaster
risk was established and applied to Suzhou City. Meanwhile, the results of semipartial
subtraction set pair potential and level eigenvalue method were compared.
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Figure 1. The establishment process of agricultural drought disaster risk evaluation and obstacle
factor diagnosis model based on connection number and information entropy.

(1) According to the structure analysis and function analysis of agricultural drought
disaster risk system composed of drought hazard, drought damage sensitivity, exposure to
drought, and drought resistance [17], as well as the practical investigation, expert consul-
tation, and reference statistics [30,44] in study area, an evaluation system of agricultural
drought disaster risk {xkj|k = 1, 2, 3; j = 1, 2, . . . , nk} was established, and the corresponding
sample set of index was described as {xikj|i = 1, 2, . . . , m; k = 1, 2, 3; j = 1, 2, . . . , nk}.
Among them, xikj is the value of index j in subsystem k of evaluation sample i, m is the
number of samples, k = 1, 2, 3, 4, which represents four subsystems, i.e., drought hazard,
drought damage sensitivity, exposure to drought, and drought resistance, nk is the number
of indexes in subsystem k. Without loss of generality, in this study, the drought disaster
risk was divided into three grades, and the evaluation grade criteria were described as
{sgkj|g = 1, 2, 3; k = 1,2, 3, 4; j = 1, 2, . . . , nk}, where g = 1, 2, 3, representing low, middle,
and high risk, respectively.
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(2) The improved fuzzy analytic hierarchy process based on accelerating genetic
algorithm (AGA-FAHP) [45] was adopted to calculate the weights of each subsystem and
each evaluation index {wkj|k = 1, 2, 3, 4; j = 1, 2, . . . , nk} as follows:

For a given agricultural drought disaster risk subsystem k, experts were invited to
compare the importance of any two indexes in this subsystem for drought disaster risk
so as to obtain the fuzzy complementary judgment matrix Ak = (akjl)nk×nk. AGA-FAHP
was used to check and correct the consistency of Ak and calculate the weight of each index,
i.e., wkj. Ak needed to be corrected if its consistency was unsatisfactory. Assume that the
corrected matrix of Ak was Bk = (bkjl)nk×nk. For simplicity, the sorting weight of elements
in Bk was still described as {wkj|k = 1, 2, 3, 4; j = 1, 2, . . . , nk}. Then, when the following
formula [45]

minCIC(nk) =
nk
∑

j=1

nk
∑

l=1

∣∣∣bk
jl − ak

jl

∣∣∣/n2
k+

nk
∑

j=1

nk
∑

l=1

∣∣∣0.5(nk − 1)
(

wkj − wkl

)
+ 0.5− bk

jl

∣∣∣/n2
k ,

s.t.


bk

jj = 0.5

1− bk
lj = bk

jl ∈
[

ak
jl − d, ak

jl + d
]
∩ [0, 1], k = 1, 2, 3, 4; j = 1, 2, . . . , nk; l = j + 1, j + 2, . . . , nk

nk
∑

j=1
wkj = 1.0, wkj ∈ [0, 1]

(1)

reached the minimum value, Bk was called the optimal fuzzy consistency judgment matrix
of Ak, where CIC(nk) is the consistency index coefficient, d is a non-negative parameter
within [0, 0.5]. Accelerating genetic algorithm (AGA) was a universal global optimization
method, it was effective to solve the complex optimization problem in Formula (1). When
CIC(nk) was smaller than a critical value, it indicated that Ak had satisfactory consistency.
Accordingly, the sorting weight of each evaluation index calculated was acceptable; oth-
erwise, d needed to be adjusted until Ak had satisfactory consistency. By a large number
of numerical simulations and referring to related research [45], this study considered
that when CIC was less than 0.20, the consistency of judgment matrix was regarded as
satisfactory, and the obtained weight of each index was reasonable and acceptable.

(3) Set pair analysis (SPA) was a quantitative analysis theory of uncertainty proposed
by Zhao Keqin in 1989 [32]. The foundation of SPA was the connection number u which
was composed of two sets with a certain relation. Furthermore, the components of the
connection number u, i.e., similarity degree a, difference degree b, and opposition degree c,
were used to quantitatively describe the certainty and uncertainty of set pair from three
aspects, i.e., identity, difference, and inverse, and a + b + c = 1. Specifically, SPA divided
the certainty of set pair into identical status and inverse status, which were quantitatively
described by a and c, respectively. Meanwhile, SPA divided the uncertainty of set pair
between identical status and inverse status into the uncertainty at a macro level, measured
by b, and that at a micro level, measured by difference degree coefficient I. Among them,
the most commonly used ternary connection number u is expressed as follows [32]:

u = a + bI + cJ (2)

where I is the difference degree coefficient, whose value varies with the relation type of set
pair. The set pair in this study belonged to positive–negative relation; the value of I ranged
within [−1, 1]. J is the opposition degree coefficient and took −1 in this study [32].

Based on SPA and the practical problem of agricultural drought disaster risk evalua-
tion, the evaluation index value and evaluation grade criteria constituted a set pair. The
connection number of index was calculated according to the proximity between index value
and grade criteria. Specifically, for two sets of evaluation index sample value of agricultural
drought disaster risk xikj and evaluation grade criteria sgkj (g = 1, 2, 3), the components of
ternary connection number for index, i.e., ugikj are as follows [46]:
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u1ikj =


1, s0kj ≤ xikj ≤ s1kj for positive index, s0kj ≥ xikj ≥ s1kj for negative index

1− 2
(

xikj − s1kj

)
/
(

s2kj − s1kj

)
, s1kj < xikj ≤ s2kj for positive index, s1kj > xikj ≥ s2kj for negative index

−1, s2kj < xikj ≤ s3kj for positive index, s2kj > xikj ≥ s3kj for negative index
(3)

u2ikj =


1− 2

(
s1kj − xikj

)
/
(

s1kj − s0kj

)
, s0kj ≤ xikj ≤ s1kj for positive index, s0kj ≥ xikj ≥ s1kj for negative index

1, s1kj < xikj ≤ s2kj for positive index, s1kj > xikj ≥ s2kj for negative index

1− 2
(

xikj − s2kj

)
/
(

s3kj − s2kj

)
, s2kj < xikj ≤ s3kj for positive index, s2kj > xikj ≥ s3kj for negative index

(4)

u3ikj =


−1, s0kj ≤ xikj ≤ s1kj for positive index, s0kj ≥ xikj ≥ s1kj for negative index

1− 2
(

s2kj − xikj

)
/
(

s2kj − s1kj

)
, s1kj < xikj ≤ s2kj for positive index, s1kj > xikj ≥ s2kj for negative index

1, s2kj < xikj ≤ s3kj for positive index, s2kj > xikj ≥ s3kj for negative index
(5)

where the larger the value of positive (negative) index, the higher (lower) the evaluation
grade. s1kj and s2kj are the critical value of grade 1 and grade 2, and that of grade 2 and
grade 3 for index j in subsystem k, respectively, while s0kj and s3kj are other critical values
of grade 1 and grade 3, respectively.

For the components of ternary connection number in Formulas (3)–(5), i.e., ugikj,
depending on whether the evaluation index sample value xikj fell in the same, adjacent,
or separated interval of evaluation grade g, and took the value of 1, within [−1, 1], or −1,
respectively. Therefore, ugikj can be regarded as a relative difference degree function of
variable fuzzy set for the proximity between evaluation index value and evaluation grade
criteria. The corresponding relative membership degree is as follows [45]:

a∗ikj = 0.5 + 0.5u1ikj, b∗ikj = 0.5 + 0.5u2ikj, c∗ikj = 0.5 + 0.5u3ikj, i = 1, 2, . . . , m; k = 1, 2, 3, 4; j = 1, 2, . . . , nk (6)

By the normalization of Formula (6), the components of ternary connection number
for evaluation index of agricultural drought disaster risk can be finally obtained [33]:

aikj = a∗ikj/
(

a∗ikj + b∗ikj + c∗ikj

)
, bikj = b∗ikj/

(
a∗ikj + b∗ikj + c∗ikj

)
, cikj = c∗ikj/

(
a∗ikj + b∗ikj + c∗ikj

)
(7)

(4) Difference degree coefficient I was the key to describing the uncertainty of set
pair at a micro level [32,43], and an important source of this uncertainty was the sample
data of research problem. In addition, the physical meaning of I can be interpreted as
the quantity of the difference degree b transforming into similarity degree a or opposition
degree c. The direction (to a or c) and the scale of transformation should be closely related
to the proximity between the actual evaluation sample value and each evaluation grade.
That was, the larger a (or c), the more b was transformed into a (or c). Therefore, I should
vary with the evaluation sample [46]. In this study, the set pair composed of evaluation
index sample value xikj and evaluation grade criteria sgkj belonged to positive–negative
relation; the value of I ranged within [−1, 1]. Moreover, when I ranged within [0, 1], b was
transformed into a; when I ranged within [−1, 0], b was transformed into c. The absolute
value of I represented the scale of transformation. Based on SPA and the above analysis,
this study considered that the difference degree coefficient of ternary connection number
for evaluation index of agricultural drought disaster risk, i.e., Iikj varied with the evaluation
index sample value xikj. The calculation method is shown in Figure 2 and Formula (8) [46]:

Iikj =


1− (1−m)

(
xikj − s0kj

)
/
(

s1kj − s0kj

)
, s0kj ≤ xij ≤ s1kj for positive index, s0kj ≥ xikj ≥ s1kj for negative index

−2m
[

xikj −
(

s1kj + s2kj

)
/2
]
/
(

s2kj − s1kj

)
, s1kj < xikj ≤ s2kj for positive index, s1kj > xikj ≥ s2kj for negative index

−1 + (1−m)
(

s3kj − xikj

)
/
(

s3kj − s2kj

)
, s2kj < xikj ≤ s3kj for positive index, s2kj > xikj ≥ s3kj for negative index

(8)
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number of index j in subsystem k for evaluation sample i, i.e., uikj [45]:

uikj = aikj + bikj Iikj + cikj J, i = 1, 2, . . . , m; k = 1, 2, 3, 4; j = 1, 2, . . . , nk (9)

According to the weight of index j in subsystem k obtained by Formula (1), i.e., wkj,
calculate the ternary connection number of subsystem k for sample i, i.e., uik [33]:

uik =
nk

∑
j=1

wkjaikj +
nk

∑
j=1

wkjbikj Iikj +
nk

∑
j=1

wkjcikj J, i = 1, 2, . . . , m; k = 1, 2, 3, 4 (10)

Finally, the ternary connection number ui for evaluation sample i of agricultural
drought disaster risk was obtained by the following formula [40]:

ui =
4

∑
k=1

nk

∑
j=1

wkwkjaikj +
4

∑
k=1

nk

∑
j=1

wkwkjbikj Iikj +
4

∑
k=1

nk

∑
j=1

wkwkjcikj J, i = 1, 2, . . . , m (11)

where wk is the weight of subsystem k, which can be determined by AGA-FAHP [45].
The connection number u calculated by Formulas (10) and (11) were used to evaluate

the grade of agricultural drought disaster risk. It can be proved that u ∈ [−1, 1]. According
to the grade corresponding to the critical value, u was divided into three grades, which cor-
responded to three statuses of agricultural drought disaster risk, respectively, i.e., low-risk
u ∈ (0.667, 1.000], middle-risk u ∈ [−0.667, 0.667], and high-risk status u ∈ [−1.000, −0.667).

Meanwhile, to compare with the result of the connection number value, level eigen-
value method was used to calculate the grade value hi for evaluation sample i of agricultural
drought disaster risk. Similarly, h was divided into three grades, which corresponded to
low-risk h ∈ [1.0, 1.5), middle-risk h ∈ [1.5, 2.5], and high-risk status h ∈ (2.5, 3.0] [45]:

hi =
4

∑
k=1

nk

∑
j=1

wkwkjaikj + 2
4

∑
k=1

nk

∑
j=1

wkwkjbikj + 3
4

∑
k=1

nk

∑
j=1

wkwkjcikj, i = 1, 2, . . . , m (12)

In order to compare the information provided by connection number components
and connection number value in agricultural drought disaster risk evaluation process,
the difference degree b and difference degree item bI were respectively converted into
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a probability variable p based on information entropy theory [45,47], according to the
following formula:

pi =

(
4
∑

k=1

nk
∑

j=1
wkwkjbikj

)2

m
∑

i=1

(
4
∑

k=1

nk
∑

j=1
wkwkjbikj

)2 and pi =

(
4
∑

k=1

nk
∑

j=1
wkwkjbikj Iikj

)2

m
∑

i=1

(
4
∑

k=1

nk
∑

j=1
wkwkjbikj Iikj

)2 (13)

Then, the corresponding information entropy value e was obtained as follows [45,47]:

e = −

m
∑

i=1
pi ln pi

ln m
(14)

(6) The connection number uikj of evaluation index calculated by Formula (9) was used
to diagnose the main factors that made the high risk. It can be proved that uikj ∈ [−1, 1].
According to the principle of equipartition, evaluation index was divided into five types,
which were strong obstacle uikj ∈ [−1.0, −0.6), middle obstacle uikj ∈ [−0.6, −0.2), weak ob-
stacle uikj ∈ [−0.2, 0.2], weak promotion uikj ∈ (0.2, 0.6], and strong promotion uikj ∈ (0.6, 1.0].
Among them, strong obstacle index and middle obstacle index were the primary obsta-
cle factors that seriously hindered the reduction of agricultural drought disaster risk,
and meanwhile, the key objects of risk regulation and control [46].

Additionally, to compare with the diagnosis result of the connection number value,
semipartial subtraction set pair potential s(u) corresponding to the ternary connection num-
ber of evaluation index was calculated to identify the obstacle factors of risk as follows [30]:

s
(

uikj

)
=


−1, when aikj + bikj = 0
1, when bikj + cikj = 0[

aikj + bikjaikj/
(

aikj + bikj

)]
−
[
cikj + bikjcikj/

(
cikj + bikj

)]
, when aikj + bikj 6= 0 and bikj + cikj 6= 0

(15)

It can be proved that s(uikj) ∈ [−1, 1]. According to the principle of equipartition,
s(uikj) was divided into inverse potential s(uikj) ∈ [−1.0, −0.6), partial inverse potential
s(uikj) ∈ [−0.6, −0.2), symmetrical potential s(uikj) ∈ [−0.2, 0.2], partial identical potential
s(uikj) ∈ (0.2, 0.6], and identical potential s(uikj) ∈ (0.6, 1.0], respectively. Among them,
the index of s(uikj) in inverse potential or partial inverse potential was the obstacle fac-
tors of agricultural drought disaster risk and should be paid more attention to in risk
management [40].

2.2. Study Area

Suzhou City in Anhui Province was chosen as a typical grain production area for
empirical study (Figure 3). Suzhou was located in the south of Huang-Huai Plain, the
main production area of winter white and the important commodity grain export base
in China [30]. However, due to its transition zone between temperate and subtropical
monsoon climate, the distribution of annual precipitation was extremely uneven, and the
precipitation in summer accounted for 50–60% of the annual precipitation [33]. Meanwhile,
the monsoon had a significant impact on precipitation, resulting in a large inter-annual
variation and frequent drought disaster [31]. In addition, the average sown area of crops
in Suzhou from 2001 to 2020 was 9.99 × 105 hectares, including 7.87 × 105 hectares for
grains, and the average grain yield was 3.63 × 109 kg. However, frequent drought disasters
have caused serious losses in agricultural production in Suzhou. For instance, the most
severe autumn-winter drought disaster in recent ten years continued from October 2008 to
February 2009. According to the statistics, the total affected area of wheat by droughts in
the city was 3.50 × 105 hectares, accounting for 91.7% of the sown area of wheat, and the
seriously affected area was 1.76 × 105 hectares [48]. Furthermore, two-phased drought
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disasters occurred in 2012. The affected area by the first was 3.99 × 105 hectares, and that
of the second was 2.60 × 105 hectares, causing a direct economic loss of about RMB
426 million. A heavy drought disaster happened from the last ten days of July to the middle
ten days of August in 2013. The largest affected area was 1.76 × 105 hectares, including
0.4 × 105 hectares seriously affected [49]. Suzhou was a traditional agriculture-oriented
city, and agricultural production was an important source of farmers’ income and local
economic development. Therefore, conducting the evaluation and diagnosis of agricultural
drought disaster risk in Suzhou was of great significance for ensuring stable social economy
and food security.
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2.3. Data Acquisition

The sample data used for evaluation and obstacle factor diagnosis of agricultural
drought disaster risk in Suzhou City were obtained from Water Resources Bulletin of
Anhui Province (2007–2017), Statistical Yearbook of Anhui Province (2008–2018), Statistical
Yearbook of Suzhou City (2008–2018), Water Conservancy Yearbook of Anhui Province
(2008–2018), and Drought Resistance Planning in Anhui Province.

The hydro-meteorological dataset used in this study included precipitation, evapo-
ration, and soil moisture data. The precipitation data (2007–2017) were from the Chinese
national meteorological Suzhou station, which can be accessed from The China Meteo-
rological Data Service Center (http://data.cma.cn (accessed on 6 February 2022)). The
evaporation data (2007–2017) were calculated by FAO-56 Penman-Monteith method [50]
according to daily maximum and minimum air temperature, relative humidity, wind speed,
vapor pressure, and duration of sunshine, which were from the Chinese national mete-
orological Suzhou station, they can be accessed from http://data.cma.cn (accessed on
6 February 2022). The soil moisture data (2007–2017) were from the Chinese national
soil moisture monitoring Suzhou station, and the soil moisture report in Anhui Province
can be accessed from http://slt.ah.gov.cn/tsdw/swj/sqtx/index.html (accessed on 14
February 2022).

http://data.cma.cn
http://data.cma.cn
http://slt.ah.gov.cn/tsdw/swj/sqtx/index.html
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3. Results and Discussion
3.1. Evaluation System and Weights of Agricultural Drought Disaster Risk

According to the evaluation target and construction principle of the evaluation system
for agricultural drought disaster risk, based on the system structure of drought disas-
ter risk [17,31], the risk system was divided into four subsystems, i.e., drought hazard,
drought damage sensitivity, exposure to drought, and drought resistance. By the anal-
ysis of characteristics for these four subsystems, and meanwhile referring to related re-
search [25,30,33,36,44] and the actual situation of water resources, social economy, agricul-
tural production, and water conservancy projects in the study area, an evaluation system of
agricultural drought disaster risk (including 4 subsystems, in total 21 indexes, i.e., X1–X21)
and the corresponding evaluation grade criteria (low, middle, and high risk) were estab-
lished, as shown in Table 1. Furthermore, AGA-FAHP [45] and related research [30,44]
were used to determine the weight of each subsystem and evaluation index (Table 1).

Table 1. Evaluation system and grade criteria of agricultural drought disaster risk [30,44].

Evaluation
System

Evaluation
Subsystem Evaluation Index

Evaluation Grade Criteria
Subsystem

Weight
Index

Weight
Index
Type *Grade 1

(Low Risk)
Grade 2

(Middle Risk)
Grade 3

(High Risk)

agricultural
drought

disaster risk
system

drought
hazard

subsystem

percentage of precipitation
negative anomaly X1 (%) ≤10 (10, 20] >20

0.329

0.069 positive

annual precipitation
X2 (mm) ≥900 [800, 900) <800 0.057 negative

relative humidity index
X3 (%) ≥−0.40 [−0.60, −0.40) <−0.60 0.049 negative

water resources amount per
unit area X4 (104 m3 km−2) ≥45 [25, 45) <25 0.057 negative

soil relative humidity X5 (%) ≥75 [65, 75) <65 0.044 negative
soil type X6 ≥0.70 [0.50, 0.70) <0.50 0.052 negative

drought
damage

sensitivity
subsystem

percentage of agricultural
population X7 (%) ≤70 (70, 85] >85

0.241

0.060 positive

percentage of paddy field
area X8 (%) ≤2 (2, 10] >10 0.068 positive

water consumption per
RMB104 GDP X9 (m3 per

RMB104)
≤100 (100, 150] >150 0.062 positive

percentage of forest cover
X10 (%) ≥30 [20, 30) <20 0.052 negative

exposure to
drought

subsystem

population density X11
(person km−2) ≤450 (450, 650] >650

0.192

0.047 positive

percentage of cultivated
land X12 (%) ≤40 (40, 50] >50 0.056 positive

multiple cropping index
X13 (%) ≤180 (180, 200] >200 0.043 positive

percentage of agricultural
GDP X14 (%) ≤20 (20, 30] >30 0.046 positive

drought
resistance
subsystem

GDP per capita X15 (Yuan
per person) ≥15,000 [10,000,

15,000) <10,000

0.238

0.030 negative

percentage of reservoir
regulation and storage

X16 (%)
≥10 [5, 10) <5 0.053 negative

existing water supply
capacity per unit area X17

(104 m3 km−2)
≥100,000 [80,000,

100,000) <80,000 0.038 negative

percentage of effective
irrigation area X18 (%) ≥0.85 [0.75, 0.85) <0.75 0.045 negative

emergency water supply
capacity per unit area X19

(104 m3 km−2)
≥4000 [3000, 4000) <3000 0.028 negative

monitoring and warning
capacity X20 (station per

100 km2)
≥0.60 [0.40, 0.60) <0.40 0.019 negative

percentage of water-saving
irrigation area X21 (%) ≥35 [25, 35) <25 0.025 negative

* The larger the value of positive (negative) index, the higher (lower) the evaluation grade.

3.2. Evaluation of Agricultural Drought Disaster Risk in Suzhou from 2007 to 2017

The index sample data in Suzhou from 2007 to 2017 and the corresponding grade
criteria shown in Table 1 were substituted into Formulas (3)–(7) to obtain the components
of the connection number for each index. The dynamic difference degree coefficient of
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the connection number was calculated according to Figure 2 and Formula (8). Then, the
weights of subsystem and index in Table 1 and Formulas (9)–(11) were adopted to calculate
the connection number values of index, subsystem, and drought disaster risk system,
respectively. Meanwhile, Formula (12) was used to calculate the grade obtained by the level
eigenvalue method. Furthermore, although the results of the connection number value and
level eigenvalue methods both reflect the evaluation grade, the larger the former, the lower
the risk grade, while the larger the latter, the higher the risk grade. The evaluation results
of agricultural drought disaster risk in Suzhou are shown in Figures 4–9.
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for agricultural drought disaster risk evaluation in Suzhou during 2007–2017 (Figure 8), 

Figure 7. The evaluation grades of agricultural drought disaster risk subsystems in Suzhou from 2007
to 2017 obtained by two methods. (a) Drought hazard subsystem; (b) Drought damage sensitivity
subsystem; (c) Exposure to drought subsystem; (d) Drought resistance subsystem. The two dotted
lines from top to bottom represent the boundaries of the connection number value for low risk and
middle risk status (0.667), and that for middle risk and high risk status (−0.667), respectively.
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(1) From the results obtained by two methods (Figure 4), the variation trends of evalu-
ation grade for agricultural drought disaster risk in Suzhou from 2007 to 2017 calculated by
connection number value and level eigenvalue were consistent. Nevertheless, compared
with the level eigenvalue, the variation amplitude year by year of the connection number
value was more obvious, and the difference among evaluation grades was more significant.
For example, the difference between the maximum and minimum of the connection number
value relative to its value range ((0.251 − (−0.404))/(1 − (−1)) × 100% = 32.75%)) was
higher than that of level eigenvalue ((2.303 − 1.812)/(3 − 1) × 100% = 24.55%)). Moreover,
the connection number value in 2016 changed greatly; the difference with 2015 was 0.392,
which was higher than that of the level eigenvalue (0.292). It indicated that the evaluation
method of agricultural drought disaster risk in this study could take full advantage of the
information from samples. The dynamic difference degree coefficient varying with the
actual evaluation sample can further quantify the uncertainty between evaluation index
value and evaluation grade criteria and determine the complete connection number value.
Therefore, the evaluation results were reasonable, reliable, and had a higher sensitivity.

According to the connection number value of agricultural drought disaster risk evalu-
ation in Suzhou from 2007 to 2017 (Figure 4), it decreased from −0.201 in 2007 to −0.404
in 2010 and then increased to 0.243 in 2017. Among them, a fluctuation was found in
2015, and the connection number value decreased. The average connection number values
during 2007–2010 and 2011–2017 were −0.222 and −0.030, respectively, and the connection
number values in 2016 and 2017 were larger than 0.2 (Figure 4). It reflected that the agricul-
tural drought disaster risk in Suzhou from 2010 to 2017 was always in middle-risk status
(−0.667 ≤ u ≤ 0.667). Nevertheless, the risk presented a decreasing trend from 2010, espe-
cially since 2016, it had gradually developed to low-risk status. Therefore, in recent years,
the agricultural drought disaster risk in Suzhou was still quite severe, but it tended to be
improved. The drought disaster risk management may not arouse enough attention before
2010, so it was necessary to strengthen scientific and reasonable risk control measures.
These results were consistent with the studies of Wang et al. [44] and Jin et al. [30].

(2) According to the components of the connection number for agricultural drought
disaster risk evaluation in Suzhou during 2007–2017 (Figure 5), the similarity degree a
first decreased and then increased, while the opposition degree c first increased and then
decreased (with 2010 as the boundary), and the difference degree b basically did not change.
Moreover, the difference degree item bI presented the same trend as that of a, but the
amplitude was smaller. It can be seen that the change trends of a and bI were consistent
with that of u, while the trend of c was contrary to that of u. These explained the reason why
u first decreased and then increased in Figure 4 combined with Formula (11). Additionally,
c was overall larger than a, but the difference decreased gradually; a had exceeded c in 2016
and 2017 (Figure 5). bI was always smaller than a. The average values of a, bI, and c during
2007–2017 were 0.235, −0.026, and 0.308, respectively. These findings accorded with the
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above results that the situation of agricultural drought disaster risk in Suzhou was still
serious, but it presented a trend of improvement (Figure 4).

The change of b was small from 2007 to 2017; the standard deviation was 0.031, but the
change of bI was relatively significant; the standard deviation was 0.053 (Figure 5). In addi-
tion, according to Formulas (13) and (14), the information entropy values of bI were all lower
than those of b for the agricultural drought disaster risk system and its four subsystems,
especially for the drought resistance subsystem (Figure 6). The information entropy values
of b and bI were 0.992 and 0.501 for drought resistance, respectively (Figure 6). Based on
information entropy theory [45,47], it reflected that bI provided more information in the risk
evaluation process. Furthermore, according to Formulas (11) and (12), compared with the
level eigenvalue method, which only took a, b, and c into account, the connection number
value method used in this study additionally considered the effect of the difference degree
coefficient I, which varied dynamically with the evaluation sample value and utilized more
information, bringing more accurate and reliable evaluation results. It explained why
the above risk evaluation results of the connection number value had a higher sensitivity
(Figure 4). Overall, the agricultural drought disaster risk in Suzhou showed a decreasing
trend, but the situation was still severe. Therefore, it was necessary to analyze the risk
driving mechanism from subsystem and index aspects, identify key factors hindering the
reduction of risk, and formulate targeted regulation measures.

3.3. Evaluation of Agricultural Drought Disaster Risk Subsystems in Suzhou from 2007 to 2017

In order to explain the causes of agricultural drought disaster risk in Suzhou, this study
further revealed the key driving elements and obstacle factors of risk from four subsystems.

(1) According to the evaluation results of agricultural drought disaster risk subsystems
in Suzhou during 2007–2017 obtained by two methods (Figure 7), the changes in the evalua-
tion grade of four subsystems calculated by connection number value and level eigenvalue
methods were consistent, and the difference among evaluation grades calculated by connec-
tion number value was more significant. For instance, the difference between the maximum
and minimum connection number value for drought damage sensitivity relative to its value
range ((0.565 − (−0.132))/(1 − (−1)) × 100% = 34.85%) was larger than that of the level
eigenvalue ((2.100 − 1.587)/(3 − 1) × 100% = 25.65%). It indicated that the evaluation
results of the risk subsystem were reasonable, reliable, and with higher sensitivity.

The connection number value of drought hazard during 2007–2017 changed greatly.
It first decreased and then increased. The connection number values of drought damage
sensitivity, exposure to drought, and drought resistance gradually increased, with a small
variation amplitude. However, four subsystems were still in middle-risk status (Figure 7).
It showed that in recent years, the drought hazard, drought damage sensitivity, and expo-
sure to drought in Suzhou had reduced, and the drought resistance had increased, but their
overall situations were still serious, which were consistent with the above connection
number values of risk evaluation (Figure 4). In addition, the change in connection number
value of each subsystem accorded with its attribute and role in the drought disaster risk
system [25]. Drought hazards reflected the natural attributes influencing drought in a study
region, including precipitation, evaporation, water resources, etc.; they had strong random
uncertainty and thus had a large variation amplitude (Figure 7a) [7,9]. The other three sub-
systems showed the drought resistance capacity and adaptability of the drought-affected
body and reflected the social attributes influencing drought. With the development of
economy, science and technology, and the layout of water conservancy projects, the status
of these three subsystems has been improved steadily (Figure 7b–d)) [36]. It revealed that
the subsystems of agricultural drought disaster risk and their indexes chosen in this study
were reasonable and effective and with physical mechanisms.

(2) According to the average values of the connection number and their components
for agricultural drought disaster risk evaluation in Suzhou during 2007–2017 (Figure 8),
the magnitude sorting of bI among four subsystems was fully consistent with u, which
accorded with the above physical meaning of the difference degree coefficient analyzed
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in this study. That was, when a > c, b was transformed into a, I > 0, when a < c, b was
transformed into c, I < 0, and when a = c, I = 0. It showed that the calculation method of
dynamic difference degree coefficient varying with the evaluation sample was reasonable
and reliable and completely reflected its role and function in the structure of the connection
number. Furthermore, the average connection number values of drought hazard, drought
damage sensitivity, exposure to drought, and drought resistance were−0.046, 0.167,−0.393,
and −0.206, respectively. Therefore, from the perspective of the multi-year average level,
the risk status of drought damage sensitivity was optimal, while those of exposure to
drought and drought resistance were relatively worse. Combined with Figure 7, the
connection number values of exposure to drought and drought resistance were negative
in recent years, while those of drought damage sensitivity were basically positive and
even gradually improved from middle risk to low risk. Therefore, exposure to drought
and drought resistance were the main factors that hindered the reduction of agricultural
drought disaster risk in Suzhou and should arouse attention. It was crucial to implement
effective measures for reducing the degree of exposure to drought and strengthening
drought resistance capacity.

According to the connection number values of agricultural drought disaster risk
subsystem evaluation in Suzhou during 2007–2017 (Figure 9), the connection number
value of drought hazard first decreased and then increased and became positive since
2016; its absolute value was always relatively large. The connection number value of
drought damage sensitivity changed from negative to positive in 2011 and then increased
significantly. Nevertheless, those of exposure to drought and drought resistance also
increased constantly, but the amplitudes were small, and the values were always negative.
It revealed that the drought damage sensitivity and drought hazard in Suzhou during
recent years reduced significantly, which were the main reason for the improvement of risk
status above (Figure 4). Meanwhile, the exposure to drought and drought resistance had
been improved slightly, which had little impact on risk status. The primary subsystems
which affected the risk in Suzhou had gradually changed from drought hazard, exposure
to drought, and drought resistance in the past, to drought hazard and drought damage
sensitivity at present. In addition, in the past few years, the connection number values
of four subsystems had not exceeded 0.2, and most of them were negative. Especially
the high exposure to drought and the weak drought resistance capacity had become the
main factors that seriously impeded the reduction of risk (Figure 4). To sum up, due to
the strong random uncertainty of drought hazard [51], this factor cannot be controlled and
predicted easily [31]. Therefore, the key to controlling agricultural drought disaster risk in
Suzhou was to steady the level of drought damage sensitivity for drought-affected bodies;
the difficulties were to reduce exposure to drought and improve resistance capacity.

3.4. Obstacle Factor Diagnosis of Agricultural Drought Disaster Risk in Suzhou from 2007 to 2017

The variations in the status of the agricultural drought disaster risk system and its
subsystems have been analyzed above. Then, the connection number value and semipartial
subtraction set pair potential of evaluation index were used to diagnose the obstacle factors
of risk so as to provide a basis for drought disaster risk regulation in Suzhou.

(1) The components of the connection number and the difference degree coefficient of
the evaluation index were used to calculate the connection number value and semipartial
subtraction set pair potential by Formulas (9) and (15), respectively, as shown in Table 2.
It can be seen that, from the multi-year average aspect, the number of indexes that belonged
to middle or strong obstacle (−1.0 ≤ u < −0.2) were 1, 1, 3, and 4 in drought hazard,
drought damage sensitivity, exposure to drought, and drought resistance subsystems,
respectively, and those which belonged to weak or strong promotion (0.2 < u ≤ 1.0) were
1, 2, 0, and 2, respectively. These were consistent with the above result that the overall
status of drought damage sensitivity was optimal, while those of exposure to drought
and drought resistance were relatively worse (Figure 8). It reflected that the number of
indexes that belonged to the strong promotion and strong obstacle in a risk subsystem
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could approximately judge the risk status of such subsystem. That was, the less strong
promotion indexes and the more strong obstacle indexes, the worse the risk status, and vice
versa. These basically accorded with the results of semipartial subtraction set pair potential,
but there were some differences (Table 2). For example, the average connection number
value of annual precipitation X2 was −0.150 (weak obstacle), while that of semipartial
subtraction set pair potential was−0.247 (partial inverse potential). The average connection
number value of the percentage of cultivated land X12 was −0.597 (middle obstacle), while
that of semipartial subtraction set pair potential was −0.608 (inverse potential). It can be
found that the value of semipartial subtraction set pair potential was relatively small.

Table 2. The average connection number values and types of evaluation index for agricultural
drought disaster risk in Suzhou from 2007 to 2017.

Evaluation
System

Evaluation
Subsystem Evaluation Index

Connection Number Value Semipartial Subtraction Set
Pair Potential

Value Type Value Status

agricultural
drought

disaster risk
system

drought hazard
subsystem

percentage of precipitation negative
anomaly X1 (%) 0.416 weak

promotion 0.388 partial identical
potential

annual precipitation X2 (mm) −0.150 weak obstacle −0.247 partial inverse
potential

relative humidity index X3 (%) 0.067 weak obstacle 0.013 symmetrical
potential

water resources amount per unit area
X4 (104 m3 km−2) −0.441 middle obstacle −0.485 partial inverse

potential

soil relative humidity X5 (%) −0.105 weak obstacle −0.205 partial inverse
potential

soil type X6 −0.170 weak obstacle −0.207 partial inverse
potential

drought
damage

sensitivity
subsystem

percentage of agricultural population
X7 (%) −0.627 strong obstacle −0.712 inverse

potential

percentage of paddy field area X8 (%) 0.794 strong
promotion 0.817 identical

potential
water consumption per RMB104 GDP

X9 (m3 per RMB104)
0.057 weak obstacle −0.021 symmetrical

potential

percentage of forest cover X10 (%) 0.395 weak
promotion 0.400 partial identical

potential

exposure to
drought

subsystem

population density X11 (person km−2) −0.632 strong obstacle −0.691 inverse
potential

percentage of cultivated land X12 (%) −0.597 middle obstacle −0.608 inverse
potential

multiple cropping index X13 (%) −0.231 middle obstacle −0.321 partial inverse
potential

percentage of agricultural GDP
X14 (%) −0.054 weak obstacle −0.132 symmetrical

potential

drought
resistance
subsystem

GDP per capita X15 (Yuan per person) 0.299 weak
promotion 0.246 partial identical

potential
percentage of reservoir regulation and

storage X16 (%) −0.523 middle obstacle −0.538 partial inverse
potential

existing water supply capacity per unit
area X17 (104 m3 km−2) 0.435 weak

promotion 0.455 partial identical
potential

percentage of effective irrigation area
X18 (%) −0.642 strong obstacle −0.691 inverse

potential
emergency water supply capacity per

unit area X19 (104 m3 km−2) −0.172 weak obstacle −0.194 symmetrical
potential

monitoring and warning capacity X20
(station per 100 km2) −0.355 middle obstacle −0.451 partial inverse

potential
percentage of water-saving irrigation

area X21 (%) −0.245 middle obstacle −0.222 partial inverse
potential

From the perspective of multi-year average level, the percentage of agricultural pop-
ulation X7, population density X11, and percentage of effective irrigation area X18 were
strong obstacle indexes. In addition, the water resources amount per unit area X4, percent-
age of cultivated land X12, multiple cropping index X13, percentage of reservoir regulation
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and storage X16, monitoring and warning capacity X20, and percentage of water-saving
irrigation area X21 were middle obstacle indexes (Table 2). Therefore, these indexes were
the main factors that severely hindered the effective reduction of agricultural drought
disaster risk, also the key and difficult objects of risk regulation and control in Suzhou.

(2) The connection number values and semipartial subtraction set pair potential of
21 indexes during 2007–2017 were shown in Figure 10. The change in connection number
value of each index was analyzed, the key driving factors of risk were identified from
the index level. Those indexes which had a small fluctuation of the connection number
value and always belonged to strong or middle obstacles were the primary reasons for high
risk. They can be diagnosed as the obstacle factors of risk and the crucial objects of risk
control [46].
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top to bottom represent the boundaries of the connection number value for strong promotion and
weak promotion types (0.6), and those for weak promotion and weak obstacle (0.2), weak obstacle
and middle obstacle (−0.2), middle obstacle and strong obstacle types (−0.6), respectively.
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The variation trends of the connection number value for the evaluation index during
2010–2017 were consistent with those of semipartial subtraction set pair potential, whose
overall variation amplitude was not significant. Nevertheless, when the change between
two years was big, the amplitude of semipartial subtraction set pair potential was larger
(Figure 10). For instance, the connection number value of annual precipitation X2 in
2007 and 2008 were 0.939 and 0.583 (with a difference of 0.356), respectively, while the
semipartial subtraction set pair potential were 0.933 and 0.649 (0.284), respectively. The
connection number value of the percentage of agricultural population X7 in 2012 and 2013
were −0.795 and −0.706 (with a difference of 0.089), respectively, while the semipartial
subtraction set pair potential were −0.822 and −0.770 (0.052), respectively. However, the
connection number value of multiple cropping index X13 in 2013 and 2014 were −0.717
and 0.676 (with a difference of 1.393), respectively, but the semipartial subtraction set pair
potential were −0.776 and 0.755 (1.531), respectively. The connection number value of the
percentage of reservoir regulation and storage X16 in 2009 and 2010 were 0.472 and −0.669
(with a difference of 1.141), but the semipartial subtraction set pair potential were 0.521
and −0.751 (1.272), respectively (Figure 10). It indicated that the connection number value
calculated in this study was reasonable and reliable, which can identify the status change
of the agricultural drought disaster risk evaluation index more accurately and sensitively.

As for the drought hazard subsystem, the obstacle factors of agricultural drought
disaster risk, which always belonged to middle or strong obstacle indexes (the connection
number value of index u < −0.2), included X2, X4, X5, and X6 (Figure 10a). It reflected
that this subsystem was generally in middle-risk status during recent years (Figure 7a),
which was due to less amount of precipitation and water resources, low soil moisture
content, and poor soil water retention. Additionally, the connection number value of
the index was used to analyze the reasons for the change in subsystem status, which
provided guidance for risk control. Drought hazard decreased during 2010–2014 (Figure 7a)
mainly because the percentage of precipitation negative anomaly X1 gradually developed
from a strong obstacle in 2010 (−0.748) to strong promotion in 2014 (0.737) (Figure 10a).
Drought hazard suddenly increased in 2015 (Figure 7a), mainly due to the fact that X1
drew back to weak obstacles again (0.031). Meanwhile, the annual precipitation X2 and
soil relative humidity X5 deteriorated from a weak obstacle in 2014 to a strong obstacle in
2015 (Figure 10a). Moreover, drought hazards were reduced in 2016 because all indexes
in this subsystem had been improved (Figures 7a and 10a). Therefore, precipitation was
the main factor that influenced the drought hazard in Suzhou, but it had strong random
uncertainty and large fluctuation [51]. In addition, Suzhou was located in the transition
zone between temperate and subtropical monsoon climate, characterized by an uneven
distribution of annual precipitation, a large difference in inter-annual precipitation, and
frequent droughts [33]. For example, from October 2008 to February 2009, the average
precipitation in Suzhou was only about 20 mm, accounting for less than 20% of annual
precipitation, causing the most serious autumn-winter drought in the past 10 years [48].
Furthermore, from the last ten days of July 2013 to the middle ten days of August 2013,
the precipitation was less than the multi-year average value, and the temperature above
35 ◦C exceeded 27 days, resulting in severe drought [49]. These actual situations can be
fully reflected by the obvious deterioration of the status of the drought hazard subsystem
(Figure 7a) and its indexes (Figure 10a).

Some studies showed that due to the intensification of global climate change, such as
a significant decrease in precipitation but a simultaneous increase in temperature [52], the
frequency, intensity, and scope of influence of drought were increasing [53,54]. For instance,
the southwest China extreme drought in 2010 [55], the 2010–2013 southern United States
drought [56], and the severe drought problems in the Mediterranean area [57,58]. Therefore,
climate change might be a main driving force that affects the hydrological cycle [52]. How-
ever, Koutsoyiannis [59] made an innovative discovery that although there seemed to be an
increase in temperature in the last decades, the hydrological cycle did not seem to intensify
from a global-scale analysis of water balance using gridded data. The hydrological cycle is
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an extremely complex process which influenced by lots of factors. The relationship between
climate change and droughts should be further studied by a long series of observational
data and coupled with accurate global climate model simulations.

In recent decades, drought has occurred frequently, and the influences have increased
remarkably [53,54]. Nevertheless, some research indicated that the droughts were not
very rare if one focused beyond the last 50 years on the climate dynamics of the past
thousands of years. In fact, H.E. Hurst was one of the first that identified 70 years ago that
the droughts might be explained by the so-called Hurst phenomenon [60–64]. Since then,
this phenomenon has been identified in numerous key hydrological cycle processes [65].
Therefore, the actual drought hazard and drought disaster risk can be further objectively
assessed by considering the periodicity of drought in a long series of climate change data.

The obstacle factor in the drought damage sensitivity subsystem was X7 (Figure 10b).
It showed that the transformation of this subsystem from middle risk to low risk in recent
years (Figure 7b) was impeded by a large percentage of the agricultural population. This
problem was not mitigated until 2015; X7 developed into a weak obstacle in 2017 (−0.123)
from a strong obstacle in 2014 (−0.724). Suzhou was a city depending on agricultural
production, with a significant influence of drought on agriculture and strong drought
damage sensitivity. With the urbanization and industrial upgrading, the percentage of
agriculture was decreasing continuously, and the drought damage sensitivity of economic
and social drought-affected bodies reduced. Drought damage sensitivity during 2010–2017
reduced significantly (Figure 7b) mainly because the water consumption per RMB104 GDP
X9 was gradually improved from a strong obstacle in 2010 (−0.675) to strong promotion in
2017 (0.820) (Figure 10b). It indicated that with the development of the economy, science and
technology, and government guidance, social water-saving awareness and industrial water-
saving technology were enhanced, and water utilization efficiency significantly raised,
which effectively reduced the drought damage sensitivity. In addition, the reason why this
subsystem was in a better risk status for a long time (Figure 7b) was that the percentage
of paddy field area X8 was always strong promotion; meanwhile, the percentage of forest
cover X10 fluctuated around weak promotion (Figure 10b). Therefore, planting drought
tolerant crops such as wheat and maize [34] and maintaining a high forest cover [30] were
the key to ensuring low drought damage sensitivity in Suzhou.

The obstacle factors in exposure to the drought subsystem included X11 and X12
(Figure 10c). It reflected that the connection number value of this subsystem was always
lower than 0 and in middle-risk status (Figure 7c) because of a high population density and
a large cultivated land area. When a drought occurred, for the region with a higher popu-
lation density and a larger cultivated land area, there were more drought-affected bodies
exposed to drought, which accorded with the connotation of exposure [19,25]. Furthermore,
exposure decreased significantly during 2013–2017 (Figure 7c) because multiple cropping
index X13 suddenly developed from a strong obstacle in 2013 (−0.717) to strong and weak
promotion in 2014 and later, meanwhile, the percentage of agricultural GDP X14 gradually
developed from weak obstacle to strong promotion (Figure 10c). Therefore, optimization of
planting structure, appropriate development of agricultural production, improvement of
production efficiency, and reasonable scale and layout of urban-rural development were
the crucial elements to lower the exposure degree in Suzhou.

The obstacle factors in the drought resistance subsystem included X, X18, and X21
(Figure 10d). It showed that the improvement of this subsystem status was seriously hin-
dered, and the connection number value during 2009–2017 fluctuated around 0 (Figure 7d)
because of limited reservoir regulation and storage capacity, small effective irrigation area,
and water-saving irrigation area. Drought resistance presented significant enhancement
during 2008–2009 (Figure 7d) mainly due to the fact that the existing water supply capacity
per unit area X17 was improved from a strong obstacle in 2008 (−0.747) to strong promotion
in 2009 (0.681); meanwhile, X16 developed from strong obstacle (−0.813) to weak promotion
(0.472) (Figure 10d). Moreover, the continuous increase in per capita GDP, existing water
supply capacity, and monitoring and warning capacity strongly guaranteed the drought
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resistance capacity (Figure 10d). From the perspective of drought disaster risk system
structure, the improvement of drought resistance capacity was the most effective and
workable means for reducing risk [38]. For this reason, the keys to reducing agricultural
drought disaster risk in Suzhou were to implement reservoir dredging and reconstruction,
improve water conservancy infrastructure systems such as farm irrigation, lift water-saving
irrigation technology, promote social and economic development, and ensure existing
water supply capacity and drought warning capacity. These results were in line with the
actual drought resistance situations in Suzhou. For instance, 652,000 people, 46,000 electro-
mechanical wells, 59 pump stations, and RMB 100.79 million funds were provided for
drought resistance in 2009 [50]. Additionally, 57,000 people, 13,000 wells, 16 pump stations,
and RMB 52.67 million funds were used for drought resistance in 2013 [51]. These facts
were consistent with the results that the drought hazard (Figure 7a) and drought resistance
capacity (Figure 7d) both significantly increased in 2009 and 2013.

The calculation method of dynamic difference degree coefficient in this study is
only applicable for ternary connection numbers. For the research problems with more
than three evaluation grades, such as four-element and five-element connection numbers,
the formula of dynamic difference degree coefficient should be deduced again. In addition,
the relationship between evaluation index value and difference degree coefficient in Figure 2
and Formula (8) may not always be linear; the result of the nonlinear function could
be compared.

The critical values of the grade for the evaluation index in Table 1 are determined
and verified according to the actual agricultural drought disaster situation in Suzhou City,
and they could not be directly used in other areas. The critical values have a great impact
on evaluation results, while they may vary with various natural and social factors affecting
drought disaster risk. Therefore, reasonably determining the critical values of grades is an
important work for future drought disaster risk evaluation and diagnosis research.

4. Conclusions

In order to deal with the uncertainty between the evaluation sample and evaluation
criteria, a calculation method of dynamic difference degree coefficient was adopted to fully
utilize the evaluation sample information. Furthermore, information entropy values of the
difference degree and difference degree item were respectively calculated to compare the
information provided by connection number components and connection number value in
the evaluation process. Then a quantitative evaluation and obstacle factor diagnosis model
of agricultural drought disaster risk was established, and an empirical study was carried
out in Suzhou City of Anhui Province, China. The conclusions are shown as follows:

(1) The agricultural drought disaster risks in Suzhou during 2010–2017 were all in middle-
risk status. Furthermore, the risk presented a decreasing trend from 2010. Especially
since 2016, the risk status had been improved significantly and gradually developed
to low risk. It is necessary to continue strengthening scientific measures of risk control.
In addition, the information entropy values of the difference degree item bI were all
lower than those of the difference degree b for the agricultural drought disaster risk
system and its four subsystems, reflecting that bI provided more information in the
risk evaluation process.

(2) The drought damage sensitivity and drought hazard in Suzhou reduced markedly
during recent years, which mainly accounted for the improvement of agricultural
drought disaster risk status. However, high exposure to drought and weak drought
resistance capacity were important factors that hindered the effective reduction of
risk. The key to regulating risk was to maintain the level of drought damage sensi-
tivity, and the difficulties were to reduce exposure to drought and improve drought
resistance capacity.

(3) The percentage of the agricultural population, population density, and percentage of
effective irrigation area were strong obstacle indexes. In addition, the water resources
amount per unit area, percentage of cultivated land area, multiple cropping index,
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percentage of reservoir regulation and storage, monitoring and warning capacity, and
percentage of water-saving irrigation were middle obstacle indexes. These were the
main obstacle factors of agricultural drought disaster risk in Suzhou, and also the
key points and difficulties of risk regulation and control, which should be paid more
attention to.

(4) The evaluation and obstacle factor diagnosis results of agricultural drought disaster
risk in Suzhou City in accord with the actual situation. The evaluation and diagnosis
method based on connection number and information entropy is reasonable and
reliable. It provides an effective approach to identifying the level of agricultural
drought disaster risk and its key obstacle factors in important grain production
areas and also supports the decisions of regional drought disaster risk prevention
and control.
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