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Abstract: Current developments in the treatment of genitourinary tumors underline the unmet clinical
need for biomarkers to improve decision-making in a challenging clinical setting. The detection of
circulating tumor cells (CTCs) has become one of the most exciting and important new approaches to
identifying biomarkers at different stages of disease in a non-invasive way. Potential applications of
CTCs include monitoring treatment efficacy and early detection of progression, selecting tailored
therapies, as well as saving treatment costs. However, despite the promising implementation of CTCs
in a clinical scenario, the isolation and characterization of these cells for molecular studies remain
expensive with contemporary platforms, and significant technical challenges still need to be overcome.
This updated, critical review focuses on the state of CTCs in patients with genitourinary tumor with
focus on prostate cancer, discussing technical issues, main clinical results and hypothesizing potential
future perspectives in clinical scenarios.

Keywords: liquid biopsy; circulating tumor cells; genitourinary cancers; precision oncology; immune
checkpoint inhibitors

1. Introduction

Although promising improvements have been made in managing genitourinary cancers thanks to
the discovery of emerging targets along with novel molecules, medical oncologists continue to suffer
from the lack of valid tools for cancer diagnosis and treatment monitoring. There is an urgent need
to finding biomarkers for prognostic and predictive use in genitourinary cancers patients. For this
purpose, peripheral blood and urine would allow multiple serial sampling in a more convenient way
at any stage of disease development, avoiding routine tissue-based samples usually associated with
discomfort for the patients.

The term “liquid biopsy” traditionally identifies the use of blood-based analyses and other human
fluids as surrogate materials of tissue/cytological samples. In other words, it can reasonably be
considered as a process for identifying molecular circulating signatures shared with solid tumors.
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The research in liquid biopsy is currently focusing on circulating tumor cells (CTCs), which are rare
nucleated cells originating from a malignancy or by metastases, circulating tumor DNA (ctDNA),
the genetic material shed from primary tumor or metastases in the circulation, circulating cell-free
RNA and microRNAs, extracellular vesicles and their content [1].

CTCs are a heterogeneous population (stem cells, progenitor cells, epithelial lineage cells) with
regard to the proliferation rate and mutational burden and, as a consequence, are characterized by
different aggressiveness. Through the peripheral blood, CTCs can extravasate and colonize distant sites
to prime a metastatic process, and as such a self-perpetuating vicious cycle may be hypothesized [1,2].

Contrary to other liquid biopsy components, CTCs offer the possibility to perform assays like
whole exome sequencing, splice variants analysis, RNA expression analysis, and functional assays.
CTCs can also be cultured to assess drug resistance in vitro or in vivo and to create CTC-derived
xenograft (CDX) models to mirror the tumor of the donor patient. Moreover, evaluation of signal
colocalization is feasible only on CTCs. However, a small number of isolated CTCs is scarcely
able to fully recapitulate the spatial and temporal tumor heterogeneity, a feature more attributable
to ctDNA/RNA. Isolation of CTCs is technically harder compared to ctDNA and often limited by
the extremely small number of CTCs in patient blood (1–100 cells per mL), varying among tumor
types [1–3].

Over the years CTCs have been largely investigated postulating their introduction in clinical
practice on the basis of different reasons: (i) ease of applicability; (ii) early diagnosis of inefficacy
treatment subsequent to radical therapeutic approaches; (iii) classification of patients in prognostic
groups based on post-therapy CTC persistence or decreasing; (iv) increasing knowledge into the
metastatic development, as well as mechanisms of resistance and tumor response; (v) identification of
genetic signature and characterization of the immune infiltrate and phenotypes that might be predictive
of response to certain types of therapy.

Most of the literature data assessing the role of CTCs in a broad variety of tumor types have been
mainly achieved using the CellSearch System, a semi-automated cytometric method, that has been
shown to be reproducible with minimal intrapatient and interlaboratory variability, and to date is
the only Food and Drug Administration (FDA)-approved test [2]. In 2008 the CellSearch System was
granted FDA approval to aid in monitoring metastatic prostate cancer patients. So far, a great number
of peer-reviewed articles have been published on CTCs and prostate cancer (PCa). The great interest in
PCa is mostly due to the fact that its incidence is far more common compared to other genitourinary
tumors. Clinically, there was a pressing need to find alternative methods to analyze metastatic tissues
that, in the case of PCa, are commonly located in the bone, a difficult site to perform a biopsy.

Furthermore, under the umbrella of CTC category, detection of CTC clusters (also called circulating
tumor microemboli (CTM) or mixed cells clusters) has aroused great interest in the research community.
They were identified more than two decades ago in colon cancer and prostate cancer patients [3,4].
Their detection is based on the capture method where CTC surface antigens might underestimate
the real CTM number in the blood stream. The aggregation of multiple cells, both cancer cells
and non-cancer cells, such as immune cells and platelets, could impair and mask surface proteins’
exposure [5]. The clustering confers to CTCs shear stress resistance, apoptosis resistance, enhances their
stemness, and favors immune escape [6]. Presence of CTMs might be predictive of cancer dissemination
and resistance to treatments [7].

After the recent introduction of immune checkpoint inhibitors (ICIs) in several solid tumors,
current investigations are exploring relevant immune-based biomarkers with CTCs in patients affected
by genitourinary malignancies during treatment with ICIs (NCT02978118).

Based on these findings, we review the role of CTCs in prostate cancer (PCa), urothelial carcinoma
(UC) and renal cell carcinoma (RCC), underlining the prognostic role and therapeutic impact of
molecular pathways, discussing recent clinical data published in the last three years, and investigations
currently in progress, with a focus on the strengths and weaknesses of clinical applicability of
this approach.
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To shed light on these issues, we conducted an electronic PubMed search focusing on
“circulating tumor cells” combined with keywords such as “liquid biopsy”, “molecular pathways”,
“genitourinary cancers”, “prostate cancer”, “bladder cancers”, “renal cell carcinoma”, “targeted
therapies”, and “immune checkpoint inhibitors”.

2. Prostate Cancer

2.1. Genomic Landscape and Potential Targets

Several genetic alterations have been identified in different stages of PCa. Generally, in the early
phase, PCa growth depends mostly on androgen stimulation and is highly responsive to androgen
deprivation therapy (ADT) (hormone sensitive phase). In its natural history, PCa develops resistance
to hormone inhibition (castration resistant prostate cancer (CRPC)). Therapies adopted in this phase
are new androgen receptor signaling (ARS) inhibitors such as abiraterone acetate or enzalutamide,
or other chemotherapeutic agents. CRPC can transdifferentiate and express neuroendocrine (NE)
markers, such as chromogranin and synaptophysin. In this case, co-expression of these markers on
CTCs can raise the uncertainty of NE differentiation that has direct clinical consequence considering
the potential benefit of platinum-based chemotherapy [8].

Moreover, Aurora kinase A (AURKA) amplification and overexpression have been found in a series
of small cell PCa. Patients with AURKA alterations can be potential candidates for targeted therapy
with Aurora kinase inhibitor, Alisertib [9].

Molecular pathways currently under investigation for their potential predictive value and
implications as therapeutic targets are DNA repair genes such as poly-ADP ribose polymerase (PARP)1
and PARP2, homologous recombination (HR) system genes (in particular BRCA1, BRCA2, and ATM),
and mismatch repair genes [10,11]. A phase II study is currently evaluating the efficacy of pamiparib
in metastatic CRPC (mCRPC) in patients with CTCs with homologous recombination deficiency
(CTC-HRD) (NCT03712930).

DNA repair mutations are present in 15–30% of mCRPC and are associated with poor prognosis
and aggressive behavior. Prostate cancer patients with defects in DNA repair genes respond to
poly-ADP ribose polymerase (PARP) inhibitors and are sensitive to platinum chemotherapy [12–15].
On the other hand, alterations in mismatch repair genes are associated with response to immunotherapy,
like anti-programmed death 1 (PD1) or anti-PD-L1 drugs [16]. More commonly mutated genes such
as PTEN, RB1, and TP53, are associated with poor prognosis, increased risk of recurrence and death,
and are frequently altered in CRPC compared to primary PCa. The presence of mutations in these
genes have also been associated with poor response to hormonal treatments and ARS inhibitors [17–21].
On the contrary, SPOP mutations are associated with more favorable prognosis and higher response
rate to abiraterone, although its alterations are present only in 5% of mCRPC [22,23]. In the end,
androgen receptor (AR) splice variants, in particular splice variant 7 (AR-V7), have been correlated
with abiraterone and enzalutamide resistance by the induction of independent constitutive receptor
activation [24–26] (Figure 1). Therefore, finding these genetic alterations in CTCs can help clinicians
choose the right, tumor-tailored therapy and detect early resistance to treatment. In this setting, liquid
biopsy offers some advantages in the detection of prognostic and predictive biomarkers, with the
possibility of molecularly characterizing the tumor in its different phases to avoid repeated tissue
biopsies on our patients.

2.2. Selection of Published and Ongoing Clinical Trials

Here we present a selection of published clinical studies investigating the role of CTCs in PCa,
followed by some ongoing trials. The landmark trial by de Bono and colleagues was prospectively
conducted in 231 patients affected by mCRPC starting a new line of chemotherapy [27]. The authors
demonstrated that a CTC count >5 per 7.5 mL of blood at any time during the course of disease was
associated with poor outcome, was predictive of a shorter progression-free survival (PFS), and resulted



Cells 2020, 9, 1495 4 of 18

in the strongest independent predictor of overall survival (OS), when matched to prostate specific
antigen (PSA) changes after treatment [27]. A recent large analysis used individual patient data from
five prospective phase III randomized trials. A total of 6081 mCRPC patients treated with different
hormone therapies in four trials (COU-AA-301 [28], AFFIRM [29], ELM-PC-4 [30], ELM-PC-5 [31]),
with only one trial concerning taxane-based chemotherapy (COMET-1 [32]), was analyzed using the
CellSearch assay. The results underlined that patients with CTC count >1 at baseline and 0 at week 13
(CTC0 end point) had improved survival [33]. Concerning the hormonal-resistance biomarker AR-V7,
the multicenter prospective PROPHECY study dealing with mCRPC patients under abiraterone or
enzalutamide recently confirmed and validated the value of AR-V7 in CTCs. From this study, AR-V7
positive CTCs were independently associated with worse survival outcome, both PFS and OS [34].
A phase II multicenter study evaluating response to Cabazitaxel in mCRPC patients with AR-V7
positive CTCs is ongoing (NCT03050866). Another ongoing phase II clinical trial seeks to define
the association of AR-V7 status in CTCs and AR gene alterations with PSA response to docetaxel
and enzalutamide (NCT03700099). AR-V7 expression has also been evaluated on tumor clusters by
Okegawa et al. The multivariable analysis concluded that presence of pre-therapy CTC cluster and
presence of CTC cluster AR-V7 negative were independently associated with a poor PFS and OS in
abiraterone- and enzalutamide-treated patients [35].Cells 2020, x 4 of 18 
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Recently, some researchers have shed light on the clinical role of prostate-specific membrane antigen
(PSMA) expression in CTCs from a small cohort of mCRPC patients under treatment. They proved that
PSMA was correlated with poorer treatment response, shorter OS, and was inversely associated with
PSA changes, thus postulating PSMA-positive CTCs as an independent poor prognostic biomarker in
such patients [36]. These findings are useful in order to submit a patient to a PSMA PET-CT and also
as a predictive biomarker for PSMA-targeted radionuclide therapy with 177Lu-Labeled PSMA-617 and
as an immunotherapeutic target [37,38].

However, mRNA extraction followed by reverse transcription polymerase chain reaction (RT-PCR)
for detecting the expression of PSMA does not discriminate between the different pattern of expression
of this transmembrane protein that can be seen on the surface of the cell, at the cell membrane
level, and/or in the cytoplasm with immunohistochemical techniques. Both the imaging and therapy
applications of PSMA are mostly due to the extracellular expression of the protein [39,40].
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As regards investigations in progress, a phase I dose de-escalation trial in patients with metastatic
PC and unfavorable CTC count (>5/7.5 mL of whole blood) is evaluating the monoclonal antibody
(mAb) called J591 against the extracellular domain of PSMA, in an attempt to define the effect of
mAb Hu-J591 on CTCs. Importantly, the primary outcome measure of this trial deals with the tumor
response at every dose level as defined by conversion from an unfavorable CTC count at baseline
to a favorable CTC count (<5/7.5 mL) (NCT02552394). In addition, a prospective cohort study in
patients with metastatic PC is aimed at exploring changes in expression of four immune checkpoint
biomarkers (PD-L1, PD-L2, B7-H3, and CTLA-4) on CTCs via the CellSearch method. The study
enrolled patients planning to start immunotherapy with new hormonal agents (NHAs) (group A),
or without NHAs (group B), or ADT (group C, in metastatic castration-sensitive PC), or progressing to
NHA and candidates for radium-223/chemotherapy (group D) (NCT02456571) (Tables 1 and 2).

Table 1. Selected studies on CTCs in prostate cancer, urothelial carcinoma, and renal cell carcinoma.

Reference Study Design Patients and Therapy Results

de Bono et al. [20] Multicenter prospective study 231 mCRPC patients starting a
new line of chemotherapy

Better OS in favorable group (<5 CTCs per
7.5 mL). Post-treatment decrease in CTC

number correlated with a better OS compared
to patients whose CTC number remained ≥ 5.

Heller et al. [26] Analysis of 5 prospective
randomized phase III trials 6081 patients with mCRPC

CTC count before treatment start and CTC
conversion from above to below 5 CTCs is
a biomarker to differentiate OS for 13-week

responders and non-responders.

Armstrong et al. [27] Multicenter prospective
validation study

118 high-risk mCRPC patients
treated with abiraterone

or enzalutamide

CTC nuclear-specific AR-V7 protein assay is
independently associated with worse

PFS and OS.

Nagaya et al. [28] Observational study
56 CRPC patients who

progressed on therapy and
switched to new treatment

Shorter median PSA, PFS, and OS in the
PSMA-positive CTC cohort. PSMA expression

was associated with poorer response,
and shorter PSA, PFS, and OS.

Rink et al. [41] Prospective study 100 consecutive UC patients
treated with radical cystectomy

Higher risk of disease recurrence and
cancer-specific and overall mortality in

CTC-positive patients.

Gazzaniga et al. [42] Prospective single center trial 102 high-risk T1G3
bladder cancer

CTCs were detected in 20% of patients and
predicted shorter time to first recurrence and

time to progression.

Zhang et al. [43] Meta-analysis of 30 studies 2161 urothelial cancer patients

CTC-positive was significantly associated with
tumor stage, histological grade, metastasis,

regional lymph node metastasis, and poor OS,
PFS/DFS, and CSS.

Gallagher et al. [44] Observational study 33 patients with metastatic UC Higher number of CTCs was seen in patients
with two or more sites of metastases.

Fina et al. [45] Single-center, prospective study

31 patients mUC receiving
first-line MVAC chemotherapy
were collected at baseline (T0)

and after 2 cycles (T2)

Changes in CTC better predicted 3-year PFS
and OS compared to CTC status evaluated at
single time points. No association was found

between CTCs and objective response to
MVAC.

Bluemke et al. [46] Observational study 154 RCC
Presence of CTCs correlates with lymph node

metastasis, presence of synchronous
metastases, and poor OS.

Haga et al. [47] Single center study 60 RCC patients underwent
LRN, LPN, ORN, and OPN

ORN resulted in significantly perioperative
changes in CTCs and in a greater number of
postoperative CTCs compared to LRN, LPN,

and OPN.

Cappelletti et al. [48] Observational study

21 blood samples serially
collected from 10 patients with

metastatic RCC entering the
TARIBO trial

Two CTC subpopulations were identified:
epithelial CTCs (eCTCs) and non-conventional
CTCs (ncCTCs) lacking epithelial and leukocyte

markers. With a threshold ≥1 CTC/10 mL of
blood, eCTCs were found in 28% of samples,
ncCTCs in 62%, and both CTC types in 71%.

CTCs: circulating tumor cells; mCRPC: metastatic castration resistant prostate cancer; OS: overall survival; PFS:
progression-free survival; PSMA: prostate specific membrane antigen; PSA: prostate specific antigen; UC: urothelial
carcinoma; DFS: disease-free survival; CSS: cancer specific-survival; RCC: renal cell carcinoma; LRN: laparoscopic
radical nephrectomy; LPN: laparoscopic partial nephrectomy; ORN: open radical nephrectomy; OPN: open partial
nephrectomy; MVAC: methotrexate, vinblastine, doxorubicin, and cisplatin.
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Table 2. Ongoing trials on CTCs in genitourinary tumors.

Trial ID Primary Outcome Disease Treatment Method

NCT02978118 Number of patients with
detectable CTCs UC and RCC Immune checkpoint inhibitors Not specified

NCT02552394 Determine the effect of mAb
Hu-J591 on reducing CTCs

Advanced prostate
cancer (PCa) J591 CellSearch

NCT02456571
Expression of immune checkpoint
biomarkers (PD-L1, PD-L2, B7-H3,

and CTLA-4) on CTCs
Metastatic PCa

Sipuleucel-T or abiraterone
acetate or enzalutamide or

androgen deprivation
therapy (ADT)

CellSearch

NCT03712930

Efficacy of pamiparib in patients
with CTCs with homologous

recombination deficiency
(CTC-HRD)

mCRPC Pamiparib Not specified

NCT03700099 Correlate AR-V7 status in CTCs
and PSA response decline mCRPC Sequential treatment with

docetaxel and enzalutamide Not specified

NCT03050866 Correlate AR-V7 CTCs with
response to cabazitaxel mCRPC Cabazitaxel Not specified

In addition to enumerating CTCs, Faugeroux et al. performed whole exome sequencing on
CTCs in mPC. They found that epithelial CTCs share mutations with matched metastasis biopsies,
while CTC-exclusive mutations were identified in genes involved in invasion, DNA repair, cytoskeleton,
and tumor-driver genes and were found in both epithelial and nonepithelial CTCs [49].

3. Bladder Cancer

3.1. Genomic Landscape and Potential Targets

The recent advances in genome sequencing, as well as transcriptome analysis, have considerably
changed the molecular classification of bladder cancer (BC) providing new insights in potential
target genes and pathways. The recently published consensus on molecular classification of
muscle-invasive bladder cancer (MIBC) identified six molecular classes. About 35% of MIBC is
classified as basal/squamous, 24% as luminal papillary, 8% as luminal non-specified, 15% as luminal
unstable, 15% as stroma-rich, and 3% as neuroendocrine-like. This molecular classification is useful
to stratify patients for prognosis, prediction of response, and as a potential tool for personalizing
neoadjuvant therapy selection [50–53].

This classification is based on shared RNA expression patterns or specific genomic alterations
using large-scale expression and sequencing data sets that are not applicable to single cell detection and
consequently, liquid biopsy. According to The Cancer Genome Atlas (TCGA), potentially actionable
mutations are present in nearly 68% of BC. These can be found in the primary tumor and in CTCs,
and this is of great importance since studies showed that within a patient most of the genetic alterations
are not shared across multiple tumor sites [54].

Recurrent alterations have been found in the phosphoinositide 3-kinase (PI3K)-AKT-mammalian
target of rapamycin (mTOR) and receptor tyrosine kinase (RTK)-MAPK pathways. Potentially
targetable alterations in these pathways include those in tuberous sclerosis complex (TSC) 1 or TSC2
(9%), AKT (10%), and phosphoinositide 3-kinase (PI3K) (17%) [44]. TSC1 mutations seem to confer
mTOR inhibitor sensitivity [55]. Mutations in the DNA repair pathway genes ERCC2, FANCC, ATM,
and RB1 are associated with complete pathological response after neoadjuvant chemotherapy and
need to be further considered for their utility in the therapeutic strategy [41,42,56,57]. Moreover,
great enthusiasm in the clinical community has been elicited by another targetable gene fibroblast
growth factor receptor (FGFR)3 [43].

The majority of FGFR3 alterations in BC have been found in luminal papillary tumor subtype and
in non-muscle invasive bladder cancer (NMIBC) and are often associated with better outcome [45].
Mutations in FGFR gene account for approximately 20% of patients with recurrent or refractory BC [58].
Accelerated approval by the FDA was recently granted to erdafitinib for patients with advanced UC
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with alterations of FGFR2 or FGFR3 who have progressed on platinum-based chemotherapy given the
40% confirmed response to erdafitinib [59]. To date, no published or ongoing studies are present on
FGFR expression in CTCs, but the detection of CTCs with FGFR2 expression by FACScan has been
applied in patients with gastric cancer, thus demonstrating the technique’s feasibility [60].

Of great interest is also the possibility to investigate PD-L1 expression status on CTCs. Presence
of high PD-L1+/CD45− CTCs and low burden of apoptotic CTCs in MIBC patients have been
associated with worse OS. Although the feasibility to detect and identify PD-L1 positive CTCs
has been demonstrated, more studies are needed to assess the predictive value of this method in
response to immunotherapy [61–63].

3.2. Selection of Published Clinical Trials

Urothelial carcinoma (UC) is a cancer in which no biomarker has still been validated for monitoring
the disease course, both for early phase and advanced stage. Some evidence has documented high
expression of CTCs in metastatic UC [64,65]. Furthermore, in patients with nonmetastatic UC, CTCs are
detectable in almost 25% of cases [66]. In this regard, using patients with clinically localized BC,
two large prospective trials have studied the significance of CTCs with the CellSearch system and
generated concordant results. The first trial showed that in patients considered candidates for radical
cystectomy, preoperative CTCs were significantly correlated with higher risk of recurrence as well
as cancer-specific and overall mortality [66]. The second trial, in which high-risk T1G3 BC patients
underwent conservative surgery, highlighted that the detection of CTCs significantly predicted both
decreased times to first local recurrence and shorter PFS. The authors concluded that CTCs can select
patients in early stages as having systemic disease ab initio and accordingly are likely suitable for
systemic therapy [67]. In 2019, the same group published results of a single-center prospective study
designed to explore the impact of CTCs on cancer-specific survival (CSS) and OS in 102 high grade
(HG) T1 bladder cancer patients. They demonstrated that even a single CTC is predictive of shorter
CSS and OS [68].

Conversely, other investigators did not find any detection of CTCs in localized BC [69,70], leading
to controversy surrounding the role of CTCs in nonmetastatic BC patients. A recent meta-analysis
assessed a total of 2161 BC patients at different disease stages, correlating the presence of CTCs with
tumor stage, histological grade, regional lymph node metastasis, and metastases, indicating that
CTCs are more easily detected in more advanced stages of BC. Furthermore, patients CTC-positive
versus CTC-negative exhibited poorer cancer specific survival, PFS, disease-free survival, and OS [71].
Along this line, CTC assessment using the CellSearch System in 33 patients with metastatic UC
underlined a higher number of CTCs in patients with more than two metastatic sites compared to those
with <1 metastatic site [72]. Of interest, in a pilot study with AdnaTest and multiplex-PCR as new
methods for interrogating blood samples by 31 metastatic UC patients under front-line chemotherapy,
the authors observed that CTC changes occurring during chemotherapy were associated to better
survival prediction in terms of PFS and OS than CTC measurement at fixed time points [72]. CTCs were
also detected in about 25% of patients with variant UC histology before radical cystectomy. Even in
the variant histology group, patients with CTCs experienced a worse outcome compared to patients
without CTCs [73].

More recently, Bergmann et al. investigated PD-L1 expression on CTCs in the blood of patients
with advanced UC through the CellSearch System. PD-L1 expression in ≥1 CTC was found in 63%
of CTC-positive samples. CTC detection and presence of CTCs with moderate or strong PD-L1
expression was associated with poor survival [74]. PD-L1 expression on CTCs was also demonstrated
by Anantharaman et al. in both Cytokeratin (CK)+ and CK− CTCs in patients with metastatic bladder
cancer. PD-L1 expression on CTCs might facilitate immune escape in the blood stream conferring
a survival advantage and promoting metastatic spread [75]. Taking into account all available evidences,
it is worthy of mention that there is a paucity of CTC data in terms of large patient population in
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metastatic UC, contrary to the neo-adjuvant UC setting. Pure investigations currently ongoing in this
disease are scarce.

4. Renal Cell Carcinoma

4.1. Genomic Landscape and Potential Targets

The pathological classification of RCC has three common subtypes: clear cell RCC (ccRCC) is the
most frequent, followed by papillary RCC, and chromophobe RCC. von Hippel-Lindau (VHL) tumor
suppressor gene is the most commonly alterated gene in ccRCC [76], mesenchymal epithelial transition
receptor (MET) gene alteration is frequently found in sporadic papillary type 1 RCC, while sporadic
papillary type 2 RCC is characterized by cyclin-dependent kinase inhibitor 2A (CDKN2A), SET domain
containing 2 (SETD2), neurofibromin 2 (NF2), Cullin-3 (CUL3), telomerase reverse transcriptase
(TERT) mutations, and chromosomes alterations [77]. Chromophobe RCC usually harbors combined
losses involving most or all of chromosomes 1, 2, 6, 10, 13, 17, and 21 and mutations in TP53
(32%) and PTEN (6%) [78]. Other RCC histotypes are characterized by definite genetic alterations.
Microphthalmia-associated transcription (MiT) family translocation RCC is defined by transcription
factor binding to IGHM enhancer 3 (TFE3) (Xp11.2) and transcription factor EB (TFEB) (t(6;11))
translocation and succinate dehydrogenase-deficient RCC [46,47]. In the rare RCC category, collecting
duct carcinoma (CDC) harbors mutations in NF2, SETD2, SMARCB1, FH, and CDKN2A genes [79] while
renal medullary carcinoma is distinctively characterized by loss of SMARCB1/INI1 tumor suppressor
protein [48]. Searching these specific mutations in liquid biopsies could help clinicians in monitoring
the patients during follow-up and detect residual disease after nephrectomy.

Comprehensive molecular characterization of RCC identified numerous mutations associated with
prognosis and response to therapy [80–87]. Polybromo-1 (PBRM1), SETD2, BRCA1-associated protein-1
(BAP1), and lysine demethylase 5C (KDM5C) alterations are associated with poor prognosis [81].
Mutations in TSC1, TSC2, and mammalian target of rapamycin (mTOR) correlate with sensitivity to
everolimus [82–84]. Differences in PFS have been demonstrated in PBRM1-mutated patients treated
with sunitinib or atezolizumab plus bevacizumab compared to atezolizumab alone [86]. In patients
with confirmed MET-driven papillary RCC the MET-inhibitor savolitinib has shown promising
activity [88,89].

Spatial and temporal heterogeneity are distinctive properties of RCC and the potential cause of
the development of acquired or primary resistance. Primary resistance to angiogenesis inhibition
has been ascribed to HIF-2α expression in VHL deficient tumors and to inhibition of apoptosis by
synthesis of B-cell lymphoma-2/XL (Bcl-2/XL) [90,91]. To overcome VEGF/VEGFR blockade, cancer cells
acquire different pathways to increase angiogenesis such as PDGF/PDGFR and MET pathways [92].
Overexpression of FGFR has also been linked to the development of sunitinib resistance [93]. Knowing
this, the clinician can decide to change the therapeutic strategy or to combine multiple target drugs in
order to overcome potential resistance.

4.2. Selection of Published Clinical Trials

Literature data indicate that the detection of CTCs in patients affected by RCC is an event occurring
early during the disease course and is likely associated with more aggressive tumor features [94].
Some researchers interrogated 214 RCC patients and collected peripheral blood samples perioperatively
and during adjuvant immunotherapy. A semi-automated immunomagnetic depletion assay using the
magnetic-activated cell sorting (MACS) method was used. The findings importantly underlined that
CTCs were detected in 37% of patients, and 62% developed distant metastases or died because of RCC
within two years [94]. In addition, a perioperative prospective detection of CTCs in 60 RCC patients
treated with different surgical modalities was recently published. The authors found a significantly
greater number of CTCs after open radical nephrectomy (RN) than after laparoscopic procedures,
confirmed performing a multivariate analysis, thus speculating the need for more stringent clinical
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monitoring after RN [95]. A molecular characterization of CTCs collected from 10 metastatic RCC
patients as a post hoc analysis from the TARIBO trial [96] was recently published. Two patients with
detectable epithelial CTCs prior to systemic treatment start exhibited short PFS, however the positivity
rate of non-epithelial CTCs was higher than conventional/epithelial CTCs. Again, CTC analysis at
single-cell level in a case study showed genomic alterations (9p21.3 loss) known as drivers of metastases,
thus potentially triggering cancer progression [97].

Metastatic patients with RCC and UC starting ICIs are being prospectively examined in a cohort
study and divided into group A and group B, respectively. CTC detection as primary outcome measure
is planned in blood samples at baseline, 4 weeks, and upon disease progression, while CTC changes
over time and correlation between CTCs and tumor response are assessed as secondary outcomes.
This study aims to profile CTCs under ICIs through characterization of targets such as PD-1, PD-L1,
CTLA-4, CD27, OX40, or LAG3 (NCT02978118).

5. Strengths and Weaknesses of CTCs

Compared to tissue biopsies, CTCs better reflect tumor heterogeneity because they originate
from different tumor sites, giving an overview in the collection of genetic tumor alterations and in the
presence of different subclones. Moreover, they offer the possibility to investigate how tumor cells
become resistant to therapy since they can be evaluated longitudinally during the course of therapy,
in a non-invasive way [98,99]. Contrary to circulating DNA, CTCs offer the possibility to perform
certain assays like whole exome sequencing, splice variants analysis, information at single-cell level,
and functional assays. CTCs can also be cultured to evaluate drug resistance in vitro or in vivo [100].
However, isolation of CTCs is technically difficult due to the extremely small number of CTCs in
patient blood (one CTC per billion blood cells) and short half-life. Current isolation methods rely
on physical properties such as dimensions, elasticity, density, and expression of epithelial markers
(epithelial cell adhesion molecule (EpCAM)). The sensitivity of this system is reduced by the absence
or the loss of cytokeratin expression on tumor cells, thus becoming undetectable during CTC isolation.
Sized-based methods of isolation of CTCs in whole blood are often impaired by clotting of filter pores
by blood cells. A new combination of epithelial markers and the adoption of new methods of detection
based on multi-parameter immunofluorescence microscopy (MPIM) have improved the sensitivity
and overcome this issue [101–104]. Capture of CTM is even more difficult due to the absence of
specific biomarkers on their surface, with them being covered by macrophages, platelets, and stromal
cells. Microfluidic devices based mainly on size differences have been developed to overcome this
obstacle. [105–111]. Polymerase chain reaction (PCR)-based assays have become the most widely
used alternative to immunology-based techniques. This technique allows to detect specific mRNAs
expressed by viable CTCs [111]. (Tables 3 and 4)

Table 3. Currently available CTC methods of enrichment and detection.

Technology Advantages Disadvantages Potential Solutions

Size-based
microfluidic isolation

Easy and rapid; feasible for
epithelial cell adhesion molecule

(EpCAM)-negative CTCs and
for a wide range of tumors

Loss of smaller CTCs or
clotting of filter pores by

blood cells

Fluid-assisted separation
technology, combined methods

(CTC-iChip) [106–108]

Density gradient
centrifugation

Operability; feasible for
EpCAM-negative CTCs;

Elimination of lymphocytes and
mononuclear cells

Loss of some CTCs,
lack of specificity

Combination with other methods
(i.e., automated

immunofluorescence staining) [109]

Immunoaffinity High purity, visual
confirmation of CTCs

Costly, absence of
standardized markers

Use of multiple antibodies
simultaneously [110]

Microfluidics sorting device

High recovery and efficiency;
potential to recover CTCs for

molecular or IHC
characterization

Absence of standardized
methods; high

technical requirement

Combination with other methods
(i.e., RT-PCR based selection) [111]
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Table 4. Antibodies used for CTC detection in genitourinary tumors.

Antibodies for CTC Detection Application Findings

EpCAM and CD45
(CellSearch® System) Epithelial tumors EpCAM negative tumor cells may not be detected—lack of specificity

for tumor cells. Nonmalignant epithelial cells are false positive

Citokeratins (CK8/18CK-19/CK-20) Epithelial tumors Cytokeratin (CK) negative tumor cells may not be detected—poor
specificity for tumor cells

PSMA/HER2 (+size selection) Prostate cancer High cell capture efficiencies and highly pure captured cell [110]

EpCAM, HER-2 and PSA Prostate cancer High cell capture efficiency (tested on cell lines) [112] and

PSMA/CD45 Prostate cancer higher sensitivity compared to CellSearch [113]

CA9 and/or CD147 Clear cell renal cell
carcinoma (ccRCC)

CA9 and/or CD147 expression in 97.1% of patients with ccRCC
tumors (EpCAM detected only 18.6%), poor specificity [101]

CA9 (mAbG250) Clear cell renal
cell carcinoma

Lack of specificity, CAIX can also be expressed in hypoxic or necrotic
tissues regardless of their tumor origin [114]

6. Potential Application

The first obstacle for the clinical application of precision oncology is to identify and select molecular
biomarkers able to predict outcome, sensitivity or resistance to a specific drug or combination therapies,
or specific drug-related adverse reactions [115,116].

In the early phase, presence of CTCs identifies more aggressive tumors that could benefit from
a close follow-up program and perhaps a more aggressive treatment at the time of clinical recurrence.
Specifically, in the case of PCa, early identification of castration-resistant status during anti-androgen
therapy could help clinicians to avoid inappropriate treatment. Additionally, the acquisition of new
somatic mutation during treatment such as DNA repair genes alterations or other targetable genes
might drive the selection of a more customized treatment plan. In UC scenario, CTC detection after
surgery could predict those patients that could benefit more from perioperative chemotherapy since
they are at a greater risk of disease recurrence. Even in NMIBC, CTCs may be of help clinicians in
identifying those patients with shorter time to recurrence or progression, or potential candidates
for early systemic therapy. Moreover, in a pre-surgical setting, the presence of CTCs in patients
initially classified into locally confined (stage ≤II) disease is associated with an increase in stage
(stage III, IV) after surgery [117]. Hence, the assessment of CTC status could be helpful in selecting
patients who could benefit from neoadjuvant chemotherapy. In RCC, CTCs can be assessed to
detect residual or micrometastatic disease after surgery, to monitor tumor response during therapy,
to understand mechanisms of resistance, and to identify new targetable mutations that can emerge
during treatment selection. It also important to consider that the majority of information on predictive
markers such as PD-L1 or genetic characterization are obtained from the primary tumor, usually
a section of the tumor mass. Patients generally undergo multiple lines of therapy during which the
tumor undergoes genetic alteration and clone selection. The application of CTCs may overcome
the tumor heterogeneity and time evolution issues offering an overview of the tumor biology [118].
All these potential applications take into account not just the quantitative assessment of CTCs, but more
importantly their genetic content and surface biomarkers. Moreover, CTCs can be targets for anticancer
therapy. New therapeutic strategies should be directed towards preventing cancer dissemination
through the elimination of CTCs in vivo. Kim et al. tested this hypothesis in mice models using
photodynamic therapy to specifically eliminate green fluorescent protein (GFP)-expressing CTCs [119].
The elimination of CTCs demonstrated to be effective in suppressing distant metastasis and increasing
the survival of the tumor-bearing mice. In the end, CTCs offer the possibility to develop CTC-derived
3D organoid models that are of outstanding importance to identify driver genes through manipulation
with inhibitors, retrovirus, and CRISPR/Cas9 approaches [120] and to discover the molecular basis of
drug response [121].

In conclusion, CTC detection and characterization have shown potential to guide cancer
treatment and provide valuable information for patient-tailored therapies; however, the molecular
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and immunohistochemical analysis of CTCs requires further studies and explorations along with the
development of new advanced techniques that can be applicable in practice and cost-effective.
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