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Abstract: Photoperiod is one of the important factors leading to seasonal reproduction of sheep.
However, the molecular mechanisms underlying the photoperiod regulation of seasonal reproduction
remain poorly understood. In this study, we compared the expression profiles of mRNAs, lncRNAs,
and circRNAs in uterine tissues from Sunite sheep during three different photoperiods, namely,
the short photoperiod (SP), short transfer to long photoperiod (SLP), and long photoperiod (LP).
The results showed that 298, 403, and 378 differentially expressed (DE) mRNAs, 171, 491, and 499
DE lncRNAs, and 124, 270, and 400 DE circRNAs were identified between SP and LP, between
SP and SLP, and between LP and SLP, respectively. Furthermore, functional enrichment analysis
showed that the differentially expressed RNAs were mainly involved in the GnRH signaling pathway,
thyroid hormone synthesis, and thyroid hormone signaling pathway. In addition, co-expression
networks of lncRNA–mRNA were constructed based on the correlation analysis between the
differentially expressed RNAs. Our study provides new insights into the expression changes of RNAs
in different photoperiods, which might contribute to understanding the molecular mechanisms of
seasonal reproduction in sheep.
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1. Introduction

Reproduction has a critical impact on the profitability of sheep production, but seasonal
reproduction is an important factor limiting the reproductive efficiency of sheep. Seasonal reproduction
can be categorized as long-day (LD) breeders and short-day (SD) breeders [1], of which sheep
are short-day breeders, and reducing the day length promotes the seasonal onset of the cycling
activity [2]. Seasonal reproduction is strictly regulated by seasonal changes in relative day length
and night length [3]. Recent studies have shown that, in mammals, light information is received by
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photoreceptors in the retina and transmitted to the pineal gland, where it inhibits the synthesis and
secretion of melatonin, which is essential for seasonal reproduction [4–7]. In sheep, Small Tail Han
sheep exhibit reproductive behavior all year round [8]. In contrast, Sunite sheep develop gonads and
display seasonal reproductive behavior during specific times of the year [9]. Therefore, the molecular
mechanism of seasonal reproduction of sheep can be better studied by using Sunite sheep as a model.
The uterus plays an important role in the reproductive process of sheep and is also involved in
the regulation of the estrous cycle, but the molecular mechanisms between the uterus and seasonal
reproduction are not fully understood [10,11]. Therefore, an in-depth understanding of the molecular
mechanisms of uterine related functions is important for studying the reproduction of sheep.

In recent years, long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) are considered
to be key regulators because they play a crucial role in transcriptional regulation of gene expression
and post-transcriptional levels [12,13]. LncRNAs are one class of ncRNAs that are more than 200
nucleotides in length and have no protein-coding potential [14,15]. Increasing evidence supports that
lncRNA-mediated gene expression is critical in ram reproduction [16]. Circular RNAs (circRNAs) are a
unique class of non-coding RNAs that are resistant to RNase degradation and have a stable structure due
to the lack of 5′ and 3′ ends [17–19]. Although the function of animal circRNAs is still being indicated,
some reports showed that circRNAs to sponge miRNAs regulate gene transcription, and regulate
mRNAs stability [20,21]. There is increasing evidence that lncRNAs and circRNAs play important roles
in the development of germ cells [22,23]. To date, the profiling of non-coding RNAs, especially circRNAs
and their roles in the reproductive processes of the uterus, remain completely unknown.

In the present study, we performed transcriptome sequencing to examine mRNAs, lncRNAs,
and circRNAs expression profiles in the uterus of sheep. We also conducted GO (Gene Ontology) and
KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analyses and constructed co-expression
networks. Our results demonstrate the molecular mechanisms that underlie the uterus’ regulation of
reproduction, thus giving us newer insights regarding the regulation of seasonal reproduction in sheep.

2. Materials and Methods

2.1. Ethics Approval

All experiments were performed following the relevant guidelines and regulations set by the
Ministry of Agriculture of the People’s Republic of China. Ethical approval on animal survival was
given by the animal ethics committee of CAAS-IAS (No. IAS2018-3).

2.2. Experimental Animals and Sample Collection

Nine ewes were selected from Urat Middle Banner, Bayan Nur City, Inner-Mongolia Autonomous
Region, China, and housed on a farm of the Tianjin Institute of Animal Sciences, Tianjin, China.
These ewes were all approximately three years old and weighed 37 kg. All animals had free access
to water and food. All animals were ovariectomized on 21 July under pentobarbital anesthesia and
received a subcutaneous Silastic estradiol implant [1]. Estradiol treatment was achieved with an inner
diameter of 3.35 mm and outer diameter of 4.65 mm, packed with 20 mg crystalline estradiol-17β
(Sigma Chemical Co., St. Louis, MO, USA). The implant was inserted into the axillary region for
2 weeks and designed to produce circulated E levels approximately 3–5 pg/mL [24]. Finally, three Sunite
sheep were moved into controlled photoperiod rooms for 42 days under an artificial short photoperiod
(SP = 8 h light, 16 h dark); three Sunite sheep were moved into controlled photoperiod rooms for
42 days under an artificial long photoperiod (LP = 16 h light, 8 h dark); and three Sunite sheep were
moved into long photoperiod controlled photoperiod rooms for 42 days after being moved into short
photoperiod controlled photoperiod rooms for 42 days (SLP). Finally, all sheep were slaughtered,
and the uterus tissue collected. All samples were immediately stored at −80 ◦C for total RNA extraction.
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2.3. RNA Extraction, Library Construction, and RNA-seq

According to the manufacturer’s instruction, total RNA was extracted from the uteri using TRIzol
(Invitrogen, Carlsbad, CA, USA). The RNA concentration, integrity, and quantity were assessed using
a Kaiao K5500 spectrophotometer (Beijing Kaiao Technology Development Co., Ltd, Beijing, China)
and a Bioanalyzer 2100 (Agilent, Santa Clara, CA, USA).

According to the manufacturer’s instruction, nine libraries (SP, n = 3; LP, n = 3; SLP, n = 3)
were constructed from 3 µg of total RNA for per sample using NEB Next Ultra Directional RNA
LibraryPrep Kit for Illumina (NEB, Ipswich, MA, USA). Before the generation of the libraries, the rRNAs
were removed using Ribo-Zero™ Gold Kits (Epicentre, Madison, WI, USA). After cluster generation,
the library preparations were sequenced on an Illumina Hiseq platform (Illumina, San Diego, CA, USA).
Raw data of the performed RNA-seq have been recorded in the SRA public database (accession number:
SRP241010).

2.4. Reference Genome Mapping and Transcriptome Assembly

Raw data in fastq format were processed through in-hoseperl scripts. In this step, clean reads were
obtained by removing reads with adapter contamination, reads that contained poly-N, and low-quality
reads from raw data. Simultaneously, the Q20, Q30, and GC contents of the clean data were calculated.
All downstream analysis was based on high-quality clean data. HiSAT2 was used to align clean reads
of each sample to the sheep reference genome Oar v 4.0 [25]. StringTie was used for transcriptome
assembly and reconstruction [26].

2.5. Identification of Potential lncRNA Candidates

LncRNAs were identified using the following workflow. (1) Transcripts > 200-nt long with >2
exons is obtained. (2) Transcripts with coverage less than 5 in all samples were removed. (3) The
different classes of class_code annotated by “u”, “i”, and “x” were retained, which corresponded to
lincRNAs, intronic lncRNAs, and anti-sense lncRNAs, respectively. (4) Used Gffcompare to compare
with annotation files to screen out known mRNAs and other non-coding RNAs (e.g., rRNAs, tRNAs,
snoRNAs, snRNAs). Transcripts without coding potential, as predicted by CNCI, CPC, PFAM,
and CPAT, were candidate lncRNAs.

2.6. Identification of circRNA

CIRI was an efficient and fast tool to identify circRNAs [27]. In order to ensure the reliability of
other circRNAs, the BWA–MEM algorithm was used to perform the sequence splitting comparison,
then the SAM file was scanned to find the PCC (paired chiastic clipping) and PEM (paired-end mapping)
sites, as well as the GT-AG splicing signals [28]. Finally, the sequence with the junction site is re-aligned
with the dynamic programming algorithm. CircRNAs were blasted against the circBase for annotation.
Those that could not be annotated were defined as novel circRNAs.

2.7. Analysis of Differentially Expressed (DE) Genes

The fragments per kilobase of transcript per million reads mapped (FPKM) value was used to
estimate the expression levels of mRNAs and lncRNAs, while the spliced reads per billion mappings
(SRPBM) value was utilized to determine the amount of circRNAs [29,30]. For experiments with three
biological replicates, the differentially expressed lncRNAs, circRNAs, and mRNAs were identified
using the R package DEseq2 after a negative binomial distribution [31]. We identified differentially
expressed genes with a p < 0.01 and a fold change > 2.0 between two groups as differentially expressed
lncRNAs and mRNAs, and a fold change > 2.0 and p < 0.05 between two groups as differentially
expressed circRNAs.
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2.8. Bioinformatics Analysis

The function of DE lncRNAs was predicted by the GO and KEGG analysis of their cis-
and trans-target mRNAs, which were screened based on their genomic positional relation 50-kb
upstream and downstream, for cis-target mRNAs, and based on the Pearson correlation coefficient of
lncRNA-RNA pairs being≥0.9, for trans-target mRNAs [32]. The function of DE circRNAs was revealed
via GO and KEGG analysis of their parental genes. All genes were mapped to GO terms using the
Gene Ontology database (http://www.geneontology.org), and then the functional enrichment analysis
was performed using the KEGG biological pathways database (http://www.genome.jp). Enrichment
analysis was performed on each term in GO and KEGG using a hypergeometric test. With the
calculated p < 0.05 being defined as the significant threshold, the genes were screened and enriched
for the pathways. Next, the significance of the term enrichment analysis was corrected by FDR,
and the corrected p-value (Q-value) was obtained [33,34]. If a p-value was ≤0.05, enrichment was
considered significant.

2.9. Co-Expression Network Construction

The co-expression network of common DE lncRNAs with their cis- and trans-target common
DE mRNAs were constructed using the Cytoscape software (V3.1.1) to explore the function of key
lncRNAs [35].

2.10. Gene Expression Validation by Quantitative Real-Time PCR

We used qRT-PCR to verify the gene expression levels. We used approximately 0.1 µg of each
RNA sample and reverse transcribed it into cDNA using an RT reagent. Real-time PCR was performed
at 95 ◦C for 10 min, followed by 95 ◦C for 15 s, 60 ◦C for 60 s for 45 cycles, and 72 ◦C for 30 s. qPCR was
performed on the LightCycler 480 (Roche, Basel, Sweden) using the TB Green Real-time PCR Master
Mix (TaKaRa, Dalian, China). β-Actin was used as an internal reference to normalize target gene
expression. All primers used in the qRT-PCR are shown in Table S1. Each qPCR experiment was
performed in triplicate, and the relative RNA expression values were calculated using the 2−∆∆Ct

method [36].

3. Results

3.1. Summary of Raw Sequence Reads

After removing low-quality sequences, a total of 348,470,686, 359,776,938, and 331,723,476 clean
reads with greater than 93.91% of Q30 were obtained in SP, LP, and SLP, respectively (Table 1).
Approximately 92% to 95% of the reads were successfully aligned to the Ovis aries reference genome
(Table 1).

Table 1. Summary of raw reads after quality control and mapping to the reference genome.

Sample Raw Reads
Number

Clean Reads
Number

Clean Reads
Rate (%) Q30 (%) Mapped

Reads
Mapping
Rate (%)

SP1 104,864,024 101,875,618 97.15 93.91 96,768,407 94.99
SP2 130,427,488 125,292,334 96.06 94.32 119,025,677 95.00
SP3 125,150,904 121,302,734 96.93 94.32 115,367,048 95.11
LP1 126,830,006 121,409,220 95.73 94.32 115,305,056 94.97
LP2 124,118,790 116,375,640 93.76 94.45 108,202,328 92.98
LP3 126,582,542 121,992,078 96.37 94.07 115,470,412 94.65

SLP1 111,749,300 106,892,084 95.65 94.15 100,913,471 94.41
SLP2 110,648,428 107,487,864 97.14 94.17 101,887,502 94.79
SLP3 121,906,706 117,343,528 96.26 94.35 110,324,951 94.02

http://www.geneontology.org
http://www.genome.jp
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3.2. Differential Expression Analysis of mRNAs, lncRNAs, and circRNA

A total of 19,996 mRNAs, 41,510 lncRNAs (including 2772 known lncRNAs and 38,738 novel
lncRNAs), and 13,461circRNAs were identified from three groups (SP, LP, and SLP). The maximum
proportion of intronic lncRNAs in the novel lncRNA was 57.61%, followed by lincRNAs for 34.90%
and antisense lncRNAs for a minimum proportion of 7.49% (Figure 1A). There are six types of
circRNA, of which classic circRNAs account for 81.67%, followed by overlap_exon circRNAs for 9.21%,
and antisense circRNAs for a minimum proportion of 0.30% (Figure 1B). Three comparison groups were
set according to the length of the illumination time, SP vs. LP, SP vs. SLP, and LP vs. SLP. For SP vs.
LP, 28 mRNAs, 149 lncRNAs, and 249 circRNAs were upregulated, 270 mRNAs, 254 lncRNAs, and 129
circRNAs were downregulated (Figure 1C, Tables S2–S4). For SP vs. SLP, 17 mRNAs, 107 lncRNAs,
and 420 circRNAs were upregulated, 154 mRNAs, 384 lncRNAs, and 79 circRNAs were downregulated
(Figure 1D, Tables S5–S7). For LP vs. SLP, 73 mRNAs, 74 lncRNAs, and 298 circRNAs were upregulated,
51 mRNAs, 196 lncRNAs, and 102 circRNAs were downregulated (Figure 1E, Tables S8–S10). All the
differentially expressed lncRNAs (p < 0.01), mRNAs (p < 0.01), and circRNA (p < 0.05) were statistically
significant with a fold change greater than 2.0.
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Figure 1. Gene expression characterization. (A) The type and proportion of lncRNAs. (B) The
percentage of six types of circRNAs. (C) Histogram representing the numbers of upregulated and
downregulated mRNAs and ncRNAs in sheep uteri between the short photoperiod (SP) and long
photoperiod (LP) groups. (D) Histogram representing the numbers of upregulated and downregulated
mRNAs and ncRNAs in sheep uteri between the SP and short transfer to long photoperiod (SLP) groups.
(E) Histogram representing the numbers of upregulated and downregulated mRNAs and ncRNAs in
sheep uteri between the LP and SLP groups. (F) Venn diagram representing the overlapping numbers
of upregulated lncRNA-targeted mRNAs, downregulated lncRNA-targeted mRNAs, upregulated
mRNAs, and downregulated mRNAs between the SP and LP groups. (G) Venn diagram representing
the overlapping numbers of upregulated lncRNA-targeted mRNAs, downregulated lncRNA-targeted
mRNAs, upregulated mRNAs, and downregulated mRNAs between the SP and SLP groups. (H)
Venn diagram representing the overlapping numbers of upregulated lncRNA-targeted mRNAs,
downregulated lncRNA-targeted mRNAs, upregulated mRNAs, and downregulated mRNAs between
the LP and SLP groups.
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LncRNA regulated target gene (mRNAs) expression by Cis or Trans. If the target genes of the
lncRNA are identical to the DE mRNAs, the DE mRNA may be further directly or indirectly regulated
by lncRNAs. As shown in Figure 1F–H, the Venn diagram represents the intersectional analysis
between the target mRNAs of the Cis or Trans with lncRNAs and DE mRNAs.

3.3. GO Analysis of the Biological Function of DE ncRNA

GO annotation enrichment was used to describe functions of the DE ncRNA involved in cellular
components, molecular function, and biological processes. As shown in Figure 2, the GO enrichment
analysis shows the top 10 GO terms. Between SP and LP, the DE mRNAs were most enriched,
and the meaningful terms were related to the regulation of the developmental process, developmental
process, and secretion by the cell. The targeted genes for DE lncRNAs were most enriched, and the
terms were related to the regulation of cellular metabolic process and regulation of the metabolic
process. The sourced genes for DE circRNAs were the most enriched terms and were related to cellular
component organization and macromolecule modification (Figure 2A, Tables S11–S13).

Between SP and SLP, the DE mRNAs were most enriched, and the meaningful terms were related
to negative regulation of biological process and cellular response to an organic substance. The targeted
genes for DE lncRNAs were most enriched, and the terms were related to the regulation of the cellular
metabolic process, regulation of the metabolic process, and regulation of the primary metabolic process.
The sourced genes for DE circRNAs were most enriched, and the terms were related to cellular
component organization and regulation of cellular process (Figure 2B, Tables S14–S16).

Between LP and SLP, the DE mRNAs were most enriched, and the meaningful terms were
related to the regulation of hormone levels, regulation of secretion by the cell, and hormone secretion.
The targeted genes for DE lncRNAs were most enriched, and terms were related to the developmental
process and cellular developmental process. The sourced genes for DE circRNAs were most enriched,
and the terms were related to cellular component organization and organelle organization (Figure 2C,
Tables S17–S19).
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Figure 2. GO analyses of differentially expressed mRNAs, lncRNA targets, and circRNA host genes.
(A) The top 10 enrichment biological processes for differentially expressed mRNAs, lncRNA targets,
and circRNA host genes are listed between the SP and LP groups. (B) The top 10 enrichment biological
processes for differentially expressed mRNAs, lncRNA targets, and circRNA host genes are listed
between the SP and SLP groups. (C) The top 10 enrichment biological processes for differentially
expressed mRNAs, lncRNAs target, and circRNA host genes are listed between the LP and SLP groups.
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3.4. KEGG Pathway Analysis

KEGG is a primary public pathway database. The graphic exhibition of KEGG enrichment analysis
represents the augmented scatter diagram of the selected target genes. The top 20 pathways are shown
in Figures 3–5. Between SP and LP, the DE mRNAs were enriched in protein digestion and absorption,
insulin secretion, GnRH signaling pathway, ovarian steroidogenesis, thyroid hormone synthesis,
prolactin signaling pathway, cAMP signaling pathway, carbohydrate digestion and absorption,
and thyroid hormone signaling pathway (Figure 3A, Table S20). With regard to differentially expressed
lncRNAs, targeted mRNAs were associated with pathways such as the estrogen signaling pathway and
the VEGF signaling pathway (Figure 3B, Table S21). With regard to differentially expressed circRNA,
host genes were associated with pathways such as GnRH signaling pathway and starch and sucrose
metabolism (Figure 3C, Table S22).

Between SP and SLP, the DE mRNAs were enriched in protein digestion and absorption, alanine
aspartate glutamate metabolism, and aldosterone synthesis and secretion (Figure 4A, Table S23).
With regard to differentially expressed lncRNA, targeted mRNAs were associated with pathways such
as protein processing in the endoplasmic reticulum and the MAPK signaling pathway (Figure 4B,
Table S24). With regard to differentially expressed circRNA, host genes were associated with pathways
such as the MAPK signaling pathway and fat digestion and absorption (Figure 4C, Table S25).

Between LP and SLP, the DE mRNAs were enriched in the GnRH signaling pathway, ovarian
steroidogenesis, thyroid hormone synthesis, prolactin signaling pathway, cAMP signaling pathway,
insulin secretion, protein digestion and absorption, and estrogen signaling pathway (Figure 5A,
Table S26). With regard to differentially expressed lncRNAs, targeted mRNAs were associated with
pathways such as sphingolipid metabolism, oxytocin signaling pathway, and propanoate metabolism
(Figure 5B, Table S27). With regard to differentially expressed circRNAs, host genes were associated
with pathways such as ubiquitin mediated proteolysis and fat digestion and absorption (Figure 5C,
Table S28).
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Figure 4. KEGG analyses of differentially expressed genes between the SP and SLP groups. (A) The top
20 KEGG enrichment pathways for differentially expressed mRNAs between the SP and SLP groups.
(B) The top 20 KEGG enrichment pathways for differentially expressed lncRNA target genes between
the SP and SLP groups. (C) The top 20 KEGG enrichment pathways for differentially expressed circRNA
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3.5. Co-Expression of lncRNAs-mRNAs and Function Prediction

To explore the molecular mechanism of the effect of illumination time on sheep estrus,
a co-expression network was constructed based on the expression levels of DE lncRNAs and DE
mRNAs. In the SP and LP groups, a total of 117 DE mRNAs and 93 DE lncRNAs were involved in
the network, and it consisted of 383 edges (Figure 6, Table S29). The top 5 upregulated expressed DE
mRNAs are LOC101105553, CDH9, PDZRN4, POU2AF1, and GAS2, and the top 5 downregulated
expressed DE mRNAs are SIX3, TRHR, AP3B2, CADPS, and PCSK1. These genes involved many
functions, such as regulation of the developmental process, development, pituitary gland development,
secretion, and protein metabolic process.
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represent mRNAs and lncRNAs, respectively.

In the SP and SLP groups, a total of 84 DE mRNAs and 69 DE lncRNAs were involved in the
network, and it consisted of 216 edges (Figure 7A, Table S30). The top 5 upregulated expressed DE
mRNAs are ISL1, LIN7A, HEPHL1, LOC101108321, and P2RY12, and the top 5 downregulated expressed
DE mRNAs are ABCG8, LOC101121593, EXOC3L4, LOC101102110, and IFI6. These genes involved
many functions, such as Signaling pathways regulating pluripotency of stem cells, developmental
process, ABC transporters, Cholesterol metabolism, and Cellular senescence.
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In LP and SLP groups, a total of 19 DE mRNAs and 29 DE lncRNAs were involved in the network,
and it consisted of 32 edges (Figure 7B, Table S31). The top 5 upregulated expressed DE mRNAs
are LOC101114852, SYP, SIVA1, and LINGO2, and the top 5 downregulated expressed DE mRNAs
are RGS17, MX1, SNCA, LOC101105260, and MYOC. These genes involved many functions, such as
regulation of the developmental process, developmental process, regulation of secretion, and regulation
of signaling.
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3.6. Validation of Sequencing Data by qRT-PCR

A total of thirteen genes, including six mRNAs (LHB, PRL, ATP1A2, ATP1A3, CGA, and AKT2)
related to reproduction and seven random lncRNAs (MSTRG.273909, MSTRG.87497, MSTRG.378494,
MSTRG.229415, MSTRG.353354, MSTRG.371055, and MSTRG.138183), were selected for qRT-PCR
verification. The qRT-PCR analysis showed that the expression trends in the genes were similar to the
trends in the RNA-seq results, supporting the credibility of the transcriptomics data (Figure 8A,B).
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Genes 2020, 11, 301 14 of 19

4. Discussion

Seasonal reproduction is the result of the adaptation of animal reproductive activities to
environmental changes that are essential for breeding success and survival of future generations [37].
Thus, its molecular mechanism is worth researching. More and more evidence has shown that ncRNAs
play critical roles in reproductive mechanisms [38–40]. However, comprehensive analyses of the
profiles of differentially expressed lncRNAs and circRNAs in the uterus of the seasonal reproduction
sheep have not yet been studied. So, we explored the expression profiles and predicted the potential
functions of lncRNAs and circRNAs in the uterus of the seasonal reproduction sheep using RNA-Seq
and bioinformatics analysis.

GO and KEGG pathway enrichment analyses showed that differentially expressed RNAs
were associated with pathways such as the GnRH signaling pathway, thyroid hormone synthesis,
cAMP signaling pathway, ovarian steroidogenesis, prolactin signaling pathway, carbohydrate digestion
and absorption, and thyroid hormone signaling pathway. There has been increasing evidence that
seasonal reproduction is regulated through the hypothalamic-pituitary-thyroid (HPT) axis and the
hypothalamic-pituitary-gonadal (HPG) axis [3,41–43]. In the HPT axis, thyrotropin-releasing hormone
(TRH) secreted from the hypothalamus induces the pituitary to release thyroid-stimulating hormone
(TSH), which in turn stimulates the thyroid gland to synthesize and release TH [3,43]. In the HPG
axis, GnRH is secreted from the hypothalamus and stimulates the release of luteinizing hormone and
follicle-stimulating hormone. These hormones act on the gonads, promoting gonadal development
and the production of steroid hormones [42,44–46]. Seasonal breeders activate the HPG axis through
TH during the breeding season to regulate gonad development [47,48]. Therefore, the GnRH signaling
pathway, thyroid hormone signaling pathway, cAMP signaling pathway, ovarian steroidogenesis,
prolactin signaling pathway, and their related genes, are very important for seasonal reproduction.

In this study, differentially expressed genes CGA, LOC101102411, ATP1A3, SLC26A4, ATP1A2,
AKT2, and NOTCH4 were enriched in the thyroid hormone signaling pathway. Meanwhile, ATP1A2,
ATP1A3, LOC101102411, AKT2, DRD2, FSHB, ARAP3, MAPK10, and VIPR2 were enriched in the cAMP
signaling pathway. Compared with the SP groups, CGA, LOC101102411, AKT2, DRD2, FSHB, ARAP3,
NOTCH4, ATP1A2, and ATP1A3 were upregulated in uterine tissue in the LP groups. Compared with
the LP groups, CGA, LOC101102411, ATP1A3, ATP1A2, FSHB, AKT2, and MAPK10 were downregulated
in uterine tissue in the SLP groups. It has been reported that CGA expression has a robust photoperiodic
response in melatonin-proficient CBA/N mice [49]. In quail, the expression of CGA was upregulated
under long-term exposure to long-day conditions [50]. Similarly, in this study, CGA was significantly
upregulated in LP compared with SP, and significantly downregulated in SLP compared with LP,
indicating that CGA expression was proportional to photoperiod. ATP1A3 is predominantly expressed
in photoreceptor cells and optic nerve fibers, and ATP1A2 is mainly expressed in retinal glial cells and
astrocytes in the optic nerve [51]. In mammals, light information is received by photoreceptors in
the retina and neurally transmitted to the pineal gland, where it inhibits the synthesis and secretion
of melatonin, which is crucial for seasonal reproduction [3]. ATP1A2 and ATP1A3 are significantly
upregulated in LP, suggesting that ATP1A2 and ATP1A3 may regulate the light information in
photoreceptors by positive feedback, thereby inhibiting the synthesis and secretion of melatonin.
Melatonin is a pleiotropic molecule that plays an important role in the seasonal reproduction of
animals [52]. There has been a study showing that the presence of melatonin during oocyte maturation
under the heat stress increased the gene expressions of AKT2 [53]. Similarly, in this study, AKT2 was
significantly upregulated in LP compared with SP, and significantly downregulated in SLP compared
with LP, indicating that AKT2 expression was proportional to the photoperiod. The above studies
show that AKT2 plays an important role in the seasonal reproduction of sheep.

More importantly, compared with SP, we discovered that the common DE mRNAs during the entire
photoperiod process were mainly involved in the GnRH signaling pathway, ovarian steroidogenesis,
prolactin signaling pathway, and cAMP signaling pathway. The levels of many well-known key markers,
such as GnRHR, LHB, and FSHB, for the GnRH signaling pathway and neuroactive ligand-receptor
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interaction, and LHB and FSHB for ovarian steroidogenesis and ovarian steroidogenesis, and LHB for
the prolactin signaling pathway, and FSHB for the cAMP signaling pathway, significantly changed
during the entire photoperiod process, suggesting that these pathways might play critical roles in
seasonal reproduction.

LncRNAs and circRNAs are drawing increased attention as the most popular ncRNAs, and they
participate in the regulation of different biological processes in different ways [54–56]. In this study,
it was found that lncRNA and circRNA alterations are involved in the regulatory mechanisms
of seasonal reproduction. A large number of differentially expressed lncRNAs and circRNAs
were identified. GO and KEGG pathway analyses predicted that these differentially expressed
lncRNAs and circRNAs are functionally related to hormonal regulation and metabolism-related
pathways. More importantly, significantly differentially expressed lncRNAs targeted significantly
differentially expressed mRNAs and were associated with the developmental process, pituitary
gland development, regulation of secretion, and protein metabolic process. For example, lncRNA
MSTRG.94748 was predicted to act on SIX3 through cis-targeting. SIX3 is expressed in an immature
gonadotrope cell line and inhibits transcription of common α-subunit (Cga) and GnRHR genes during
an early developmental stage [57]. In turn, lncRNA MSTRG.229415, MSTRG.247962, MSTRG.286057,
MSTRG.371055, MSTRG.378494, MSTRG.420890, MSTRG.63350, and MSTRG.87497 were predicted to
act on AKT2 through trans-targeting. AKT2 is a serine/threonine kinase and is necessary for a blastocyst’s
basic glucose metabolism; it is essential for implantation in the maternal endometrium [58,59].
The lncRNA MSTRG.137414 was predicted to act on TRHR through trans-targeting. TRHR is an
important element regulating THs synthesis and release, while seasonal breeders activate the HPG axis
through TH during the breeding season to regulate gonadal development [48,60]. Mitogen-activated
Protein Kinase Kinase Kinase 2 (MAP3K2) is an upstream MAPK kinase of the MAPK signaling
pathway that is targeted by oar_circ_0001714 and plays a critical role in cell proliferation, differentiation,
and cell migration [61,62]. From these data, it is inferred that the identified DE lncRNAs and DE
circRNAs play a critical role in the seasonal reproduction of sheep.

5. Conclusions

In summary, our study provided a genome-wide view of the expression profiling of mRNAs,
lncRNAs, and circRNAs in sheep uteri during different photoperiods. Moreover, a large number of
DE genes that may affect seasonal reproduction in sheep under different photoperiods were further
identified. We also predicted the potential role of these differentially expressed ncRNAs and constructed
the mRNA–lncRNA network to expand our understanding. Our study provides a comprehensive
basis of the expression levels of various RNAs in different photoperiods, providing new clues for
understanding the mechanism of the molecular regulation of seasonal reproduction in sheep.
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SP short photoperiod
LP long photoperiod
SLP short transfer to long photoperiod
DE differentially expressed
SD short-day
LD long-day
LncRNAs long non-coding RNAs
CircRNAs circular RNAs
qRT-PCR quantitative real-time polymerase chain reaction
PCC paired chiastic clipping
PEM paired-end mapping
FPKM fragments per kilobase of transcript per million read mapped
SRPBM spliced reads per billion mappings
FDR false discovery rate
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