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A deep learning algorithm 
for automated measurement 
of vertebral body compression 
from X‑ray images
Jae Won Seo1, Sang Heon Lim1, Jin Gyo Jeong1, Young Jae Kim2, Kwang Gi Kim1,2,4* & 
Ji Young Jeon3,4*

The vertebral compression is a significant factor for determining the prognosis of osteoporotic 
vertebral compression fractures and is generally measured manually by specialists. The consequent 
misdiagnosis or delayed diagnosis can be fatal for patients. In this study, we trained and evaluated 
the performance of a vertebral body segmentation model and a vertebral compression measurement 
model based on convolutional neural networks. For vertebral body segmentation, we used a recurrent 
residual U-Net model, with an average sensitivity of 0.934 (± 0.086), an average specificity of 0.997 
(± 0.002), an average accuracy of 0.987 (± 0.005), and an average dice similarity coefficient of 0.923 
(± 0.073). We then generated 1134 data points on the images of three vertebral bodies by labeling 
each segment of the segmented vertebral body. These were used in the vertebral compression 
measurement model based on linear regression and multi-scale residual dilated blocks. The model 
yielded an average mean absolute error of 2.637 (± 1.872) (%), an average mean square error of 13.985 
(± 24.107) (%), and an average root mean square error of 3.739 (± 2.187) (%) in fractured vertebral 
body data. The proposed algorithm has significant potential for aiding the diagnosis of vertebral 
compression fractures.

Vertebral compression fractures account for most vertebral fractures1, with approximately 1.5 million vertebral 
compression fractures occurring annually in the United States2. Many studies have been conducted on osteoporo-
tic vertebral compression fractures, which account for the largest percentage of vertebral compression fractures3.

The treatment of vertebral compression fractures varies according to the type of fracture, or Kyphotic angula-
tion measured on plain lateral radiographs. If initial vertebral height loss is measured to be over 40% and fracture 
kyphosis is measured to be over 30°, then operative treatment is generally indicated4. If conservative management 
selected, the patient is serially followed for progression of deformity. Significant progression (magnitude unde-
fined) on the vertebral height loss or kyphotic angulation is often considered a conservative treatment failure. 
Therefore, reliable and reproducible radiographic measurements are essential for clinical decision making. There 
are various radiographic measurement parameters used to vertebral compression fractures on lateral radiographs 
such as Cobb angle, vertebral compression ratio, and anterior vertebral body compression percentage (Eq. 1)5–7. 
Anterior vertebral body compression percentage (VC) is the percentage of decrease in the height of a vertebral 
body8,9. As these are done manually by observers, variability in the measurement value is bound to occur even 
if the same methods are used. There is the effect of the technical quality of the radiograph and the subsequent 
ability of the clinician to interpret it, which is encompassed by the intraobserver and interobserver variability. 
Therefore, manual measurement increases the likelihood of misdiagnosis, inter-observer variability, and delayed 
diagnosis, which can be fatal for the patient9,10. Consequently, there have been studies on various methods for 
overcoming these shortcomings11,12.

Artificial intelligence (AI) has become distinguished in medical imaging and computer vision and has dem-
onstrated positive results and exceptional performance in medical imaging applications across multiple studies13. 
The convolutional neural network (CNN), a deep learning AI algorithm, has a generalized performance with 
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higher precision than existing image processing technology and provides excellent performance in terms of 
efficiency when applied to medical images13–15.

Therefore, there has recently been a considerable amount of research on using deep learning to assist spinal 
disease diagnosis. Some studies proposed deep learning models based on CNN for segmentation vertebrae16–20. 
Some researchers proposed a cascade amplifier regression network (CARN) based on a CNN for estimating 
vertebral body height and intervertebral disc height in MR images21. While these studies have demonstrated 
promising performances and various other studies have indicated that deep learning is suitable for diagnosing 
spinal disease, to the best of our knowledge, this is the first time to directly measure the VC using a CNN.

This study proposes an algorithm that automatically segments the vertebral bodies and measures the VC 
from the spine X-ray image using a CNN-based model, thus overcoming the shortcomings of manual VC meas-
urement. Our deep learning tool for automated measurement of VC could minimize the observer variability 
in comparison with manual measurement, which can be the superior method in terms of cost-effectiveness, 
reliability and reproducibility.

Materials and methods
The proposed method involves using a segmentation and regression CNN to measure the VCR. A flow chart of 
the process is presented in Fig. 1.

We preprocessed lateral X-ray images of the vertebrae and segmented vertebral bodies (VBs) from the pre-
processed images using a vertebral body segmentation model. Three VBs were then separated from the segmented 
VB images and used as input values for the VC measurement model. Finally, the model delivered a measured VC.

Experiment setup.  The CNNs were implemented in Python 3.6.10 using Keras 2.2.5 frameworks on an 
Ubuntu 14.04 operating system and trained on a workstation equipped with four NVIDIA RTX 2080Ti GPUs 
and 128 GB of RAM.

Data acquisition and preprocessing.  This study was performed as a retrospective study with permission 
from the Institutional Review Board of the Gil Medical Center (IRB number: GDIRB2019-137). The informed 
consent was obtained from all patients at this institution. All experimental protocols were performed in accord-
ance with the relevant guidelines and regulations in compliance with the Declaration of Helsinki. 387 thoracic 
and lumbar spine lateral X-ray images with vertebral compression fractures from the 300 subjects were included 
for this study. All of these patients had vertebral compression fractures and treated by the orthopedic and neu-
rosurgery department. As it was anonymized data, only few of patient’s demographic characteristics could be 
identified. Patients ranged in age from 28 to 86 years, and the mean age was 59 years. Fractures were at T8-L5. 
A radiologist manually generated the ground truth for the segmentation. 387 lateral radiographs of thoracic 
and lumbar fractures were measured by a board-certified musculoskeletal radiologist with 10 years’ experience; 
Intraobserver Reliability: the intraclass coefficient varied from 0.70 to 0.91 for the reader.

Because of the variation in X-ray image size and pixel spacing between patients, we applied contrast-limited 
adaptive histogram equalization (CLAHE) image processing to enhance the local contrast for improving seg-
mentation of vertebral bodies (Fig. 6b) and a zero padding to set the image size to a standardized 512 × 512 pixels 
based on the original ratio.

We divided the collected 387 images into 323 and 64, about 5:1 ratio, and used 323 in the model for vertebral 
body segmentation based on CNN. The remaining 64 that were not used for training were used for performance 
evaluation. Because calculation the anterior vertebral compression needs three of anterior vertebral height, as 
shown in Fig. 4, we divided the segmented VBs from segmentation model into three using image processing 

Figure 1.   Flow chart of the proposed vertebral compression (VC) measurement process.
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except for 83 images that failed to segment. The segmentation result that satisfies the following three condi-
tions was defined as "accurate segmentation results". First, each vertebral body should be subdivided into one. 
Second, the corners of vertebral bodies should be able to be found. Third, in order to use the Eq. (1) for calculat-
ing vertebral compression, the three vertebral bodies should be adjacent to each other and divided. Therefore, 
vertebral compression measurement methods were applied except for the results that do not correspond to the 
three conditions (see Supplementary Fig. S1 online). From the process, we generated 1366, three VB images 
from segmented VBs of the 304 images. The 945 data of 1134 data were used for training vertebral measurement 
model and remained 189 were used for evaluating performance of model.

Vertebral body segmentation model based on CNN.  Because vertebral compression measurements 
are affected by the results of VB segmentation, high accuracy segmentation is required. U-net, developed mainly 
for medical image analysis, has the advantage of being able to precisely segment an image by using an insufficient 
amount of training data22–24. Therefore, we applied our data to U-net, residual U-net (ResU-net) with residual 
block applied to this U-net, and a recurrent residual U-Net (R2U-Net) with recurrent process added to ResU-
net25. Performance evaluation was performed using test data not used for training, and R2U-net, which showed 
the highest performance, was selected based on the dice similarity coefficient among the three models.

R2U-Net shows excellent performance in medical image segmentation when compared with other CNNs 
and is composed of a residual unit and a recurrent CNN model in which several convolution operations share 
one kernel weight and perform multiple iteration operations. Therefore, it has the advantage of improving the 
expression of a feature value by adding the input value to the output value of the corresponding layer via an 
element-wise operation, enabling deep structure learning and accumulating feature values.

The model is constructed four encoders and decoders comprising a recurrent convolution 2D filter (Recurrent 
Conv2D) with the time step set to two, batch normalization (BN), and an activation function rectified linear unit 
(ReLU). The encoder has four layers and comprises the Recurrent Conv2D with a 3 × 3 kernel size and a 1 × 1 
stride, BN, and the ReLU. The encoder captures context and reduces the size of the feature map via max pooling 
with a 2 × 2 kernel size and a 2 × 2 stride per layer. The decoder consists of four layers and comprises a recur-
rent upsampling convolution 2D (Recurrent Up-Conv2D) layer, BN, and ReLU. The decoder prevents spatial 
information loss by upsampling the feature map with a 2 × 2 size and concatenates the neural network used in 
the encoder. The segmentation map was extracted using Recurrent Conv2D, 1 × 1 convolution, and a sigmoid 
activation function. To use the ground truth (GT) for training, specialists manually segmented VBs. The model 
was trained for a batch size of 5, 200 epochs and a 0.001 learning rate.

Division into three vertebral bodies. 

VC measurement is performed on the lateral X-ray image of the vertebrae via a process that is primarily used 
in clinical practice and is expressed as Eq. (1)26,27 (Fig. 2). A radiologist measured the VC manually, and the 
measurements were used as the GT for the VC measurement model. The maximum percentage value for the VCs 
in the data is 59.06 (%), whereas the minimum percentage value is 0.01 (%), the mean percentage value is 8.61 
(%), and the standard deviation is 9.30 (%). Because the anterior heights of the upper and lower VBs adjacent to 
the fractured VB are required for calculating the VC for one VB, we obtained images of three VBs through the 
process shown in Fig. 3a. We labeled each VB in the segmented VB image from top to bottom and dividing the 
VB image into three units in numerical order (Fig. 3b).

(1)

Figure 2.   Vertebral X-ray image used for the training, and the anterior vertebral height used for calculating the 
vertebral compression.
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Vertebral compression measurement model based on CNN.  A multi-scale residual dilated network 
(MRDN) was employed to measure the VC using the R2U-Net output images. The proposed MRDN model adds 
multi-scale residual dilated blocks (MRDBs) to the CNN-based regression model. An MRDB is composed of a 
bottleneck layer for computation time reduction, element-wise addition layers for residual mapping28, convolu-
tion filters (Conv2D), and several dilated convolution layers (Dilated Conv2D). Dilated Conv2D has multiple 
dilation rates (DR) for extracting features through various scales of receptive fields29.

As shown in Fig. 4, six layers comprising Conv2D with a 3 × 3 kernel size and a 1 × 1 stride, BN, ReLU, and max 
pooling with a 2 × 2 kernel size were applied to extract a low-level feature map. Subsequently, because numerous 
parameters are generated, the MRDB included bottleneck layers, four Dilated Conv2D layers with 2, 4, 8, and 
16 DR, Conv2D with a 3 × 3 kernel size and a 1 × 1 stride, and Add layer was inserted only in the last part of the 
model. Every extracted feature map from the MRDB was concatenated. Finally, the VC was measured using 
global average pooling (GAP) and a linear function. The model was trained for a batch size of 8, maximum 150 
epochs and a 0.01 learning rate.

We have verified the performance of proposed model as comparing the performance of other CNN network 
models and image processing method. The selected CNN networks are ResNet5028, DenseNet12130, and CARN. 
ResNet consists of a skip connection and a bottle neck structure and showed excellent performance in a deep 
neural network through residual learning and have influenced most of the model development structures in 
recent years. DenseNet has a structure that reuses the features extracted from layers in the whole network. The 
CARN model proposed in the study most related to this paper has a structure that selectively reuses features of 
adjacent layers through an amplifier unit and has the advantage of alleviating overfitting through a local shape 
constrained manifold regularization loss function. Therefore, using our data, the models were trained, evaluated 
their performance and compared the results of performance.

Vertebral compression measurement using image processing.  To compare deep learning meth-
ods, we measured the VC using image processing. Figure 5 shows a process getting the vertex location of each 
VB to calculate anterior VB heights for deriving the VC. In the three VB from VB segmentation map (Fig. 5a), 
the vertexes and centers of each VB could be found (Fig. 5b). Using two points from the centers, the lines divide 
each of vertex to left and right part (Fig. 5c,d). Based on the lines, each vertex is defined the two parts (Fig. 5e), 
and the anterior VB heights could be gained using left points. Then VC was measured by applying the obtained 
three anterior VB heights to Eq. (1).

Figure 3.   Process and images of division into three vertebral bodies from the segmentation map. (a) Process. 
(b) Images.
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Results
Vertebral body segmentation network model.  Figure 6 shows the comparison of ground truth with 
examples of the results of three CNN-based deep learning models (that is, U-Net, ResU-Net and R2U-Net) 
applied for vertebral body segmentation. Figure 6a is an example of original lateral X-ray images and Fig. 6b is 
a preprocessed image that not used for training Fig. 6e is a ground truth image for the X-ray image of the same 
row (Fig. 6a). Figure 6c–e are the segmentation result images of Fig. 6a obtained from U-Net model, ResU-Net, 
and R2U-net in order.

Figure 4.   CNN-based artificial neural network model for vertebral compression measurement.

Figure 5.   The process of obtaining the vertex location of each VB to obtain anterior VB heights. (a) Represents 
a three vertebral body image for measurement of vertebral compression. (b) Shows the color points. The green 
points indicate centers and the blue points indicate vertexes of each vertebral body. (c, d) Shows the green lines 
which is the criterion for separating the left and right part. (e) Shows the divided points to left and right. The 
yellow points represent left vertex and the red points represent right vertex. LV, Left vertex; RV, Right vertex.
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Using the models, we compared the GT region and the predicted vertebral body region (in pixel units) to 
calculate: true positive (TP), false positive (FP), false negative (FN), and true negative (TN). Using each value, 
we verified the performance on sensitivity, specificity, accuracy, and the Dice similarity coefficient (DSC) using 
Eqs. (2)–(5). The sensitivity refers to the probability that the model correctly predicts to vertebral body region. 
The specificity is the probability that the model correctly predicts to background region. The accuracy represents 
the probability of the model to classify each pixel correctly for all areas. The DSC is an index that measures of 
similarity between the predicted result from the model and ground truth and is typically used to evaluate the per-
formance of image segmentation. The average values of the four conditional probabilities for R2U-net were: sen-
sitivity, 0.934 (± 0.086); specificity, 0.998 (± 0.002); accuracy, 0.987 (± 0.005); and DSC, 0.923 (± 0.073) (Table 1).

(2)Sensitivity =
TP

TP + FN

(3)Specificity =
TN

TN + FP

(4)Accuracy =
TP + TN

TP + TN + FP + FN

(5)Dice Similarity Coefficient(DSC) =
2TP

2TP + FP + FN

Figure 6.   Comparison of vertebral body segmentation results based on U-Net, ResU-Net and R2U-Net model 
and ground truth. (a) Original X-ray images, (b) preprocessed X-ray images (c) segmentation results from 
U-Net model, (d) segmentation results from ResU-Net (e) segmentation results from R2U-Net (f) manually 
segmented vertebral bodies.

Table 1.   Comparison of performance between three deep learning model for vertebral body 
segmentation. R2U-net showed the highest performance in the four conditional probability values, and the 
values are shown in bold. SD standard deviation, DSC dice similarity coefficient.

U-net (± SD) ResU-net (± SD) R2U-net (± SD)

Sensitivity 0.930 (± 0.116) 0.925 (± 0.065) 0.934 (± 0.086)

Specificity 0.997 (± 0.001) 0.997 (± 0.003) 0.998 (± 0.002)

Accuracy 0.987 (± 0.006) 0.987 (± 0.005) 0.987 (± 0.005)

DSC 0.903 (± 0.090) 0.920 (± 0.068) 0.923 (± 0.073)
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Vertebral compression measurement model.  Because the vertebral compression measurement is only 
performed on the fractured VB, we have evaluated a performance of the model on 83 test data with fractures 
that were not used for training. To evaluate the performance of the proposed model, we compared the manually 
measured VC and the measured results from the model. The mean absolute error (MAE), mean square error 
(MSE), and root mean square error (RMSE) were used to verify the model’s performance (Eqs. 6–8).

where xi is the compression ratio measured manually, x is the VC measured via the MRDN, and n is the number 
of test data. Table 2 shows the MAE, MSE, and RMSE according to the difference between the manual measure-
ment of vertebral body compression and the automatic measurement of vertebral body compression using two 
methods: image processing method and deep learning models based on CNN. The performance of proposed 
MRDN analysis yielded an average MAE of 2.637 (± 1.872), an average MSE of 13.985 (± 24.107), and an aver-
age RMSE of 3.739 (± 2.187). To evaluate the performance of the proposed model, we compared DenseNet121, 
ResNet50, CARN against the MRDN and image processing.

A Pearson correlation analysis of the results indicates a strong positive correlation of 0.946 (p < 0.05). 
Bland–Altman plot analysis was performed to compare the measured results of the proposed model against the 
GT. As observed inFig. 7a, 95% of the results the results from proposed model fall within the 95% confidence 
interval. Figure 7b presents the scatter plot of the automatically measured VCs from the proposed model and 
manually measured VCs used ground truth, and the regression equation.

Discussion
We propose an automated algorithm for directly measuring the VC in a lateral X-ray image of the spine. The 
algorithm consists of a R2U-Net for vertebral body segmentation and a MRDN model for VC measurement. 
The performances of vertebral compression measurement models are dependent on the results of segmenta-
tion. Therefore, we trained segmentation models (that is, U-Net, ResU-Net, and R2U-Net) and compared their 
performance. According to the comparing results, we selected R2U-Net which exhibited the best performance 
in DSC among other compared U-Net families. The model’s performances were evaluated by comparing the 
VBs obtained via the CNN model with VBs manually segmented by a radiologist. R2U-Net showed an average 
sensitivity of 0.934 (± 0.086), an average specificity of 0.998 (± 0.002), an average accuracy of 0.987 (± 0.005), and 
an average DSC of 0.923 (± 0.073), indicating accurate segmentation. The vertebral compression measurement 
model for deep learning-based regression analysis was trained, except for the segmented vertebral body images 
with inaccurate segmentation results.

We compared the results of the vertebral compression measurement method using image processing and 
the deep learning-based artificial intelligence model. In all methods, the error of the vertebral body with severe 
compression was larger than that of the vertebral body with low compression. It could be observed that the higher 
the severity of vertebral compression, the lower the performance of vertebral segmentation, and the measurement 
of vertebral compression using incorrect segmentation results increases the error rate. This is because most of our 
data consisted of treated by orthopedic and neurosurgery patients, so the data on severe vertebral compression 
were relatively insufficient for training that of data. Hence, we estimated that the imbalance of data leaded a lower 
performance in a range of data with severe vertebral compression. We could be found that this more effected 
on the measurement through the image processing method. Compared to image processing and deep learning 
methods, the performance of the deep learning model was significantly better. Anterior VB heights, a variable 
necessary to calculate VC, are measured according to the number of pixels in the segmentation results. Even 
though it is a result of good performance (DSC 90% or more), there is a difference from the GT segmentation 
map, and the difference from the manually measured VC increases when the Eq. (1) is applied to derive the VC. 

(6)MAE =
1

n

n
∑

i=1

|xi − x|

(7)MSE =
1

n

n
∑

i=1

|xi − x|2

(8)RMSE =

√

√

√

√

1

n

n
∑

i=1

|xi − x|2

Table 2.   Comparison of performance between methods using deep learning networks and image processing. 
The performance values of the proposed MRDN are shown in bold. SD standard deviation, MAE mean 
absolute error, MSE mean square error, RMSE root mean square error.

Image processing ResNet50 (± SD) DenseNet121 (± SD) CARN (± SD) Proposed MRDN (± SD)

MAE (%) 5.255 (± 0.929) 4.825 (± 1.611) 4.474 (± 0.812) 3.496 (± 2.365) 2.637 (± 1.872)

MSE (%) 48.467 (± 31.091) 45.657 (± 19.887) 40.244 (± 10.020) 22.359 (± 29.021) 13.985 (± 24.107)

RMSE (%) 6.962 (± 1.515) 6.757 (± 1.541) 6.344 (± 0.751) 4.729 (± 2.934) 3.739 (± 2.187)
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Especially, when the vertexes of the VB were not clearly visible, or in the case of a VB with severe osteoporotic 
VC, the wrong points were selected during the vertex selection process (Fig. 5). In this case, the error was very 
large. On the other hand, because the deep learning model extracts the features of the entire image and consid-
ers the relationship between the segmentation result and the manual measurement value, we predicted that the 
measurement methods using deep learning showed relatively high performance. Therefore, it is assumed that 
higher accuracy performance can be expected by performing learning by adding enough data of patients with 
severe vertebral compression in the future.

The performance of the proposed MRDN was evaluated by comparing the VC obtained via the trained model 
with the VC measured manually by a radiologist, and the evaluation results were: MAE, 2.637 (± 1.872); MSE, 
13.985 (± 24.107); and RMSE, 3.739 (± 2.187). From the Pearson correlation analysis, we found a positive correla-
tion of 0.95 at p < 0.05. We trained DenseNet121, ResNet50, and CARN models for performance comparison with 
the proposed model. From the performance comparison, the average MAE for the ResNet50 model was 4.825 
(± 1.611), 4.474 (± 0.812) for DenseNet121, and 3.496 (± 2.365) for CARN. The data used in the VC measurement 
process is a segmented map image. Therefore, we estimated that the excessively many parameters did not have 
a significant effect on measurement of VC, and that CARN and MRDN with relatively shallow depth structure 
than ResNet50 and DenseNet121 showed higher performance comparing them. Moreover, as comparing to 
MRDN and CARN, MRDN exhibited higher performance than CARN. This indicates that the receptive fields 
of various scales through the MRDBs were advantageous for extracting the features of the correlation between 
the three VBs and the VC. We calculated the compression of all normal and fractured VB. When this calculation 
is applied to a normal VB adjacent to a vertebral body in which the height of the anterior vertebral body is lost, 
it can be calculated as a negative value. Therefore, only clinically significant fractured VB were newly evaluated, 
and the results are shown in Fig. 7 and Table 2. However, the negative data were used for training process, it 
seems to make throughout the results to be measured lower than the manual measurement.

In the future, the performance is expected to improve if a superior preprocessing scheme is added and more 
data, especially fractured severe compression vertebral data, are collected for the training. In addition, because 
vertebral compression fracture diagnostic indicators include Cobb angle, intervertebral disc height loss, and VC, 
further studies on measuring these indicators are expected to improve the accuracy of a diagnosis of vertebral 
compression fractures by assisting in the interpretation of the images. Furthermore, applying this algorithm to 
the medical picture archiving and communication systems is more practical than directly measuring VC manu-
ally as is currently done in the medical field.

Data availability
The X-ray image data used to support the findings of this study are available upon request from the correspond-
ing author.

Received: 8 December 2020; Accepted: 15 June 2021

Figure 7.   Comparing and analyzing the automatically measured VCs from the proposed model and manually 
measured VCs used ground truth. (a) Bland–Altman plot analysis automatically measured VCs and manually 
measured VCs, (b) Scatter plot of correlation between the automatically measured VCs and the manually 
measured VCs.
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