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Abstract. Post‑surgical fracture nonunion (PSFN) repre‑
sents the failure to achieve cortical continuity at radiological 
examination after an orthopedic operation, which causes a 
considerable disease burden in patients with fractures. As one 
of the traditional treatment modalities, surgical therapy is asso‑
ciated with a high fracture union rate; however, post‑surgical 
complications are not negligible. Therefore, less invasive 
therapies are needed to improve the prognosis of patients 
with PSFN. Extracorporeal shock wave treatment (ESWT) is 
a noninvasive method that presents a similar efficacy profile 
and favorable safety profile compared with surgical treatment. 
However, the application and detailed mechanism of ESWT 
in patients with PSFN remain unclear. The present review 
focuses on the mechanism, efficacy, safety and prognostic 
factors of ESWT in patients with PSFN, aiming to provide a 
theoretical basis for its application and improve the prognosis 
of these patients.
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1. Introduction

Post‑surgical fracture nonunion (PSFN) is defined as failure 
to achieve cortical continuity at the fracture site as deter‑
mined by radiological examination at 6‑9 months after the 
orthopedic operation (such as osteotomies and arthrodesis), 
and had a prevalence of 4.9‑6.8% in patients with fracture 
during 2011‑2019 (1,2). PSFN causes a considerable disease 
burden in patients with fractures, including long‑term chronic 
pain, leading to disability and reducing the quality of life. 
Furthermore, it may be associated with an increased risk of 
death (3‑6). Currently, the most commonly used treatment 
modalities for patients with PSFN include drug therapy (such 
as skeleton growth factor and teriparatide) and surgical therapy 
(autogenous bone grafting and internal fixation surgery), with 
surgical therapy being regarded as the gold standard (7‑9). 
Although the union rate is as high as 70.4‑89.2% (reported in 
different countries during 2011‑2021) after surgical interven‑
tion, a non‑negligible proportion of patients with PSFN still 
face post‑surgical complications due to its invasiveness (10‑12). 
Therefore, less invasive methods are needed to improve the 
prognosis of patients with PSFN.

Extracorporeal shock wave treatment (ESWT) is a treat‑
ment modality that converts the acoustic pulses to a shock 
wave, and it delivers these short and intense acoustic energy 
impulses into the targeted bone fracture site through skin and 
superficial tissues, which then convert into the kinetic energy 
and exert their therapeutic effect (13‑15). Previous studies have 
reported the efficacy of ESWT in treating patients with frac‑
ture nonunion (14,15). For instance, a randomized controlled 
trial enrolled 126  patients with long‑bone nonunions and 
these patients received ESWT or surgical treatment (including 
intramedullary nail fixation, plate fixation and combined nail 
and plate fixation), and this study indicated that ESWT could 
achieve similar union rates compared with that achieved with 
surgical therapy (71 vs. 74%) (14). In another study, ESWT 
induced a union rate of 73% in patients with fracture nonunion, 
which was similar to that observed in patients receiving 
surgical treatment (15). However, to the best of our knowledge, 
there are no studies that comprehensively evaluated the ratio‑
nale, mechanism and implementation of ESWT in patients 
with PSFN, thus the present review aimed to address this issue.
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2. Mechanisms of ESWT in treating patients with PSFN

Restart of the union procedure. The concept of ESWT is as 
follows: The acoustic pulses are converted to a shock wave 
by the lithotripter, and the shock wave can propagate (the 
propagation of the shock wave in the media may be described 
as the propagation of sound in the media) in all types of 
media (including human soft tissue and bone). However, due 
to the different acoustic impedance of various media, its 
attenuation varies. If the acoustic impedance (which may be 
described as the resistance faced by the shock wave during 
the transmission of the medium; a higher acoustic impedance 
is associated with a higher resistance faced by the shock 
wave) is different at the interface of two substances, attenu‑
ation will occur at the interface, which may convert to other 
energies (such as kinetic energy). When a shock wave passes 
through human tissues, its energy is not easily absorbed by 
superficial tissues (such as the fat layer and muscle), but can 
directly reach the bone tissue. In the process of transmission 
to bone tissue, acoustic energy is lost, and part of the lost 
acoustic energy is converted to kinetic energy, which causes 
bone tissue damage and may further restart the bone union 
procedure (16). It has been reported that ESWT can deliver a 
high‑energy shock wave within a short life cycle (~10 msec) 
to the targeted bone fracture site (17), thus ESWT can affect 
the bone tissue without damaging the soft tissues. ESWT can 
cause tear and shear forces at transition sites, leading to the 
formation of microfractures at the targeted fracture site and 
dividing the bone with sclerosis into minor bone fragments 
(0.1‑3.0 mm3). Finally, the small bone fragments can fill the 
fracture site, acting as an autologous bone graft (18). At the 
same time, local bleeding can occur at the microfracture 
site followed by formation of hematoma, thereby restarting 
the fracture trauma, aggravating inflammatory responses, 
releasing various inflammatory cytokines (such as IL‑1β 
and IL‑6) and recruiting osteoblasts. Consequently, the bone 
healing process may be restarted (19,20).

At present, two types of ESWT are commonly applied: 
Focused ESWT (fESWT) and radial ESWT (rESWT). The 
former converts the acoustic pulses to a focused acoustic 
pressure shock wave, creating a high‑pressure spot at the 
targeted fracture nonunion site, while the latter produces 
stress waves by striking the metal applicator, affecting the 
targeted fracture nonunion (13). There are some differences 
between the fESWT and rESWT: i)  fESWT can lead to 
a higher speed of velocity of the wave in the soft tissue, 
while the speed of rESWT is slower (21); ii) the pressure of 
f‑ESWT would rise in a sharp manner during a very short 
period, while the pressure of r‑ESWT would increase in a 
linear manner with a long rise time duration; and iii)  the 
wave from fESWT is more focused on the target tissue than 
that of rESWT, which makes it easier to reach the lesion at 
depth. Therefore, fESWT is more frequently used in treating 
bone pathology with deep penetration; in addition, it applies 
high‑energy shock waves and anesthesia is commonly 
needed (21,22). By contrast, rESWT involves mid‑low‑energy 
shock waves, which are frequently used in patients with soft 
tissue disease (such as carpal tunnel syndrome) (13,23) and 
lately for treating fracture nonunion of superficial bones 
(such as navicular bone and tibia) (24,25).

Promotion of osteogenesis‑related growth factors. ESWT 
can promote fracture union via some osteogenesis‑related 
growth factors such as bone morphogenic protein 2 (BMP‑2), 
osteocalcin and TGF‑β  (26‑28). For instance, an in  vivo 
study demonstrated that ESWT could achieve improved 
tibia healing and fracture remodeling, and increase bone 
mineral density values and the bone tissue formation by 
regulating the VEGF, van Willebrand factor, proliferation 
cell nuclear antigen, BMP‑2 and osteocalcin released by the 
osteoprogenitors  (26). Another study showed that ESWT 
could improve mineral density, induce bone formation 
and increase the expression of type I collagen and osteo‑
calcin (27). Furthermore, the ESWT has also been reported 
to be involved in the regulation of osteogenesis‑related 
growth factors, such as TGF‑β, which further participates in 
the fracture union (Fig. 1) (28).

Activation of osteoblasts and deactivation of osteoclasts. 
ESWT regulates osteoblast differentiation and matura‑
tion through several pathways, such as the TGF‑β/SMAD2 
signaling pathway (29), and the differentiation and matura‑
tion of the osteoblasts is reported to be associated with new 
bone formation and development (29,30). Furthermore, it has 
been reported that ESWT promotes the differentiation of 
chondroblasts both in vivo and in vitro, which further induces 
endochondral ossification and implies its potential in facili‑
tating fracture union (31).

In addition, another study established an osteoporosis rat 
model and treated the rats with ESWT, finding that ESWT 
could suppress the osteoclast activity and further promote 
bone healing  (32‑34) (Fig.  1). During this process, the 
actin‑bundling protein L‑plastin (LPL) may serve a funda‑
mental role. It has been reported that LPL may be regulated 
following the regulation effect of receptor activator of NF‑κB 
on the PI3K/AKT/specific protein 1, and the deletion of LPL 
may inhibit preosteoclast fusion by regulating the formation of 
filopodia, which further participate in the bone union proce‑
dure (35).

Differentiation of human mesenchymal stem cells (MSCs). 
Chen  et  al  (36) demonstrated that ESWT promoted the 
proliferation, survival and migration of MSCs. In addition, 
the same study revealed that ESWT was also involved in 
osteogenic differentiation through several mechanisms such 
as: i) Enhancement of the activity of alkaline phosphatase; 
and ii) regulation of the expression of runt‑related transcrip‑
tion factor‑2, type I collagen, osteocalcin and osteopontin. In 
another study, ESWT with 0.4‑mJ/mm2 energy flux density 
was able to double the proliferation rate of MSCs (37). At 
the same time, ESWT also enhanced the differentiation of 
MSCs into osteoblasts, which implied its potential role in 
promoting fracture union (37). Chen et al (38) performed an 
in vitro experiment in which bone marrow‑derived MSCs 
were treated with ESWT, and found that ESWT could stimu‑
late the proliferation and osteogenic differentiation of bone 
marrow‑derived MSCs (Fig. 1). Further in vivo experiments in 
the same study revealed that seeding ESWT‑treated MSCs on 
poly‑lactic‑co‑glycolic acid scaffolds could induce faster bone 
formation with more mineral apposition inside the defect site 
compared with that of MSCs only (38).
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Angiogenesis. Angiogenesis serves an essential role in 
fracture union (39,40). A recent study revealed that ESWT 
could increase the protein expression levels of cell angio‑
genesis receptor VEGFR2 and angiogenesis biomarkers 
(VEGF/C‑X‑C chemokine receptor type  4/stromal cell 
derived factor‑1 axis) (41). Another study, which involved an 
in vivo mouse model with skin wounds treated with ESWT, 
indicated that ESWT could promote wound healing through 
regeneration of microcirculation and angiogenesis. In addi‑
tion, a higher ESWT pulse was associated with an improved 
recovery effect  (42). Furthermore, Modena  et  al  (43) 
suggested that ESWT could activate angiogenesis by 
upregulating the angiogenesis markers (CD105 and VEGF) 
(Fig. 1).

Biomineralization. Sternecker et al (44) treated zebra mussel 
Dreissena polymorpha with ESWT and analyzed the biolog‑
ical response to evaluate the molecular mechanism of newly 
formed mineralized tissue after ESWT. The study found that 
ESWT with a 0.4 mJ/mm2 energy density could achieve an 
increment of bone mineralization compared with the control. 
This finding was further supported by a recent study that 
proposed a positive association between ESWT energy and 
the fluorescence intensity of the mineralized tissue (45). The 
two aforementioned studies suggested that ESWT promoted 
fracture union by inducing biomineralization (Fig. 1).

Others. Although there is still no definite conclusion, some 
studies have focused on the mechanism of ESWT on the 
musculoskeletal and neuromuscular system (46‑48). ESWT 
could alter the elasticity and extensibility of the muscle, which 
would further benefit the bone union (49,50). However, more 
studies are needed for further exploration.

3. Efficacy and safety of ESWT in treating patients with 
PSFN

ESWT monotherapy. In 2001, Rompe et al (51) performed 
a study on 42  patients with PSFN who were previously 
treated with pseudarthroses after fracture or corrective oste‑
otomies. All patients received fESWT with 3,000 impulses 
at 0.6 mJ/mm2 energy flux density for 50‑75 min after local 
anesthesia with a bone union rate of 72.0% at 9 months after 
fESWT. Furthermore, Elster et al (52) re‑evaluated the effi‑
cacy of fESWT in 172 patients with PSFN who underwent 
bone fixation (including external, internal or intramedullary 
fixation, casting, plaster cast, bone graft and autograft). 
The patients with PSFN received fESWT with a median 
impulse number of 4,000 at 0.38‑0.40 mJ/mm2 energy flux 
density for 20‑60 min after general or local anesthesia. The 
results indicated a fracture union rate of 80.2% after a mean 
follow‑up of 4.8±4.0 months (from the first fESWT to the 
fracture union).

Figure 1. Hypothetical flow diagram of ESWT in the treatment of patients with post‑surgical fracture nonunion. ESWT, extracorporeal shock wave treatment; 
BMP‑2, bone morphogenic protein 2; RANKL, receptor activator of NF‑κB ligand; MSCs, mesenchymal stem cells; CXCR4, C‑X‑C chemokine receptor 
type 4; SDF‑1, stromal cell derived factor‑1.
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The wide application of fESWT for the treatment of 
patients with PSFN allowed for the efficiency of rESWT in 
patients with PSFN to be further recognized and revealed. 
In 2013, Zhang  et  al  (53) studied 42  patients with PSFN 
who previously received external, internal or intramedullary 
fixation. The patients were treated with rESWT at different 
shock dosages and it was found that the rESWT with 1,000 
impulses of shock waves group exhibited a fracture union 
rate of only 28.6%, which was lower compared with that in 
patients with PSFN receiving rESWT with 2,000 (85.7%) 
and 3,000 (78.6%) impulses of shock waves. Based on these 
findings, the use of an rESWT dosage of <2,000 impulses of 
shock waves was excluded from subsequent clinical trials. In 
2017, Kertzman et al (24) reported that the rESWT with 3,000 
impulses of shock waves at 0.18 mJ/mm2 energy flux density 
per session could achieve a fracture union rate of 72.7% 
at 6 months after rESWT in patients with PSFN who were 
previously treated with internal plates, nails or intramedul‑
lary/internal screw fixations. Furthermore, a recent case report 
also showed the efficacy of rESWT with 3,000 impulses of 
shock waves in a patient with PSFN (25). Studies reporting 
the efficacy of ESWT in patients with PSFN are summarized 
in Table I.

ESWT vs. surgical treatment. The aforementioned surgical 
treatment (including external, internal or intramedullary 
fixation, casting, plaster cast, bone graft and autograft) is 
regarded as the gold standard for the treatment of patients with 
PSFN (7‑9). Therefore, some studies have also compared the 
efficacy of ESWT with that of surgical treatment in patients 
with PSFN (14,16,54). In a study by Cacchio et al (14), a total 
of 126 patients with PSFN were enrolled and treated with 
fESWT at 4,000 impulses of shock waves at 0.40‑0.70 mJ/mm2 
energy flux density or with surgical treatment. A fracture 
union rate of 70‑71% was reported in the fESWT group, which 
was similar to that in the surgical treatment group (73%) (14). 
Huang et al (54) compared the efficacy of rESWT with that of 
autogenous bone grafting in patients with PSFN and showed 
that three sessions of rESWT (3,000 impulses at 80‑120 J) 
with 7‑day intervals could achieve a fracture union rate of 
87.2%, which was similar to the fracture union rate recorded 
in patients with PSFN receiving autogenous bone grafting 
(93.9%).

Furthermore, another study applied a more intensive ESWT 
method and compared the efficacy of this intensive method 
with that of surgical treatment in patients with PSFN (16). In 
detail, a total of 65 patients with PSFN who were previously 
treated with open reduction and internal fixation were enrolled. 
fESWT or intramedullary nailing were applied in patients 
with PSFN. In the fESWT group, all patients received three 
courses of fESWT. At each course, these patients received the 
fESWT for 10 min each, twice a week, for up to 4 weeks. The 
patients in the surgical group received the normal intramedul‑
lary nailing surgical treatment instead. The study found that 
the fracture union rate could increase to 97.0% in the fESWT 
group, which was higher compared with that in the surgical 
group (75.0%) (16) (Table I).

ESWT combined with other treatment modalit ies. 
Wang et al (55) compared the efficacy of fESWT combined 

with bone marrow grafting with fESWT alone in 42 patients 
with PSFN previously treated with external, internal or intra‑
medullary fixation. fESWT with 2,000 impulses plus the 
autologous bone marrow grafting could achieve a fracture 
union rate of 84.2%, which was numerically but not statisti‑
cally significantly higher compared with that in patients with 
PSFN receiving fESWT monotherapy (82.6%). Jin et al (56) 
determined the efficacy of rESWT with autologous cell 
growth factor injection. rESWT with 3,000 impulses and 
0.54 mJ/mm2 energy flux density plus autologous cell growth 
factor injection could achieve a fracture union rate of 95.8%, 
which was higher compared with that in the rESWT group 
(75.0%) (Table I).

Safety. The safety profile of ESWT in patients with PSFN is 
generally considered acceptable (14,16,24,51,54). The most 
common adverse events (AEs) include skin‑ and blood‑related 
AEs such as local edema, subcutaneous hematoma and 
peripheral blood vessel damage  (14,16,24,51,54). Only a 
minor proportion of patients report pain (24). In addition to 
the common AEs, certain patients with PSFN may suffer 
from infection, blisters and skin ulceration (16,54). The safety 
profile of ESWT in PSFN is summarized in Table II.

4. Prognostic factors for patients with PSFN

Prognostic factors of fracture union in PSFN. Certain studies 
have explored the predictive factors for fracture union in 
patients with PSFN receiving secondary surgery  (57‑61). 
These prognostic factors mainly focused on demographic 
characteristics (such as tobacco usage) and the recovery status 
of the fracture nonunion (including the dislocation distance, 
nonunion site and the occurrence of callus in the cortex) (57‑61). 
In a study by Gvozdenovic et al (57), patients with PSFN and 
minor dislocation (vs. those PSFN with greater dislocation) 
at the union site exhibited a higher fracture union rate after 
the second surgical treatment. In a study by Konda et al (59), 
lower extremity nonunion, tobacco use, worker's compensation 
insurance (which is associated with longer time to return to 
work and worse functional outcomes following the surgery), 
radiographic bone loss and preoperative short musculoskeletal 
function assessment function index were associated with frac‑
ture nonunion in patients with PSFN. In patients with PSFN 
and femoral neck nonunion, the predictive factors for revi‑
sion surgery included a higher preoperative neck shortening 
ratio (60). In a study by Christiano et al (61), the presentation 
of the callus and the invisible fracture line in the cortex could 
also predict fracture nonunion.

A recent study established a model based on contrast-
enhanced ultrasound that was applied to predict the union rate 
for patients with PSFN. The study showed that the peak enhance‑
ment, wash‑in area under the curve (defined as the integral of 
the signal intensity over time until peak enhancement is reached) 
and wash‑in perfusion index (defined as the ratio of wash‑in area 
under the curve to rise time) at the nonunion site were increased 
in patients with PSFN and fracture union compared with those 
in patients with PSFN and fracture nonunion (60).

Prognostic factors of ESWT in treating fracture union 
in PSFN. Although only a small number of studies have 
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Table I. Information on the studies reporting the efficacy of ESWT in patients with post‑surgical fracture nonunion.

A, Efficacy of ESWT monotherapy

	 Treatment modality	 Fracture union rate
	---------------------------------------------------------------	------------------------------------------ 
First author/s,	 Study 	 No. of	 Previous surgery type	 Intervention	 Control	 Intervention	 Control	
year	 type	 cases	 for fracture					     (Refs.)

Rompe et al, 	 Cohort	 42	 Pseudarthroses after	 fESWT	 ‑	 72.0% 	 ‑	 (51)
2001			   fracture or corrective			   (31/43)		
			   osteotomies					   
Elster et al, 	 Cohort	 172	 Fixation (including	 fESWT	 ‑	 80.2% 	 ‑	 (52)
2009			   external, internal or			   (138/172)		
			   intramedullary fixation,					   
			   casting, plaster cast,					   
			   bone graft and autograft)					   
Zhang et al, 	 Cohort	 42	 External, internal or	 rESWT with	 rESWT with	 Group 1,	 78.6% 	 (53)
2013			   intramedullary fixation	 1,000 (group 1)	 3,000 shock	 28.6% 	 (11/14)	
				    and 2,000	 dosages	 (4/14);
				    (group 2)		  and group 2,		
				    shock dosages		  85.7%
						      (12/14)		
Kertzman et al,	 Cohort	 22	 Internal plates, nails	 rESWT	 ‑	 72.7% 	 ‑	 (24)
2017			   and intramedullary/ 			   (16/22)		
			   internal screw fixations					   
Yue et al, 	 Case 	 1	 Intramedullary nailing	 rESWT	 ‑	 100.0% 	 ‑	 (25)
2021	 report					     (1/1)		

B, ESWT compared with surgical treatment

	 Treatment modality	 Fracture union rate
	---------------------------------------------------------------	------------------------------------------ 
First author/s,	 Study 	 No. of	 Previous surgery type	 Intervention	 Control	 Intervention	 Control	
year	 type	 cases	 for fracture					     (Refs.)

Cacchio et al, 	 RCT	 126	 Orthopedic operation	 Group 1,	 Surgical 	 Group 1,	 73.0% 	 (14)
2009				    fESWT with	 treatment	 70.0% 	 (28/38)	
				    Dornier 		  (26/37); and		
				    lithotripter; and		  group 2,		
				    group 2, fESWT		  71.0% 		
				    with Storz		  (27/38)		
				    lithotripter				  
Huang et al, 	 RCT	 72	 External, 	 rESWT	 Autogenous 	 87.2% 	 93.9% 	 (54)
2015			   intramedullary fixation		  bone grafting	 (31/35)	 (29/31)	
Wu et al, 2021	 RCT	 65	 Intramedullary nailing	 fESWT	 Intramedullary 	 97.0% 	 75.0% 	 (16)
					     nailing	 (32/33)	 (24/32)	

C, ESWT combined with other therapy compared with ESWT monotherapy

	 Treatment modality	 Fracture union rate
	---------------------------------------------------------------	------------------------------------------ 
First author/s,	 Study 	 No. of	 Previous surgery type	 Intervention	 Control	 Intervention	 Control	
 year	 type	 cases	 for fracture					     (Refs.)

Wang et al, 	 Cohort	 42	 External, internal or	 fESWT with	 fESWT	 84.2% 	 82.6% 	 (55)
2006			   intramedullary fixation	 bone marrow		  (16/19)	 (19/23)	
				    grafting				  
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reported the predictive factors for fracture union in patients 
with PSFN receiving ESWT, previous evidence has revealed 
that the shock wave treatment (vs. no treatment) was 
associated with an increased union rate in patients with 
PSFN (24,52,62). In addition, a shorter time between fracture 
and first shock wave treatment, a shorter interval between 
the fracture and the surgery, a good intramedullary stabiliza‑
tion, and an increased number of extracorporeal shock wave 
therapy treatments were associated with a higher fracture 
union rate (24,52,62).

5. Prospects and limitations

Apart from ESWT, several studies have reported advances 
of the treatment in bone regeneration, such as bone 
organoid, physical and chemical crosslinked hydrogels, 
polyether‑ether‑ketone (PEEK) and double‑network metallo‑
polymer hydrogels (63‑66). For instance, one study reported 
that the bone organoid was constructed in vitro, which could 
simulate the biological function of organs in vivo, and a 
potential strategy for the construction of bone organoids and 

their application in bone reconstruction was described (63). 
Another study clarified that biomimetic hydrogels with 
injectability and compatibility may serve an essential role in 
bone defect reconstruction, benefiting from their numerous 
advantages, such as extensive selectivity, rapid gel‑forming 
capacity, tunable mechanical properties and good biocom‑
patibility (64).

However, several challenges should be considered before 
the aforemetioned advances of the treatment's broad applica‑
tion, such as the poor bonding of PEEK with bone and soft 
tissue (65). In terms of the ESWT, several limitations should 
also be noted: i) ESWT has a dose‑dependent efficacy but 
an excessive dose would lead to excessive damage, while an 
insufficient dose would not reach the optimal efficacy, thus 
finding the optimal dose is a critical issue that clinicians 
should consider (53); ii) its effect on other tissues and organs 
should be studied more extensively; and iii) the construction 
of ESWT equipment deserves further study. Hence, for the 
more wide application of these advance methods (including 
the ESWT) in the treatment of PSFN, more studies are still 
needed.

Table I. Continued.

C, ESWT combined with other therapy compared with ESWT monotherapy

	 Treatment modality	 Fracture union rate
	---------------------------------------------------------------	------------------------------------------ 
First author/s,	 Study 	 No. of	 Previous surgery type	 Intervention	 Control	 Intervention	 Control	
 year	 type	 cases	 for fracture					     (Refs.)

Jin et al, 2018	 RCT	 48	 Open reduction and	 rESWT with	 rESWT	 95.8% 	 75.0% 	 (56)
			   internal fixation	 autologous cell		  (23/24)	 (18/24)	
				    growth factor				  
				    injection				  

ESWT, extracorporeal shock wave treatment; rESWT, radial ESWT; fESWT, focused ESWT; RCT, randomized controlled trial.

Table II. Safety profile of ESWT in patients with post‑surgical fracture nonunion.

First author/s, year	 ESWT type	 Common AEs	 (Refs.)

Rompe et al, 2001	 fESWT	 Transient local hematoma	 (51)
Elster et al, 2009	 fESWT	 Dose‑related local edema, cutaneous petechial hemorrhage and	 (52)
		  subcutaneous hematoma	
Zhang et al, 2013	 rESWT	 N/R	 (53)
Kertzman et al, 2017	 rESWT	 Pain	 (24)
Yue et al, 2021	 rESWT	 None	 (25)
Cacchio et al, 2009	 fESWT	 Hematomas	 (14)
Huang et al, 2015	 rESWT	 Local edema, subcutaneous hematoma and blisters	 (54)
Wu et al, 2021	 fESWT	 Local edema, infection, skin ulceration, peripheral blood vessel	 (16)
		  damage and peripheral nerve damage	
Wang et al, 2006	 fESWT	 None	 (55)
Jin et al, 2018	 rESWT	 N/R	 (56)

AEs, adverse events; ESWT, extracorporeal shock wave treatment; rESWT, radial ESWT; fESWT, focused ESWT; N/R, not reported.
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6. Summary

Previous studies have reported that ESWT is able to promote 
fracture union in patients with PSFN (14,16,54). However, 
to the best of our knowledge, none of these studies compre‑
hensively evaluated the mechanism, implementation and 
prognostic factors of ESWT in patients with PSFN. The 
present review aimed to clarify the potential mechanism 
for ESWT in promoting the fracture union, which mainly 
includes: i) Restart of the bone union process; ii) activation of 
osteoblasts and suppression of osteoclasts by elevating osteo‑
genesis‑related growth factors, such as BMP‑2 and TGF‑β, 
promoting several pathways, such as the TGF‑β/SMAD2 
signaling pathway, and inducing the differentiation of human 
MSCs into osteoblasts; iii) promotion of angiogenesis; and 
iv) biomineralization induction. The present review summa‑
rizes the efficacy and safety of ESWT in patients with PSFN, 
showing that ESWT was effective and tolerable. Furthermore, 
the current review considered the potential prognostic factors 
for the facture nonunion and efficacy of ESWT in patients 
with PSFN, which mainly included demographic character‑
istics, such as tobacco usage, recovery status of the fracture 
nonunion, time interval between fracture and first shock 
wave treatment or surgery, and intramedullary stabilization 
status. These findings could provide a theoretical basis for 
orthopedics specialists to improve individualized treatments 
and the application of ESWT in clinical practice for patients 
with PSFN. Further high‑quality studies are required to vali‑
date these findings.
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