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diseases transmitted directly, we are able to obtain estimates for the final size of the
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1. Introduction

Diseases transmitted by vectors have been of importance and interest almost since the beginning of modern epidemio-
logical modeling. The demonstration in 1897 by Dr. R.A. Ross that malaria is transmitted from person to person through a
vector, the Anopheles mosquito, was a real landmark in the early history of mathematical epidemiology. Malaria remains a
cause of hundreds of thousands of death annually, mostly children less than five years old. Ninety per cent of malaria cases are
in Sub-Saharan Africa.

Recently, other diseases transmitted by vectors have become serious public health problems. There have been frequent
outbreaks of dengue fever and chikungunya, and the number of reported cases has been increasing rapidly recently. Ac-
cording to theWorld Health Organization, approximately 50,000,000 people worldwide are infected with dengue. Symptoms
may include fever, headaches, joint and muscle pain, and nausea, but many cases are very mild. There is no cure for dengue
fever, but most patients recover with rest and fluids. There are at least four different strains of dengue fever, and there is some
cross-immunity between strains. Dengue fever is transmitted by the mosquito Aedes aegypti, and most control strategies are
aimed at mosquito control. Another disease transmitted by vectors, in fact the same Aedes aegypti mosquito that transmits
dengue, is the Zika virus. The Zika virus was first observed about 1952, but initially cases were rare. In 2007 a major epidemic
occurred in Yap Island, Micronesia. Since April 2015 there has been a large continuing outbreak of Zika virus that started in
Brazil and has spread tomuch of South and Central America. It has become amajor concern because it is now established that
there is some correlationwith microcephaly and other very serious birth defects in babies born to infected mothers (Schuler-
Faccini, 2016). A new feature of the Zika virus that has been identified is that infection may be transmitted directly by blood
transfusions and sexual contact (Musso et al., 2015) as well as through vectors.

In the past, models for vector-transmitted diseases have been of SIR=SI or SEIR=SEI type, assuming that vectors do not
recover from infection but are infected for life. Our purpose here is to formulate and analyze models with infectivity
unications Co., Ltd.
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depending on age of infection. This allows arbitrary periods of stay in each compartment and also the inclusion of control
measures such as treatment, quarantine, or isolation.Wewill describe twomodels, beginningwith a pure vector transmission
model that may be considered as a prototype of a dengue fever model, and then proceeding to a model including both vector
and direct transmission that may be considered as a prototype of a zika virus model.

In the modeling of epidemics of directly - transmitted diseases, a final size relation connecting the basic reproduction
number and the size of the epidemic has been an essential tool for the description of the course of the epidemic. While
epidemics of vector - transmitted diseases also have a final size, there is no explicit final size relation. However, we are able to
establish an estimate with an upper bound for the final size of the epidemic. The result applies also to diseases that can be
transmitted directly as well as through a vector. There is also a lower bound, but it is too small to be useful. The establishment
of a sharper lower bound is an important open question.

2. An age of infection epidemic model

We describe an epidemic model for a vector-transmitted disease that includes the possibility of direct transmission of
disease as well. We are thinking of mosquitoes as vectors, and because a mosquito lifetime is much shorter than that of the
human hosts we must include demographics in the vector population.

We consider a constant total population sizeN of hosts (humans) with S susceptibles and total infectivity 4ðtÞ. Typically the
total infectivity is the sum of the number of members of infected classes multiplied by the relative infectivity of the class.

We assume an averagemosquitomakes a bites in unit time. Thus the total number of mosquito bites in unit time is aNv and
the number of bites received by an average host in unit time is aNv=Nh. A host makes an average of bh contacts sufficient to
receive infection in unit time fromvectors. The contact rate bh is a product of two factors, namely the number of bites received
in unit time by an average human and the probability fvh that a bite transmits infection from vector to human,

bh ¼ a fvh
Nv

Nh
:

The total number of contacts by humans sufficient to transmit infection is bhN.
The number of vectors (mosquitoes) is Nv including Sv susceptibles. Each vector makes bv contacts sufficient to receive

infection from human hosts in unit time. The contact rate bv is a product of two factors, namely the biting rate a and the
probability fhv that a bite transmits infection from human to vector,

bv ¼ a fhv:

There is a constant birth rate mN of vectors in unit time and a proportional vector death rate m in each class, so that the
v

total vector population size Nv is constant. Infected vectors do not recover from infection. The total number of contacts by
vectors sufficient to transmit infection is bvNv.

Elimination of a from the expressions for bh and bv gives

fhvbhNh ¼ fvhbvNv: (1)
This balance relationmust hold at every time t. We think ofN;Nv; a; fvh and fhv as fixed. Thus bv is also fixed and the number
of effective bites of a human in unit time is

b ¼ bv
fvh
fhv

Nv

N
:

We are assuming that the population sizes N and Nv are constant, but it is important to remember that if one of the
population sizes changes, for example because of a program to kill mosquitoes, a change in the value of b would be a
consequence.

A susceptible human receives bh effective mosquito bites in unit time, of which a fraction 4v=Nv is with an infective
mosquito. Thus the number of new infective humans in unit time is

bhS
4v

Nv
:

A similar argument shows that the number of new mosquito infections is

bvSv
4

N
:

For the Zika virus, it has been established that in addition to vector transmission of infection there may also be direct
transmission through sexual contact. The Zika virus is the first example of an infection that can be transferred both directly
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and through a vector, and it is important to include direct transmission (in this case sexual transmission) in a model. Tomodel
this, we add to the model a term a S

N 4 describing a rate a of infection of humans. This leads to the model

S0ðtÞ ¼ �bSðtÞ4vðtÞ
Nv

� a
SðtÞ
N

4ðtÞ

4ðtÞ ¼ �
Z∞

0

S0ðt � sÞPðsÞds

¼ b

Nv

Z∞

0

Sðt � sÞ4vðt � sÞPðsÞdsþ a

N

Z∞

0

Sðt � sÞ4ðt � sÞPðsÞds

S0vðtÞ ¼ mNv � mSv � bvSvðtÞ
4ðtÞ
N

4vðtÞ ¼
bv
N

Z∞

0

Svðt � sÞ4ðt � sÞe�msPvðsÞds:

(2)
In this model we are following the structure of the formulation of (Brauer, 2016; Diekmann, Heesterbeek, & Metz, 1995)
with SðtÞ denoting the density of susceptible hosts, SvðtÞ the number of susceptible vectors, PðsÞ the expected infectivity of an
individual host that became infected s time units ago, and PvðsÞ the expected infectivity of a vector that became infected s time
units ago and still alive.

The rate a is an average over the human population; if transmission is possible only from male to female this is incor-
porated into a. The case a ¼ 0may be regarded as a template for modeling diseases like dengue fever and chikungunya, while
the case a>0 may be regarded as a template for modeling diseases like the zika virus. Of course, each disease has other
aspects which should be included in a model for a specific disease.

We assume that the disease outbreak begins at time t ¼ 0, so that SðuÞ ¼ N and 4ðuÞ ¼ 4vðuÞ ¼ 0 for u<0 and there may be
a discontinuity in SðuÞ at u ¼ 0 corresponding to an initial infective distribution.

2.1. The basic reproduction number

The basic reproduction number is defined as the number of secondary disease cases caused by introducing a single
infective human into a wholly susceptible population of both hosts (humans) and vectors (mosquitoes). We separate this
calculation into the vector reproduction number ℛv and the direct reproduction number ℛd. For the model (2) the vector
reproduction number may be calculated directly. There are two stages. First, the infective human infects mosquitoes, at a rate
bvN=Nv for a time

R∞
0 PðsÞds. This produces bvN=Nv

R∞
0 PðsÞds infected mosquitoes.

The second stage is that these infective mosquitoes infect humans at a rate bNv=N for a time
R∞
0 e�msPvðsÞds, producing

bNv=N
R∞
0 e�msPvðsÞds infected humans per mosquito. The net result of these two stages is

bvN
Nv

Z∞

0

PðsÞds bNv

N

Z∞

0

e�msPvðsÞds
infected humans, and this is the vector reproduction number

ℛv ¼ bbv

Z∞

0

PðsÞds
Z∞

0

e�msPvðsÞds: (3)
If there is sexual transmission, this operates independently of the host-vector interaction, and produces a cases in unit
time for a time

R∞
0 PðsÞds, giving a simple term a

R∞
0 PðsÞds,

ℛd ¼ a

Z∞

0

PðsÞds:
The basic reproduction number is the sum of the vector and direct reproduction numbers,
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ℛ0 ¼ ℛd þℛv ¼ a

Z∞

0

PðsÞdsþ bbv

Z∞

0

PðsÞds
Z∞

0

e�msPvðsÞds: (4)
This calculation is consistent with that made in (Brauer et al., 2016; Chowell et al., 2007; Kucharski et al., 2016) and
(Towers et al., 2016).

We could also calculate the basic reproduction number by using the next generation matrix approach (van den Driessche
&Watmough, 2002). If we consider only infections of humans as new infections, with infections of mosquitoes as transitions,
we would obtain the same expression for the basic reproduction number. However, if we consider both human and
mosquitoes as new infections we would obtain a different expression. This approach would give the next generation matrix

2
66666664

a

Z∞

0

PðsÞds b
N
Nv

Z∞

0

e�msPðsÞds

bv
Nv

N

Z∞

0

PðsÞds 0

3
77777775
:

The corresponding reproduction number is the positive eigenvalue of this matrix. Since the characteristic equation of the
matrix is

l2 �ℛdl�ℛv ¼ 0;

this reproduction number is
ℛ� ¼ 1
2

�
ℛd þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℛ2

d þ 4ℛv

q �
:

This is the choice made for the reproduction number in (Gao et al., 2016) and (Pinho, Ferreira, Esteva, Barreto, Morato e
Silva, Teixeira, 2010), but our preference is for the choice (4) because it has a connection to the final size relation to be
derived later. The two reproduction numbers have the same threshold: ℛ0 � 1 if and only if ℛ� � 1.

Example: In the special case analyzed in (Brauer et al., 2016)

S0 ¼ �bS
Iv
Nv

� aS
I
N

E0 ¼ bS
Iv
Nv

þ aS
I
N
� kE

I0 ¼ kE � gI

S0v ¼ mNv � mSv � bvSv
I
N

E0v ¼ bvSv
I
N
� ðmþ hÞEv

I0v ¼ hEv � mIv

(5)

it is not difficult to calculate, using the approach in [ (Brauer & Castillo-Chavez, 2012), Section 9.7] that
PðsÞ ¼ k

k� g

h
e�gs � e�ks

i
;

Z∞

0

PðsÞds ¼ 1
g
;

Z∞

PvðsÞ ¼ 1� e�hs;

0

e�musPvðsÞds ¼ h

mðmþ hÞ ;

so that
ℛ0 ¼ bbv
h

gmðmþ hÞ þ
a

g
:
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2.2. The initial exponential growth rate

In order to determine the initial exponential growth rate from the model, a quantity that can be compared with exper-
imental data, we linearize the model (2) about the disease-free equilibrium S ¼ N;4 ¼ 0; Sv ¼ Nv;4v ¼ 0: If we let
y ¼ N � S; z ¼ Nv � Sv, we obtain the linearization

y0 ¼ b
N
Nv

4v þ a4

4ðtÞ ¼ b
N
Nv

Z∞

0

4vðt � sÞPðsÞdsþ a

Z∞

0

4ðt � sÞPðsÞds

z0 ¼ �myþ bv
Nv

N
4

4vðtÞ ¼ bv
Nv

N

Z∞

0

4ðt � sÞe�msPvðsÞds

(6)
The corresponding characteristic equation is

det

2
666666666666666664

�l a 0 b
N
Nv

0 a

Z∞

0

e�lsPðsÞds� 1 0 b
N
Nv

Z∞

0

e�lsPðsÞds

0 b
Nv

N
�ðlþ mÞ 0

0 b
Nv

N

Z∞

0

e�ðlþmÞsPvðsÞds 0 �1

3
777777777777777775

¼ 0:
We can reduce this equation to a product of two factors and an equation

lðlþ mÞ
2
4a

Z∞

0

e�lsPðsÞdsþ bbv

Z∞

0

e�lsPðsÞds
Z∞

0

e�ðlþmÞsPvðsÞds� 1

3
5 ¼ 0:
The initial exponential growth rate is the largest root of the equation

gðlÞ ¼ a

Z∞

0

e�lsPðsÞdsþ bbv

Z∞

0

e�lsPðsÞds
Z∞

0

e�ðlþmÞsPvðsÞds ¼ 1: (7)
Since gð0Þ ¼ ℛ0 >1 ifℛ0 >1, g0ðlÞ<0 for positive l, and gðlÞ/� 1 as t/∞, there is a unique positive root of the equation
gðlÞ ¼ 0, and this is the initial exponential growth rate.

The initial exponential growth rate may be measured experimentally. If the measured value is r, then from (7) we obtain

a

Z∞

0

e�rsPðsÞdsþ bbv

Z∞

0

e�rsPðsÞds
Z∞

0

e�ðrþmÞsPvðsÞds ¼ 1: (8)
In the special case a ¼ 0 with no direct disease transmission, this reduces to

bbv

Z∞

0

e�rsPðsÞds
Z∞

0

e�ðrþmÞsPvðsÞds ¼ 1;
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which determines the product bbv and gives a way to estimate the basic reproduction number from measurable quantities.
Also, because of the balance relation (1) we now have values of b and bv separately and can simulate the model (2) to estimate
the final size of the epidemic.

In the general case as0 equation (7) gives a linear relation between a and bbv, and restricts the value of a to the interval

0 � a � 1Z ∞

0
e�rsPðsÞds

:

To obtain values for a and bbv we require another quantity that can be determined experimentally and expressed in terms
of the model parameters. After an epidemic has passed, it might be possible to estimate the final size of the epidemic, and
then choose values of a and bbv satisfying (7) such that simulations of the model (2) give the observed final size. This,
however, is possible only after the epidemic has run its course. In a particular situation, it may be possible to infer that the
epidemic can not be maintained through sexual contact alone, and therefore that ℛd <1, giving a further constraint on the
possible values of a. Without further information, all we can do is to estimate reproduction numbers for various choices of a
and bbv that satisfy (8). We use the model (5) (Brauer et al., 2016) and parameter values (Towers et al., 2016) obtained for the
2015 Zika outbreak in Barranquilla, Colombia, including an analysis of the exponential rise in confirmed Zika cases identified
by the Colombian SIVIGILA surveillance system up to the end of December 2015.

k ¼ 1=7 g ¼ 1=5 m ¼ 1=9:5 h ¼ 1=13;
and the estimated measurement r ¼ 0:073. With these values we have

11bbv þ 6:48a ¼ 2:676:
This implies 0 � a � 0:413. Wemay calculateℛ0 andℛ� for several values of a in this range, assuming population sizes of
1000 humans and 4000 mosquitoes. We obtain the following results and the corresponding epidemic final sizes by simu-
lations (see Table 1).

We observe that ℛ� is not very sensitive to changes in the direct contact rate while ℛ0 is quite sensitive to changes in a.
We have also shown the results of simulations of the model (5) showing how the epidemic size depends on a. These sim-
ulations suggest that the epidemic final size does vary considerably, and without some way of estimating how many disease
cases arise from direct contact we are unable to estimate the epidemic final size. If we assume that the epidemic can not be
sustained by sexual contact alone, so that ℛd � 1, our results imply that ℛ0 is at least 3.51 and S∞ is at most 45.

In (Gao et al., 2016) it is suggested that the contribution of sexual disease transmission is small, based on estimates of
sexual activity and the probability of disease transmission. Since the probability of sexual transmission of a disease depends
strongly on the particular disease, this estimate is quite uncertain. In (Gao et al., 2016), the reproduction number obtained is
2.055, but this is the formℛ�. The values obtained in (Gao et al., 2016) for the individual reproduction numbers areℛv ¼ 3:84
and ℛd ¼ 0:136, which would give ℛ0 ¼ 3:98.

Estimates based on a possible imbalance between male and female disease prevalence are also quite dubious. Most Zika
cases are asymptomatic or quite light but the risks of serious birth defects means that diagnosis of Zika is much more
important to women than to men. If there are more female than male cases, it is not possible to distinguish between
additional cases caused by sexual contact and cases identified by higher diagnosis rates. To the best of our knowledge, there is
not yet a satisfactory resolution of this problem.

3. A final size relation

In this section we analyze the behavior of solutions of the model (2). The analysis of the model (2) without sexual
transmission is contained as the special case a ¼ 0.

First, we divide the equation for S in (2) by S and integrate from 0 to ∞, obtaining
Table 1
Reproduction number values.

a bbv ℛd ℛv ℛ0 ℛ� S∞

0 0.243 0 4.86 4.86 2.185 14
0.1 0.184 0.5 3.69 4.19 2.187 24
0.2 0.125 1.0 2.51 3.51 2.16 45
0.3 0.0665 1.5 1.335 2.835 2.13 79
0.4 0.0076 2.0 0.152 2.152 2.074 166
0.413 0 2.065 0 2.065 2.065 185
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log
S0
S∞

¼ b

Nv

Z∞

0

4vðtÞdt þ
a

N

Z∞

0

4ðtÞdt: (9)
Next, we integrate the equation for 4, obtaining

Z∞

0

4ðtÞdt ¼ �
Z∞

0

Z∞

0

S0ðt � sÞPðsÞdsdt

¼ �
Z∞

0

S0ðt � sÞdt
Z∞

0

PðsÞds

¼
Z∞

0

½Sð�sÞ � S∞�PðsÞds ¼ ðN � S∞Þ
Z∞

0

PðsÞds;

(10)

since Sð�sÞ ¼ N for s>0.
Now, we integrate the equation for 4v, obtaining

Z∞

0

4vðtÞdt ¼
bv
N

Z∞

0

Z∞

0

Svðt � sÞ4ðt � sÞe�msPvðsÞdsdt

¼ bv
N

Z∞

0

2
4Z∞

0

Svðt � sÞ4ðt � sÞdt
i
e�msPvðsÞds

¼ bv
N

Z∞

0

2
4Zt

0

Svðt � sÞ4ðt � sÞdt
i
e�msPvðsÞds

¼ bv
N

Z∞

0

2
4Z∞

0

SvðuÞ4ðuÞdu
i
e�msPvðsÞds

¼ bv
N

Z∞

0

SvðuÞ4ðuÞdt
Z∞

0

e�msPvðsÞds

(11)
Next, we write

Z∞

0

SvðuÞPðuÞdu ¼ S�v

Z∞

0

PðuÞdu;
where

min Sv � S�v � max Sv � Nv;
so that (11) becomes

Z∞

0

4vðtÞdt ¼ S�v
bv
N

Z∞

0

4ðuÞdt
Z∞

0

e�msPvðsÞds

¼ S�v
bv
N
½N � S∞�

Z∞

0

PðuÞdt
Z∞

0

e�msPvðsÞds:
(12)
Finally, substitution of (11) and (12) into (9) gives
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log
S0
S∞

¼
�
S�v
Nv

ℛv þℛd

��
1� S∞

N

�
: (13)
In particular, since S�v � Nv, we have a final size estimate

log
S0
S∞

� ℛ0

�
1� S∞

N

�
:

In order to obtain a lower bound estimate for logðS0=S∞Þ, we need an estimate for the minimum of Sv. In order to proceed
further, we assume that, since the vector population has a much faster time scale than the host population, the vector
population is at a quasi-steady-state equilibrium, given by finding solutions of the equations for Sv and 4v in (2) that are
constant functions of t, but may depend on SðtÞ and 4ðtÞ. Thus, we assume

Sv
Nv

¼ m

bv
4
N þ m
Since 4 � N, we have

Sv
Nv

� m

bv þ m
;

and thus
log
S0
S∞

�
�

m

mþ bv
ℛv þℛd

��
1� S∞

N

�
: (14)
Combining (3) and (14), we have the final size estimates

�
m

mþ bv
ℛv þℛd

��
1� S∞

N

�
� log

S0
S∞

� ℛ0

�
1� S∞

N

�
(15)
Numerical simulations indicate that logðS0=S∞Þ is close to ℛ0½1� S∞=N�.

4. Discussion

We have examined an age of infection vector-transmission epidemic model that may be applied to dengue fever, chi-
kungunya virus, and Zika virus outbreaks. We have obtained expressions for the reproduction number and ways of estimating
the initial exponential growth rate, so that the reproduction number may be estimated from parameters that can be esti-
mated. There are no exact analytic solutions for final size relation, but we have a sharp upper bound for the epidemic size.

While Zika and chikungunya virus have only one serotype in humans, dengue virus has four serotypes, with potential
cross-immunity between strains. The models we have examined do not include the effect of multiple serotypes.

In spite of these shortcomings, our models can be used to simulate the effects of different control strategies, including
mosquito control, reduction of contact with mosquitoes, and avoidance of sexual contact (for Zika). It might be worthwhile to
formulate and analyze a Zika model with hosts divided into males and females, but at present it is unlikely that such a more
detailed model would provide better information about the development of the epidemic.

It should be pointed out that control measures which decrease the mosquito population will decrease the rate of bites of
humans because of the balance relation (1), and will thus decrease the reproduction number. However, measures that protect
some humans from being bitten will only redistribute bites to other humans and thus introduce heterogeneity of bites and
require an adjustment to the model to include two classes of humans with different rates of being bitten. It is not clear what
effect this might have on the epidemic final size; it may even increase the number of infections. This suggests that control
strategies aimed at decreasing the number of mosquitoes may be much more effective than measures protecting against
being bitten. However, it is possible that if the supply of human victims is insufficient, mosquitoes may shift some of their
bites to animals. This would destroy the balance equation, andwould lead to a need tomodel vector disease transmissionwith
more than one host species.

From a mathematical perspective, we point out that for vector disease transmission models there is a problem in the
calculation of the reproduction number using the next generation matrix approach. If there is no direct transmission, the
usual next generation matrix approach gives a square root in the reproduction number because it views the transition from
host to vector to host as two generations. It is common, but by no means universal, to remove this square root from the
reproduction number. A model with both direct and vector disease transmission such as (2) indicates that removal of the
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square root is logically sound, and that care is needed in the calculation of the reproduction number for a vector transmission
model.
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