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ABSTRACT In interspecific hybrids between Drosophila melanogaster and Drosophila simulans, the D.
simulans nucleoporin-encoding Nup96sim and Nup160sim can cause recessive lethality if the hybrid does
not also inherit the D. simulans X chromosome. In addition, Nup160sim leads to recessive female sterility in
the D. melanogaster genetic background. Here, we conducted carefully controlled crosses to better
understand the relationship between Nup96sim and Nup160sim. Nup96sim did not lead to female sterility
in the D. melanogaster genetic background, and double introgression of Nup96sim and Nup160sim did not
generally lead to lethality when one was heterozygous and the other homozygous (hemizygous). It appears
that introgression of additional autosomal D. simulans genes is necessary to cause lethality and that the
effect of the introgression is dominant to D. melanogaster alleles. Interestingly, the genetic background
affected dominance of Nup96sim, and double introgression carrying homozygous Nup96sim and hemizy-
gous Nup160sim resulted in lethality. Thus, Nup96sim and Nup160sim seem to be two components of the
same incompatibility.
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A handful of hybrid incompatibility genes that are responsible for
reproductive isolation between species have been identified (Johnson
2010; Presgraves 2010; Maheshwari and Barbash 2011; Ferree and
Prasad 2012; Sawamura 2012). Surprisingly, two of these genes in
the genusDrosophila encode the nuclear pore proteins (nucleoporins =
Nups), which were previously thought to be functionally conserved
among diverse organisms. Approximately 30 different Nups assemble
to form the nuclear pore complex (NPC) and are essential for nucleo-
cytoplasmic transport, gene regulation, and kinetochore formation
(Bapteste et al. 2005; Strambio-De-Castillia et al. 2010; Adams and
Wente 2013). Nup96 and Nup160 have been identified as reproductive
isolation genes by deficiency mapping in which male hybrids were
rescued from the independent lethality by Lethal hybrid rescue (Lhr)

mutation of D. simulans. D. melanogaster/D. simulans hybrids carry-
ing the D. simulans Nup96sim and Nup160sim are lethal in hemizygotes
(or homozygotes) if they do not inherit the D. simulans X chromo-
some (Figure 1, A and B), and Nup160sim leads to recessive female
sterility in the D. melanogaster genetic background (Presgraves et al.
2003; Tang and Presgraves 2009; Sawamura et al. 2010). Furthermore,
positive natural selection and intermolecular coevolution have been
demonstrated for several Nup genes including Nup96 and Nup160 in
the genus Drosophila (Presgraves and Stephan 2007; Clark and Aquadro
2010; Mensch et al. 2013; Nolte et al. 2013).

Both Nup96 and Nup160 (yeast homologs are Nup145C and
Nup120, respectively) are components of the conserved Nup1072160
complex that has a role in the initial assembly of the NPC and func-
tions as a stable anchoring point for other Nups—referred to as cen-
tral scaffold Nups (Walther et al. 2003; Rasala et al. 2006; Grossman
et al. 2012). The Nup1072160 complex forms a Y-shaped structure
composed of two short arms—one composed of Nup160 and the
other of Nup85—and an extended stalk that is connected to the two
arms by Nup96 (Lutzmann et al. 2002; Brohawn et al. 2008; Bilokapic
and Schwartz 2012; Szymborska et al. 2013). Because Nup96 and
Nup160 interact directly (Leducq et al. 2012), it is reasonable to
speculate that the lethality caused by Nup96sim and that caused by
Nup160sim in the D. melanogaster/D. simulans hybrids are two distinct
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aspects of the same incompatibility. In this context, it is notable that
protein2protein interactions between Nup96 and Nup160 are spe-
cies-specific, as revealed in yeast sibling species and their hybrids
(Leducq et al. 2012).

We conducted interspecific crosses of Drosophila to address the
following three questions. (1) Does Nup96sim lead to female sterility in
the D. melanogaster genetic background as seen with Nup160sim in-
trogression? (2) Does the Nup96sim and Nup160sim double introgres-
sion lead to lethality when one is heterozygous and the other
homozygous (or hemizygous) in the D. melanogaster background
(Figure 1, C and D)? (3) Does the Nup96sim and Nup160sim double
introgression lead to lethality when both are homozygous (or hemi-
zygous) in the D. melanogaster background (Figure 1E)? Based on
these three tests, we ask whether the double introgression of
Nup96sim and Nup160sim is necessary and sufficient condition for
the incompatibility to the gene(s) on the D. melanogastere X chro-
mosome. Dominance of the genes and the possible involvement of
different genes to the hybrid lethality will also be discussed.

MATERIALS AND METHODS
A genomic fragment of ~20.9 kb, including three open reading frames
(CG10208, Nup98-96, and mbc), was amplified from DSM1-010P23,
a D. simulans bacterial artificial chromosome clone established by the
National BioResource Project Drosophila (Murakami et al. 2008), by
polymerase chain reaction using the primers LA-AscI-F (59-AG-
GCGCGCCTTACTTGCGACGGAACACCTCGACCTTGAG-39), LA-
BamHI-R (59-CGCGGATCCACGCACCTGGACAATGCAAGAGGG
TGATTTG-39), RA-BamHI-F (59-CGCGGATCCGACCAGCATGAG
CATTGCCAACAGCATGCT-39), and RA-PacI-R (59-ACCTTAAT-
TAATCAGCACACCGGGCATAAGGTATCCCTGCTC-39). This frag-
ment was subcloned into the vector attB-P[acman]-CmR by homologous
recombination (Venken et al. 2006). The construct was injected into
embryos from D. melanogaster strain y sc v P{y+t7.7 = nos-phiC31\int.
NSL}X; P{y+t7.7 = CaryP}attP2 to allow for fC31-targeted, site-specific
recombination into the attP landing site (cytological position 68A4 on
chromosome 3) (Groth et al. 2004; Bateman et al. 2006; Bischof et al.
2007). The resultant transgene is abbreviated as P{w+ Nup96sim} in the
present report.

A P{w+ Nup96sim} e Nup98-96339 chromosome was made by re-
combination between P{w+ Nup96sim} and e Nup98-96339 chromosomes
in the w genetic background (Figure 2). Here w+ (68A4; red eye color)
and e (93C7-D1; ebony/dark body color) were used as visible markers,
and Nup98-96 is at 95B1-5. To confirm that the recombinant chromo-
some carried the Nup98-96339 mutation and that it was not lost by rare
double recombination between e and Nup98-96339, P{w+ Nup96sim} was
removed from the established chromosome by further recombination
with a wild-type chromosome using the w+ and e markers. The re-
sultant chromosome again exhibited recessive lethality that was not
complemented by the Nup98-96 deficiencies (Df(3R)Exel9014 and
Df(3R)BSC489), thus confirming that the chromosome examined carried
Nup98-96339. A balancer chromosome, TM3, was used to isolate the
recombinant chromosome in a heterozygous state, and CyO and SM1
were used as a chromosome 2 balancer. Int(2L)D+S is a chromosome 2
D. simulans introgression covering two cytological regions that include
Nup160sim (Sawamura et al. 2000). Of note, the Int(2L)D+S introgres-
sion also carries other Nup loci (Nup107 and Nup154), but we do not
believe that this could affect our overall conclusion of this study. When

Figure 1 Genotypes examined previously and in this study. Pairs of
bars represent chromosomes X, 2, 3, and 4 (left to right). Open bars
(dashed if the presence is not obligate) indicate chromosomes/regions
from D. melanogaster, and gray bars indicate chromosomes/regions
from D. simulans. D. simulans alleles of Nup160 and Nup96 and the
deficiencies on D. melanogaster chromosomes are also indicated. (A)
Flies of this genotype all die according to Tang and Presgraves (2009)
and Sawamura et al. (2010). (B) Flies of this genotype all die according
to Presgraves et al. (2003). (C, D) These flies are viable according
to the present analysis. (E) Flies of this genotype all die according to
the present analysis. The genotypes in (A) and (B) are usually males
carrying one X chromosome from D. melanogaster, but females car-
rying two D. melanogaster X chromosomes can also be obtained using
the attached-X system (Presgraves et al., 2003; Tang & Presgraves
2009). The genotypes in (C), (D), and (E) are females carrying two
D. melanogaster X chromosomes or males carrying one D. melanogaster
X chromosome.

Figure 2 Construction of chromosome P{w+ Nup96sim} e Nup98-96339

in the X-linked w mutant background. The w+ e recombinant (poten-
tially P{w+ Nup96sim} e Nup98-96339) is produced by crossing P{w+

Nup96sim} and e Nup98-96339.
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necessary, only Nup160sim was made hemizygous by a deficiency of
the Nup160 locus, Df(2L)Nup160M190 (Maehara et al. 2012).

RESULTS
First, we established a D. melanogaster line carrying an extra segment
of D. simulans chromosome 3 (including CG10208, Nup98-96, and
mbc) inserted at cytological position 68A4 of the same chromosome.
Note that Nup98-96 is a dicistronic gene that produces the proteins
Nup98 and Nup96 by autoproteolysis (Presgraves et al. 2003). Then,
the endogenous Nup98-96 at 95B1-5 of the line was replaced by the
recessive lethal Nup98-96339 mutant allele (Figure 2), which has a stop
codon at amino acid position 1726 (therefore, only Nup96 was af-
fected; Presgraves et al. 2003). Thus, we obtained a D. melanogaster
chromosome 3 carrying Nup96sim instead of the D. melanogaster wild-
type allele of Nup96. The resultant chromosome (P{w+ Nup96sim} e
Nup98-96339) is referred to as the Nup96sim introgression. Both male
and female Nup96sim introgression homozygotes (and hemizygotes)
were viable and fertile, and the strain homozygous for Nup96sim could
be maintained indefinitely. Although females that were homozygous
for Nup96sim and hemizygous over Df(3R)BSC489 exhibited lower
fertility than heterozygous controls (x2 = 94.5, P , 0.001 and x2 =
6.6576, P , 0.05, respectively), fertility was not decreased in Nup96sim

hemizygotes over Df(3R)Exel9014 (x2 = 1.5958, P . 0.2) (Table 1).
Therefore,Nup96sim does not lead to female sterility in theD. melanogaster
genetic background. We note the possibility that the chromosome
harboring Nup96sim might have a second-site recessive gene or genes
responsible for lower female fertility.

Next, to examine possible synergistic and/or additive effects of
Nup160sim and Nup96sim introgression, we produced w; Int(2L)D+S,
Nup160sim/CyO; Nup96sim e/+ males by conventional crosses. Then,
these males were crossed to females heterozygous for a balancer and
a mutation (or a deficiency) of Nup160 or Nup98-96. If the introgres-
sions were behaving similar to the F1 hybrid, then Nup160sim/
(Nup160sim or Df-Nup160); Nup96sim/+ is expected to be lethal; how-
ever, that is not what is observed. Instead, the Nup160sim homozygotes
(or hemizygotes) were viable in the Nup96sim heterozygous back-
ground (Figure 1C and Table 2). If the introgressions were behaving
similar to the F1 hybrid, then Nup160sim/+; Nup96sim/(Nup96sim or Df-
Nup96) is expected to be lethal; however, that is not what is observed.
Instead, the Nup96sim homozygotes (or hemizygotes) were viable in
the Nup160sim heterozygous background (Figure 1D and Table 3).
Thus, the Nup96sim and Nup160sim double introgression did not lead
to lethality when one was heterozygous and the other homozygous (or
hemizygous).

Finally, we attempted to make a strain carrying both Nup160sim

and Nup96sim introgressions maintained with chromosome 2 and 3
balancers but were not successful, presumably because Int(2L)D+S can
cause dominant male semisterility in some genetic backgrounds
(S. Parhad, personal communication). Therefore, we could not test
the viability/fertility of Nup96sim and Nup160sim double introgression
homozygotes. Instead, we made w; Df(2L)Nup160M190/SM1;
Nup96sim/TM3 females and w; Int(2L)D+S, Nup160sim/SM1;
Nup96sim/+ males by conventional crosses and crossed them. Int
(2L)D+S, Nup160sim/ Df(2L)Nup160M190; Nup96sim/+ flies were via-
ble as we previously noted (Table 2), although hemizygosity of
Nup160sim might have reduced their viability (Table 4). Unexpectedly,
we found that Int(2L)D+S, Nup160sim/ Df(2L)Nup160M190; Nup96sim/
TM3 was semilethal (Table 4). This suggests that dominance of
Nup96sim may be affected by the genetic background. Furthermore,
we found that Int(2L)D+S, Nup160sim/ Df(2L)Nup160M190; Nup96sim/
Nup96sim was also absolutely lethal (Table 4 and Figure 1E). Thus, the
protein products of Nup96sim and Nup160sim seem to interact directly.

DISCUSSION
We found that D. melanogaster females homozygous (or hemizygous)
for the Nup96sim introgression were fertile (Table 1), in contrast to
what has been observed for the Nup160sim introgression, for which
eggs produced by homozygotes (or hemizygotes) display karyogamy

n Table 2 Viability of flies homozygous (or hemizygous) for Nup160sim and heterozygous for Nup96sim

Maternal genotypea
Number of Flies

Cy w Cy w+ Cy+ w Cy+ w+ (Viabilityb)

w; Int(2L)D+S, Nup160sim/CyO
Genotype Nup160sim/+; +/+ Nup160sim/+;

Nup96sim/+
Nup160sim/Nup160sim; +/+ Nup160sim/Nup160sim;

Nup96sim/+
Females 132 202 35c 25 (0.71)c

Males 146 206 39c 35 (0.90)c

w; Df(2L)Nup160M190/CyO
Genotype (Nup160sim or

Df-Nup160)/+; +/+
(Nup160sim or
Df-Nup160)/+;
Nup96sim/+

Nup160sim/Df-Nup160; +/+ Nup160sim/Df-Nup160;
Nup96sim/+

Females 180 201 77 20 (0.26)
Males 155 188 105 68 (0.65)

Segregation ratio expected 2 2 1 1
a

Crossed with w; Int(2L)D+S, Nup160sim/CyO; Nup96sim/+ males. The balancer CyO has Cy as a dominant marker.
b

Calculated as (number of flies in the fourth class) divided by (number of flies in the third class).
c

The viability of Int(2L)D+S homozygotes was low because of linked recessive lethals that presumably accumulated on the chromosome.

n Table 1 Hatchability of eggs from females crossed with wild-
type D. melanogaster males

Maternal Genotypea
Number of Eggs

Hatchability, %Collected Hatched

Nup96sim heterozygotes
over TM3

200 191 95.5

Nup96sim homozygotes 200 106 53.0
Nup96sim hemizygotes

over Df(3R)Exel9014
200 185 92.5

Nup96sim hemizygotes
over Df(3R)BSC489

200 177 88.5

a
The full genotype of Nup96sim is P{w+ Nup96sim} e Nup98-96339.
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failure and female pronuclei never fuse to wild-type male pronuclei
(Sawamura et al. 2004). Although Nup96 and Nup160 are functionally
and structurally in close proximity in the Y-shaped Nup1072160
complex, the effects of interspecific substitution of these two compo-
nents differed. The structural position of Nup96 and Nup160 might
reflect the functional difference; Nup160 is on the surface of the pore
ring (Bilokapic and Schwartz 2012; Szymborska et al. 2013) and might
have more interactions with other proteins important for NPC
function.

We found that flies with genotypes indicated in Figure 1, C and D
were viable (Table 2 and Table 3), in contrast to the lethality observed
for those with genotypes indicated in Figure 1, A and B (Presgraves
et al. 2003; Tang and Presgraves 2009; Sawamura et al. 2010). The
primary difference between these flies is the genetic background, with
the remaining autosomal genes being from D. melanogaster in our
flies and from D. melanogaster and D. simulans (heterozygous) in the
previous studies. Apparently the presence of additional autosomal
D. simulans genes is necessary to cause lethality, and these genes
are dominant to the D. melanogaster alleles. Thus, more genes (maybe
encoding other Nups) are involved in this hybrid incompatibility.
Nup107 and Nup154 are excluded from the candidates because Int
(2L)D+S also carries these genes from D. simulans but did not exhibit
the dominant effect. One candidate for the interactant is Nup75, pre-
sumably the Drosophila homolog of Nup85. Further investigation of
this system is necessary to better understand the genetic mechanisms
of reproductive isolation.

Interestingly, dominance of Nup96sim was changed by the presence
of a balancer TM3 (Table 4). Reproductive isolation might be easily
affected by the genetic background, as has been suggested in the other
hybrid incompatibility (Lhr vs. Hmr) in the same species cross
(Matute et al. 2014; Shirata et al. 2014). Finally, double introgression
carrying homozygous Nup96sim and hemizygous Nup160sim resulted
in lethality in the hybrids (Table 4 and Figure 1E). This is the first
evidence suggesting that Nup96sim and Nup160sim are two components
of the same incompatibility.
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