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Abstract
Intoduction  Excess visceral and liver fat are known risk factors for cardiometabolic disorders. Metabolomics might allow 
for easier quantification of these ectopic fat depots, instead of using invasive and costly tools such as MRI or approximations 
such as waist circumference.
Objective  We explored the potential use of plasma metabolites as biomarkers of visceral adipose tissue (VAT) and hepatic 
triglyceride content (HTGC).
Methods  We performed a cross-sectional analysis of a subset of the Netherlands Epidemiology of Obesity study. Plasma 
metabolite profiles were determined using the Biocrates AbsoluteIDQ p150 kit in 176 individuals with normal fasting plasma 
glucose. VAT was assessed with magnetic resonance imaging and HTGC with proton-MR spectroscopy. We used linear 
regression to investigate the associations of 190 metabolite variables with VAT and HTGC.
Results  After adjustment for age, sex, total body fat, currently used approximations of visceral and liver fat, and multiple 
testing, three metabolite ratios were associated with VAT. The strongest association was the lysophosphatidylcholines to 
total phosphatidylcholines (PCs) ratio [− 14.1 (95% CI − 21.7; − 6.6) cm2 VAT per SD of metabolite concentration]. Four 
individual metabolites were associated with HTGC, especially the diacyl PCs of which C32:1 was the strongest at a 1.31 
(95% CI 1.14; 1.51) fold increased HTGC per SD of metabolite concentration.
Conclusion  Metabolomics may be a useful tool to identify biomarkers of visceral fat and liver fat content that have added 
diagnostic value over current approximations. Replication studies are required to validate the diagnostic value of these 
metabolites.
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1  Introduction

Abdominal obesity, in particular excess visceral adipose 
tissue and intra-hepatic fat, are well-established risk fac-
tors for cardiovascular disease and type 2 diabetes (Tch-
ernof and Despres 2013). Measurements of visceral fat or 
liver fat could therefore improve the prediction of cardio-
metabolic disease. Both visceral and liver fat are located 
within the abdominal cavity and can be directly assessed 
using expensive imaging techniques or invasive biopsies 
which are not feasible to perform in routine care settings. 
As proxies, easy and inexpensive measurements such as 
waist circumference (Pouliot et al. 1994) or the fatty liver 
index (Bedogni et al. 2006) are often used. Unfortunately, 
these methods are vulnerable to misclassification and 
appear to mainly discriminate between individuals with 
high or low risk of excess visceral or liver fat (Cuthbert-
son et al. 2014; Tchernof and Despres 2013; Zelber-Sagi 
et al. 2013).

In the past decade, there has been an increasing interest 
in the application of metabolomics techniques in the study 
of cardiometabolic conditions (Abu Bakar et al. 2015). 
Because metabolites are affected by both endogenous 
regulatory mechanisms as well as by interactions with the 
environment, such as diet, they are measures that poten-
tially lie close to an individuals’ phenotype which makes 
them interesting targets for biomarker research. Several 
metabolomics studies have previously been performed to 
investigate the relation between metabolites and body fat 
distribution (Bachlechner et al. 2016; Boulet et al. 2015; 
Feldman et al. 2017; Kalhan et al. 2011; Martin et al. 
2013; Rauschert et al. 2016; Siegert et al. 2013; Szyman-
ska et al. 2012). However, these studies were performed 
in selected populations such as bariatric surgery patients 
(Boulet et al. 2015) or trial participants (Szymanska et al. 
2012), did not relate metabolites to quantified measures 
of visceral or liver fat but rather to the presence/absence 
of non-alcoholic fatty liver disease (Feldman et al. 2017; 
Kalhan et  al. 2011) or approximate measures such as 
body mass index or waist circumference (Bachlechner 
et al. 2016; Rauschert et al. 2016). With some exceptions 
(Siegert et al. 2013; Szymanska et al. 2012) none of these 
studies examined the diagnostic potential of metabolites 
over current approximations such as waist circumference.

Given the difficulty of measuring intra-abdominal fat 
and limitations in previous studies, we aim here to explore 
the potential of metabolites as candidate biomarkers of 
visceral fat and liver fat in a sample of individuals from 
a population-based cohort. We examined the associations 
between metabolite concentrations, measured with a com-
mercially available, targeted mass spectrometry-based 
metabolomics panel, and directly assessed visceral fat by 

magnetic resonance imaging (MRI) and hepatic triglycer-
ide content measured by proton magnetic resonance spec-
troscopy (1H-MRS). In addition, we aimed to examine to 
what extent these metabolites provide additional informa-
tion over conventional approximation methods of visceral 
fat volume and liver fat content.

2 � Methods

2.1 � Study design and study population

The Netherlands Epidemiology of Obesity (NEO) study is a 
prospective, population-based cohort study aimed at inves-
tigating the pathways leading to obesity-related conditions 
(de Mutsert et al. 2013). During the period between 2008 
and 2012 a total of 6671 participants aged 45–65 years, with 
an oversampling of persons with overweight, from the Lei-
den greater area were included. Persons aged between 45 
and 65 years with a self-reported body mass index (BMI) 
of ≥ 27 kg/m2 were invited to participate through letters 
from their general practitioner and municipalities, as well 
as through local advertisements. Additionally, all inhabit-
ants aged 45–65 years from one municipality, Leiderdorp, 
were invited irrespective of their BMI, allowing a reference 
distribution of BMI.

Participants were invited for a baseline visit at the NEO 
study center of the Leiden University Medical Center 
(LUMC) after an overnight fast. Prior to this study visit, par-
ticipants completed a general questionnaire at home to report 
demographic, lifestyle and clinical information. Participants 
were asked to bring all medication they were using in the 
month preceding the baseline study visit and research nurses 
recorded names and dosages of all medication. Participants 
came to the research site in the morning and completed a 
screening form, asking about anything that might create a 
health risk or interfere with MRI (most notably metallic 
devices, claustrophobia or a body circumference of more 
than 1.70 m). Approximately 35% of the participants without 
potential MRI contra-indications were randomly selected to 
undergo direct assessment of the amount of visceral adipose 
tissue (VAT) by MRI in combination with hepatic triglycer-
ide content (HTGC) by 1H-MRS. All participants underwent 
an extensive physical examination, including anthropometry 
and blood sampling.

The present study is a cross-sectional analysis of baseline 
measurements of a subgroup of 176 participants with normal 
fasting plasma glucose concentrations (≤ 6.0 mmol/L) and 
without any lipid or glucose lowering medication who were 
randomly sampled from the NEO study for a previous nested 
case–control metabolomics study (Mook-Kanamori et al. 
2016). The previous study also included individuals with 
elevated fasting glucose concentrations, which we excluded 
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because of concerns over potential selection bias by includ-
ing these individuals. Additionally, because elevated fasting 
glucose concentrations are reasonably rare in the general 
population, we assumed the estimates from individuals with 
a normal fasting glucose concentration to be similar to those 
of a random sample from the NEO study population. We 
excluded one participant without information on the amount 
of VAT or HTGC. Another 25 individuals had missing infor-
mation on HTGC alone due to a failed liver scan and were 
excluded from the analyses involving HTGC. As an addi-
tional quality control step, we excluded one participant with 
a mismatch (> 1.5 standard deviation (SD)) between stand-
ard glucose measurements and hexose sugar concentrations 
(which consist of > 90% glucose) determined through the 
metabolomics assay. Our final sample therefore consisted 
of 174 participants for the analyses on VAT and 149 for the 
analyses on HTGC.

The study was approved by the medical ethics committee 
of the Leiden University Medical Centre (LUMC) and all 
participants gave written informed consent.

2.2 � Data collection

2.2.1 � General

Participants reported information on ethnicity, education, 
smoking, menopause and hormone use on the question-
naires. Participants could choose from eight categories of 
ethnicity, which we subsequently grouped into ‘white’ and 
‘other’. The highest level of education was reported from ten 
categories according to the Dutch educational system. We 
grouped these education levels into high (higher vocational 
school, university and post-graduate education) versus low 
education. Smoking was categorized as current, former or 
never smoker.

At the study center, body weight and total body fat were 
estimated using a Tanita bio impedance balance (TBF-310, 
Tanita, International division, UK) without shoes and 1 kg 
was subtracted from the body weight. BMI (kg/m2) was cal-
culated by dividing the weight in kilograms by the height 
in meters squared. Waist circumference (cm) was measured 
mid-way between the border of the lower costal margin and 
the iliac crest.

2.2.2 � Blood sampling and metabolomics measurements

A fasting blood sample was obtained from the antecubital 
vein and standard laboratory analyses such as glucose and 
lipid profile determination were performed at the clinical 
chemical laboratory of the LUMC, as described previously 
(de Mutsert et al. 2013). Metabolomics measurements were 
performed in fasting blood samples at the Genome Analy-
sis Center at the Helmholtz Zentrum München, Germany 

using the Biocrates Absolute IDQ™ p150 kit (BIOCRATES 
Life Science AG, Innsbruck, Austria) and ESI-FIA-MS/
MS measurements. The p150 assay covers a wide range 
of acylcarnitines (LIPID MAPS subclass: fatty acyl car-
nitines), sphingolipids (LIPID MAPS subclass: ceramide 
phosphocholines), lysophosphatidylcholines, diacyl and 
acyl-alkyl phosphatidlycholines (LIPID MAPS subclass: 
glycerophosphocholines), complemented by a set of amino 
acid measures and hexose sugar concentrations. In total, the 
assay measures 163 metabolites and additionally calculates 
27 aggregate measures consisting of sums and ratios of 
the different metabolite classes for a total of 190 metabo-
lite related variables (Online Resource 1). The assay was 
applied following the manufacturer’s instructions and has 
been described in detail before (Römisch-Margl et al. 2012). 
For the present study, all individual metabolites as well as 
the aggregate measures were used in the analyses.

2.2.3 � Assessment of visceral adipose tissue and hepatic 
triglyceride content

Imaging was performed on a 1.5 Tesla MR system (Philips 
Medical Systems, Best, the Netherlands). Abdominal vis-
ceral fat depots were quantified by MRI using a turbo spin 
echo imaging protocol. At the level of the fifth lumbar ver-
tebra three transverse images each with a slice thickness 
of 10 mm were obtained during a breath-hold. Abdominal 
visceral fat areas were converted from the number of pixels 
to centimeters squared, using in-house-developed software 
(MASS, Medis, Leiden, The Netherlands) and the average 
of the three slices was used in our analyses (Hammer et al. 
2008).

Hepatic triglyceride content was quantified by 1H-MRS 
of the liver as described previously (Hammer et al. 2008). 
Briefly, an 8-mL voxel was positioned in the right lobe of the 
liver. Spectra were obtained with and without water suppres-
sion with free breathing and fitted using Java based MR user 
interface software (jMRUI version 3.0, Leuven, Belgium) 
(Naressi et al. 2001). Mean line widths were calculated. 
The resonances of methylene and methyl were fitted and 
used for calculation of triglycerides. HTGC relative to water 
was calculated as (signal amplitude of triglyceride)/(signal 
amplitude of water) × 100.

2.3 � Statistical analysis

In the NEO study, persons with a BMI of 27 kg/m2 or 
higher have been oversampled. To correctly repre-
sent associations for the general population (Korn and 
Graubard 1991), adjustments for the oversampling of par-
ticipants with a BMI ≥ 27 kg/m2 were made. This was done 
by weighting individuals towards the BMI distribution of 
participants from the Leiderdorp municipality (Lumley 
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2004), whose BMI distribution was similar to the BMI 
distribution of the general Dutch population (VWS 2013). 
All results are based on weighted analyses. Consequently, 
the results apply to a population-based study without over-
sampling of participants with a BMI ≥ 27 kg/m2.

Baseline characteristics are expressed as mean (SD), 
median (25th–75th percentile) or proportion (%) and strat-
ified by sex. We calculated z-scores and standardized all 
metabolites to a mean of zero and a standard deviation 
of one. Hepatic triglyceride content was ln-transformed 
because its distribution was strongly skewed.

For model 1, we performed crude linear regressions to 
calculate the regression coefficients of all 190 metabolite 
variables with VAT and HTGC. Subsequently, we adjusted 
for age, sex and total body fat in model 2 to investigate if 
the associations were specific for VAT or HTGC, regard-
less of total body fat. In model 3, we additionally adjusted 
for waist circumference, fasting triglycerides, high den-
sity lipoprotein cholesterol and total cholesterol concen-
trations. The measurements added in this final model are 
easily measured and frequently used in approximation 
methods for visceral (Amato et al. 2010; Lemieux et al. 
2000) and liver fat (Bedogni et al. 2006). We adjusted for 
these approximations to determine if metabolites remained 
associated on top of them and thereby potentially provide 
additional information on VAT or liver fat. We compared 
the adjusted explained variance (adjusted R2) of the model 
with the covariates from model 3 without metabolites 
to the model where the metabolites that remained sig-
nificantly associated with VAT or HTGC after adjusting 
for these covariates were added to assess if metabolites 
resulted in an increase of the adjusted R2. We added each 
metabolite individually, as well as all possible combina-
tions (e.g. two, three or more metabolites) if multiple 
metabolites remained significantly associated with VAT or 
HTGC. We considered our sample size too small to make 
reliable statements about associations in men and women 
separately, however previous studies have delineated sex 
differences in intra-abdominal fat distribution (Tchernof 
and Despres 2013) and in associations of metabolites with 
intra-abdominal fat (Bachlechner et al. 2016; Szymanska 
et al. 2012). Therefore, we stratified our analyses by sex 
but did not perform significance tests.

The regression coefficients for visceral fat can be inter-
preted as the mean difference in VAT (cm2) per standard 
deviation (SD) of metabolite concentration. Because hepatic 
triglyceride content was ln-transformed, we back trans-
formed the regression coefficients which therefore represent 
a ratio. This ratio can be interpreted as a relative increase in 
HGTC per SD of metabolite concentration. For example, a 
ratio of 1.5 indicates that an increase of one SD of metabo-
lite concentration is associated with a 1.5-fold increased 
HTGC.

We corrected for multiple testing using the false discov-
ery rate (FDR) method at 5% for each set of regressions that 
use the 190 metabolite variables, assuming they represent 
independent tests. All statistical analyses were performed in 
STATA 14.1 and heatmaps were generated in R 3.5.2 using 
the heatmap.2 function from the gplots package.

3 � Results

3.1 � Participant characteristics

Characteristics for the 174 individuals with VAT measure-
ments are summarized in Table 1. Men and women were of 
similar age and ethnicity, more men had a higher education, 
men consumed more alcohol, and had a higher BMI, waist 
circumference, HTGC and VAT, while women had more 
total body fat than men.

3.2 � Metabolites and visceral fat

In the total population using the crude model, shorter 
chained lysophosphatidylcholines (lysoPC), acyl-alkyl 
phosphatidylcholines (acyl-alkyl PCs) and sphingomyelins 
(SM) overall related negatively with VAT, while diacyl 
phosphatidylcholines (PC) were mostly positively related to 
VAT (Online Resource 2a). Thirty-nine individual metabo-
lites and six of the aggregate measures were significantly 
associated with VAT after FDR correction (Online Resource 
4). Adjusting for the factors age, sex and total body fat in 
model 2 (Online Resource 2b) and 3 (Online Resource 2c) 
diminished the strength of most relations. Only the ratio 
of lysophosphatidylcholines to total phosphatidylcholines 
(lysoPC/PC), sphingomyelins to total sphingomyelins and 
phosphatidylcholines (SM/(SM + PC)) and sphingomyelins 
to total phosphatidylcholines (SM/PC) were significantly 
associated (Online Resource 2b and Table 2). In model 3, 
the same measures remained associated at similar strengths 
(Online Resource 2c and Table 3). These three measures 
were strongly correlated at values from 0.32 to 1.00 (Online 
Resource 5). Association estimates were not always consist-
ent amongst men and women and in all models were often 
larger in men (Online Resource 2). In model 3 for example, 
the largest inverse estimate in men was that of SM C16:0 at 
− 25.4 (− 41.5, − 9.2) cm2 per SD of metabolite concentra-
tion while in women the estimate was − 1.9 (− 10.3, 6.5) 
cm2 per SD of metabolite concentration.

The variance explained (adjusted R2) by the factors from 
model 3 (age, sex, total body fat, waist circumference, and 
fasting concentrations of triglycerides, HDL cholesterol and 
total cholesterol), in the total population was 0.59. Adding 
all three metabolites that were significantly associated after 
adjusting for the factors from model 3 resulted in an adjusted 
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R2 of 0.65 in the total population, although a similar result 
was achieved after adjusting for two of the metabolites (the 
ratio of lysoPC/total PC and SMs to total SMs and PCs, 
Fig. 1).

3.3 � Metabolites and hepatic triglyceride content

In the total sample, most metabolites related positively 
with HTGC, except the acyl-alkyl PCs which were nega-
tively related to HTGC in the crude model. After FDR 
correction, 33 individual and 8 aggregate metabolite 
variables were significantly associated (Online Resource 
3a and Online Resource 4). The strength of all relations 
was diminished after the adjustments in model 2 (Online 
Resource 3b) and further in model 3 (Online Resource 
3c). There remained 19 individual and 9 aggregate vari-
ables with significant associations in model 2 (Online 
Resource 3b and Table 2). In particular, 15 of these 19 
individual metabolites were diacyl PCs which were all 
positively associated. The other significant associations 
included tryptophan, tyrosine, lysoPC C14:0, SM C22:3, 

the sums of aromatic amino acids, mono-unsaturated fatty 
acids (in PCs), poly-unsaturated fatty acids (in PCs), PCs 
and SMs, phosphatidylcholines (PCs), diacyl PCs, and the 
SM/(SM + PC), SM/PC, tyrosine/phenylalanine ratios. 
In model 3, only diacyl PCs C32:1, 36:1 and 40:5 and 
lysoPC14:0 remained associated (Online Resource 3c and 
Table 3). These metabolites were quite strongly correlated 
at values from 0.36 to 0.71 (Online Resource 5). Similar 
to visceral fat, association estimates were not always con-
sistent between men and women (Online Resource 3). In 
some cases, the direction of the associations even appears 
to be reversed such as for histidine which in model 3 had 
an estimate of 1.28 (1.06, 1.53) change in HTGC per SD 
of metabolite concentration in men and 0.91 (0.80, 1.04) 
change in HTGC per SD of metabolite concentration in 
women.

The adjusted R2 for all variables from model 3 was 0.58 
in the total sample. After adding all four significant metabo-
lites the R2 increased to 0.63, although a similar result could 
be achieved only two metabolite variables (diacyl PC C32:1 
and 40:5, Fig. 1).

Table 1   Characteristics 
of 174 participants of the 
NEO study with fasting 
glucose ≤ 6.0 mmol/L and with 
metabolomics and visceral 
adipose tissue measurements

Results are based on analyses weighted towards the BMI distribution of the general population. Values rep-
resent means (SD), medians (90% range) or percentages. Measurements were available for all participants 
except for the following variables: education (men N = 84, women N = 89), hepatic triglyceride content 
(men N = 70, women N = 79)
BMI body mass index, HDL high-density lipoprotein, LDL low-density lipoprotein
a High education: higher vocational school, university and post-graduate education
b Use of contraceptives or hormone replacement therapy at the time of study visit

Men (n = 84) Women (n = 90)

Demographic/anthropometric
 Age (years) 57.0 (46.0–65.0) 56.0 (47.0–65.0)
 Ethnicity (% white) 93 95
 Education level (% high)a 63 41
 Smoking (%)
  Never 46 49
  Former 42 41
  Current 12 10

 Alcohol consumption (g/day) 13.0 (0.4–52.5) 4.3 (0–21.3)
 Peri- or postmenopausal (%) – 78
 Hormone use (% current)b – 19
 BMI (kg/m2) 25.5 (3.1) 24.0 (4.2)
 Total body fat (%) 22.7 (5.0) 33.3 (7.1)
 Waist circumference (cm) 93.0 (77.0–111.0) 80.0 (68.0–101.0)
 Visceral adipose tissue, mean (cm2) 109.5 (60.9) 58.6 (38.4)
 Hepatic triglyceride content (%) 3.4 (1.0–18.7) 1.4 (0.4–7.7)

Fasting blood concentrations
 Glucose (mmol/L) 5.3 (0.4) 5.0 (0.5)
 Total cholesterol (mmol/L) 5.5 (0.9) 5.8 (1.2)
 Triglycerides (mmol/L) 0.9 (0.4–2.3) 0.7 (0.3–1.8)
 HDL-cholesterol (mmol/L) 1.4 (0.3) 1.8 (0.4)
 LDL-cholesterol (mmol/L) 3.6 (0.7) 3.5 (1.1)
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Table 2   Metabolites associated with visceral adipose tissue (N = 174) or hepatic triglyceride content (N = 149) after false discovery rate correc-
tion in model 2, adjusted for age, sex and total body fat

Metabolites that reached the FDR adjusted P value in the total group are summarized. The reported numbers represent regression outcomes 
(95% CI) from model 2, correcting for age, sex and total body fat, expressed as the difference in VAT (cm2) per SD of metabolite concentration 
and the relative increase in HTGC per SD of metabolite concentration. *Indicates associations with a statistically significant interaction with sex

Visceral adipose tissue

Total 
(N = 174)
Estimate (95% CI)

P value Men 
(N = 84)
Estimate (95% CI)

P value Women 
(N = 90)
Estimate (95% CI)

P value

Aggregate measures
 Total lysoPC/total PC − 15.5 (− 23.0; − 8.0)* 6.85E−05 − 25.4 (− 41.4; − 9.5) 2.16E−03 − 6.2 (− 11.0; − 1.4) 1.18E−02
 Total SM/(total SM + total PC) − 12.1 (− 17.8; − 6.3) 5.01E−05 − 13.9 (− 24.1; − 3.7) 8.02E−03 − 7.2 (− 12.2; − 2.2) 4.96E−03
 Total SM/total PC − 12.1 (− 17.8; − 6.4) 4.89E−05 − 14.0 (− 24.2; − 3.8) 7.59E−03 − 7.2 (− 12.1; − 2.2) 5.03E−03

Hepatic triglyceride content

Total 
(N = 149)
Estimate (95% CI)

P value Men 
(N = 70)
Estimate (95% CI)

P value Women 
(N = 79)
Estimate (95% CI)

P value

Lysophosphatidylcholines
 Lyso PC a C14:0 1.30 (1.17; 1.45) 3.64E−06 1.33 (1.15; 1.54) 2.02E−04 1.20 (1.04; 1.39) 1.57E−02

Diacyl phosphatidylcholines
 PC aa C28:1 1.23 (1.07; 1.41) 4.50E−03 1.10 (0.87; 1.38) 4.20E−01 1.18 (0.98; 1.44) 8.59E−02
 PC aa C30:0 1.30 (1.14; 1.47) 9.32E−05 1.34 (1.11; 1.62) 3.37E−03 1.19 (1.01; 1.40) 4.16E−02
 PC aa C32:1 1.38 (1.23; 1.55) 9.12E−08 1.37 (1.12; 1.68) 2.82E−03 1.31 (1.13; 1.52) 4.03E−04
 PC aa C32:2 1.32 (1.17; 1.49) 2.05E−05 1.41 (1.18; 1.68) 2.48E−04 1.23 (1.05; 1.44) 1.16E−02
 PC aa C34:1 1.22 (1.08; 1.38) 1.26E−03 1.14 (0.92; 1.41) 2.24E−01 1.18 (1.00; 1.38) 4.54E−02
 PC aa C34:3 1.33 (1.16; 1.52) 6.96E−05 1.33 (1.05; 1.68) 1.86E−02 1.25 (1.06; 1.47) 7.80E−03
 PC aa C34:4 1.36 (1.20; 1.53) 1.84E−06 1.36 (1.09; 1.70) 7.56E−03 1.28 (1.10; 1.49) 1.42E−03
 PC aa C36:1 1.35 (1.20; 1.52) 1.04E−06 1.29 (0.93; 1.78) 1.26E−01 1.30 (1.15; 1.46) 4.09E−05
 PC aa C36:2 1.26 (1.11; 1.43) 5.55E−04 1.14 (0.88; 1.47) 3.27E−01 1.23 (1.05; 1.43) 9.10E−03
 PC aa C36:3 1.21 (1.06; 1.37) 3.77E−03 1.11 (0.86; 1.42) 4.22E−01 1.16 (0.97; 1.38) 9.69E−02
 PC aa C36:6 1.24 (1.06; 1.44) 6.68E−03 1.18 (0.92; 1.52) 1.95E−01 1.18 (0.96; 1.46) 1.13E−01
 PC aa C38:3 1.41 (1.26; 1.59) 2.05E−08 1.43 (1.12; 1.82) 4.48E−03 1.32 (1.14; 1.54) 4.61E−04
 PC aa C38:5 1.20 (1.06; 1.36) 5.36E−03 1.05 (0.84; 1.32) 6.46E−01 1.21 (1.04; 1.42) 1.74E−02
 PC aa C40:4 1.23 (1.10; 1.38) 3.25E−04 1.13 (0.91; 1.40) 2.62E−01 1.19 (1.04; 1.38) 1.40E−02
 PC aa C40:5 1.36 (1.21; 1.52) 6.78E−07 1.30 (1.04; 1.63) 2.40E−02 1.32 (1.14; 1.53) 3.65E−04

Sphingomyelins
 SM C22:3 0.84 (0.75; 0.94) 2.36E−03 0.93 (0.74; 1.18) 5.61E−01 0.85 (0.76; 0.97) 1.20E−02

Amino acids
 Tryptophan 1.20 (1.07; 1.35) 2.29E−03 1.28 (1.05; 1.55) 1.59E−02 1.05 (0.90; 1.23) 5.06E−01
 Tyrosine 1.33 (1.10; 1.60)* 3.87E−03 1.53 (1.26; 1.86) 3.97E−05 1.16 (0.91; 1.48) 2.28E−01

Aggregate measures
 Aromatic amino acids (AAA) 1.29 (1.11; 1.50) 1.21E−03 1.41 (1.16; 1.72) 7.52E−04 1.13 (0.91; 1.40) 2.58E−01
 MUFA(PC) 1.27 (1.13; 1.44) 1.06E−04 1.20 (0.94; 1.53) 1.44E−01 1.22 (1.05; 1.42) 9.05E−03
 PUFA(PC) 1.24 (1.08; 1.42) 2.01E−03 1.11 (0.86; 1.43) 4.36E−01 1.19 (1.01; 1.42) 4.02E−02
 Total PC + total SM 1.23 (1.07; 1.40) 2.84E−03 1.08 (0.84; 1.39) 5.44E−01 1.19 (1.02; 1.40) 3.25E−02
 Total PC 1.26 (1.10; 1.43) 7.36E−04 1.14 (0.88; 1.48) 3.32E−01 1.21 (1.03; 1.43) 2.24E−02
 Total diacyl PC 1.27 (1.12; 1.45) 3.21E−04 1.17 (0.90; 1.52) 2.34E−01 1.22 (1.04; 1.43) 1.82E−02
 Total SM/(total SM + total PC) 0.80 (0.71; 0.89) 1.42E−04 0.76 (0.63; 0.92) 5.12E−03 0.87 (0.74; 1.02) 8.81E−02
 Total SM/total PC 0.80 (0.71; 0.89) 1.66E−04 0.76 (0.63; 0.92) 5.68E−03 0.87 (0.74; 1.03) 9.48E−02
 Tyrosine/phenylalanine 1.30 (1.11; 1.52)* 1.35E−03 1.54 (1.24; 1.92) 1.93E−04 1.15 (0.96; 1.39) 1.27E−01
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4 � Discussion

In the present study we used a commercially available, 
targeted metabolomics assay to estimate the association 
between metabolites and directly assessed VAT and HTGC. 
We observed associations that were specific for VAT or 
HTGC rather than overall obesity as several metabolites 
variables remained associated, even after adjusting for total 
body fat. The metabolites that remained associated in the 
fully adjusted model were also specific for either VAT or 
HTGC, as the lysoPC/total PC, SM/(total SM + PC) and 
total SM/total PC ratios remained associated with VAT, 
whereas lysoPC C14:0 and the diacyl PCs C32:1, 36:1 
and 40:5 remained associated with HTGC. Adding these 
metabolites to a model with currently used approximation 
measures modestly improved the explained variance of the 
model for both VAT and HTGC. Despite our small sam-
ple size we observed some evidence for differences in the 
metabolite associations between men and women, as the size 
of the estimates were frequently different between men and 
women and possibly even reversed for some metabolites. 
Alternative methods of selecting metabolites as potential 
biomarkers, such as LASSO regression can be performed. 
However, when we explored the use of LASSO regression 
in our limited sample size, a large number of metabolites 
was selected, and this selection was inconsistent over several 

LASSO repeats. Therefore, we advise such an approach to 
be applied in larger sample sizes.

Our findings are in line with some previous studies on 
body fat distribution and metabolite profiles. Several authors 
have reported associations of phosphocholine lipids, includ-
ing phosphatidylcholines and lysophosphatidylcholine, as 
well as sphingomyelins with visceral fat (Boulet et al. 2015; 
Martin et al. 2013; Scherer et al. 2015; Syme et al. 2016; 
Szymanska et al. 2012) or proxies of visceral fat such as 
waist circumference (Bachlechner et al. 2016; Rauschert 
et al. 2016). In contrast to many of these studies, we did not 
identify individual metabolites that were specifically asso-
ciated with visceral fat, but we did identify associations of 
aggregate measures of these metabolites. This discrepancy 
might be partially explained by the fact that we measured a 
different subset of lipids than some other studies. However, 
we also did not detect visceral fat specific amino acid asso-
ciations even though these are measured in most metabo-
lomics studies and have been frequently associated with vis-
ceral fat before (Boulet et al. 2015; Martin et al. 2013). The 
reason for this difference is unclear but could be related to 
the fact that various studies did not take overall obesity or fat 
mass into account. Because overall fat mass and visceral fat 
are highly correlated (Martin et al. 2003), some of the previ-
ously reported associations might reflect associations with 
overall fat mass rather than with visceral fat specifically. 

Table 3   Metabolites associated with visceral fat (N = 174) or hepatic 
triglyceride content (N = 149) after false discovery rate correction in 
model 3, adjusted for age, sex, total body fat, waist circumference and 

fasting serum concentrations of triglycerides, HDL cholesterol and 
total cholesterol

Metabolites that reached the FDR adjusted P value in the total group are summarized. The reported numbers represent regression outcomes 
(95% CI) from model 3, correcting for age, sex, total body fat percentage, waist circumference and fasting concentrations of triglycerides, HDL 
and total cholesterol, expressed as the difference in VAT (cm2) per SD of metabolite concentration and the relative increase in HTGC per SD of 
metabolite concentration. *Indicates associations with a statistically significant interaction with sex

Visceral adipose tissue

Total 
(N = 174)
Estimate (95% CI)

P value Men 
(N = 84)
Estimate (95% CI)

P value Women 
(N = 90)
Estimate (95% CI)

P value

Aggregate measures
 Total lysoPC/total PC − 14.1 (− 21.7; − 6.6)* 3.05E−04 − 20.4 (− 37.2; − 3.5) 1.82E−02 − 8.0 (− 13.1; − 2.9) 2.37E−03
 Total SM/(total SM + total PC) − 13.5 (− 20.3; − 6.8)* 1.05E−04 − 19.0 (− 31.4; − 6.6) 3.03E−03 − 9.4 (− 15.3; − 3.5) 2.10E−03
 Total SM/total PC − 13.5 (− 20.1; − 6.8)* 1.02E−04 − 19.0 (− 31.4; − 6.7) 2.87E−03 − 9.3 (− 15.2; − 3.5) 2.16E−03

Hepatic triglyceride content

Total 
(N = 149)
Estimate (95% CI)

P value Men 
(N = 70)
Estimate (95% CI)

P value Women 
(N = 79)
Estimate (95% CI)

P value

Lysophosphatidylcholines
 Lyso PC a C14:0 1.19 (1.08; 1.32) 7.79E−04 1.23 (1.09; 1.39) 8.94E−04 1.17 (1.01; 1.36) 3.78E−02

Diacyl phosphatidylcholines
 PC aa C32:1 1.31 (1.14; 1.51) 2.77E−04 1.37 (1.11; 1.70) 3.98E−03 1.26 (1.04; 1.52) 1.88E−02
 PC aa C36:1 1.30 (1.13; 1.50) 3.77E−04 1.19 (0.90; 1.58) 2.15E−01 1.31 (1.11; 1.55) 1.59E−03
 PC aa C40:5 1.27 (1.11; 1.44) 4.64E−04 1.14 (0.95; 1.35) 1.57E−01 1.28 (1.07; 1.53) 7.50E−03
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This hypothesis is partially supported by our findings, as 
several amino acids associated with VAT in the unadjusted 
model (Online Resource 2) but not in the model adjusting 
for sex, age and total body fat. The diagnostic use of metabo-
lites for visceral fat accumulation has not been extensively 
explored yet, as most studies on visceral fat metabolomics 
have been focused on increasing insight into biological path-
ways related to visceral fat. One study tested the inclusion 
of metabolites on top of a large number of other phenotypes 
including, age, sex, total body fat and waist circumference 
and observed no improvement in the explained variance of 
visceral fat in women, while in men a variable set includ-
ing phosphatidylcholine C32:0 and acetate improved the 

R2 from 0.485 to 0.784 (Szymanska et al. 2012). However, 
given that their sample size in which the R2 was calculated 
was only thirty-nine for women and fifteen for men, it is pos-
sible that their models were somewhat overfitted. Although 
our sample size was larger, overfitting to some extent could 
also explain our results as we lacked external validation and 
fitted models of eight to eleven variables in our sample of 
174 individuals.

With regard to liver fat, previous studies have identified 
similar associations as we observed between acylcarniti-
nes, phosphocholine containing lipids, sphingomyelins and 
aromatic amino acids and increased liver fat content (Feld-
man et al. 2017; Kaikkonen et al. 2017; Kalhan et al. 2011; 
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Fig. 1   Adjusted explained variance (R2) before and after adding 
metabolites to conventional approximation measures of VAT and 
HTGC. Model 2 (M2, age, sex and total body fat) and model 3 (M3, 
model 2 + waist circumference and fasting concentrations of glucose, 
triglycerides, HDL-cholesterol and total cholesterol) are represented 
by the two leftmost columns. The other models consist of model 3 
plus all possible combinations of metabolites significantly associ-
ated with either VAT (N = 3) or HTGC (N = 4) in the total sample 
under model 3. The lower dashed horizontal line indicates the vari-
ance explained by model 3, while the upper dashed horizontal line 
indicates the maximum adjusted R2 attained by adding metabolites 
Visceral fat models A–G contain the following metabolites: (A) total 
SM/total SM + PC, (B) total SM/total PC, (C) total lysoPC/total PC, 

(D) total SM/total PC and total SM/total SM + PC, (E) total lysoPC/
total PC and total SM/total SM + PC, (F) total lysoPC/total PC and 
total SM/total PC, (G) total lysoPC/total PC, total SM/total SM + PC 
and total SM/PC. Hepatic triglyceride models A–O contain the fol-
lowing metabolites: (A) lysoPC a C14:0, (B) PC aa C32:1, (C) PC 
aa C36:1, (D) PC aa C40:5, (E) lysoPC a C14:0 and PC aa C32:1, 
(F) lysoPC a C14:0 and PC aa C36:1, (G) lysoPC a C14:0 and PC aa 
C40:5, (H) PC aa C32:1 and C36:1, (I) PC aa C32:1 and C40:5, (J) 
PC aa C36:1 and C40:5, (K) lysoPC a C14:0 and PC aa C32:1 and 
C36:1, (L) lysoPC a C14:0 and PC aa C32:1 and C40:5, (M) lysoPC 
a C14:0 and PC aa C36:1 and C40:5. (N) PC aa C32:1, C36:1 and 
C40:5, (O) lysoPC a C14:0 and PC aa C32:1, C36:1 and 40:5



Metabolomics: a search for biomarkers of visceral fat and liver fat content﻿	

1 3

Page 9 of 12  139

Orešič et al. 2013; Siegert et al. 2013; Zhou et al. 2016). 
Interestingly, both mono- and polyunsaturated phosphati-
dylcholines associated positively with hepatic triglyceride 
content in our study, while increased liver fat content is gen-
erally associated with lower concentrations of PUFAs and 
increased concentrations of saturated or mono-unsaturated 
lipids (Kaikkonen et al. 2017; Puri et al. 2009). The reason 
for this difference however is unclear. Several of these stud-
ies have also explored the diagnostic use of metabolites for 
hepatic steatosis and found that metabolite-based models 
could reasonably discriminate between individuals with and 
without hepatic steatosis (Feldman et al. 2017; Orešič et al. 
2013; Siegert et al. 2013; Zhou et al. 2016). However, with 
the exception of one study that also measured liver fat using 
1H-MRS (Orešič et al. 2013) these studies only had data 
on hepatic fat content in the form of ultrasound or biopsy 
proven hepatic steatosis and so could not derive diagnostic 
models that made a quantitative estimation of liver fat con-
tent. We identified one previous study that also checked the 
performance of metabolite-based methods against current 
approximation methods (Siegert et al. 2013). The authors 
observed an improved diagnostic performance of models 
including metabolites such as lysoPCs, diacyl and acyl-alkyl 
PCs, acylcarnitines and amino acids including tyrosine, 
compared with models using only conventional measures 
from the fatty liver index (Bedogni et al. 2006).

Although the metabolites that remained associated within 
our sample were not identical for visceral and liver fat, it 
cannot be concluded that there is no overlap in the associa-
tions between visceral and liver fat based on our data alone. 
First, the metabolites that remained associated in the final 
sample, although not identical, are related to similar classes 
in both fat depots. For example, lysoPC a C14:0 which asso-
ciated with liver fat and total lysoPC/total PC which associ-
ated with visceral fat are both related to the lysophoshati-
dylcholine class. Similarly the diacyl PCs C32:6, 36:1 and 
40:5 which were associated with liver fat are components of 
the total SM/total SM + PC and total SM/total PC variables 
associated with visceral fat. This supports the presence of 
common mechanisms underlying both visceral fat and liver 
fat (Tchernof and Despres 2013).

The main value of our study lies in contributing fur-
ther evidence for the use of metabolomics in diagnostic 
approaches of visceral and liver fat and to encourage fur-
ther exploration of this topic. Currently, only imaging tech-
niques such as computed tomography, magnetic resonance-
based techniques and to a lesser extent ultrasonography can 
quantify lipid accumulation in visceral adipose tissue or the 
liver (Fang et al. 2018; Karlas et al. 2014; Koot et al. 2014; 
Schwimmer et al. 2015). Several approaches, such as the 
hypertriglyceridemic waist phenotype (Lemieux et al. 2000), 
exist that combine anthropometric measurements such as 
waist circumference and serum concentrations of parameters 

such as high-density lipoproteins to identify individuals 
who are likely to have excess liver (Bedogni et al. 2006) 
or visceral fat (Amato et al. 2010; Kahn 2005; Lemieux 
et al. 2000). However, these methods tend to be designed 
to make qualitative rather than quantitative predictions of 
whether individuals have excess lipid accumulation (Cuth-
bertson et al. 2014; Neamat-Allah et al. 2015; Vongsuvanh 
et al. 2012; Zelber-Sagi et al. 2013). Nevertheless, quantita-
tive predictions could be useful for cardiovascular disease 
risk prediction or to monitor the progress of interventions 
aimed at reducing visceral or liver fat. Imaging modalities 
are not practical for this purpose because they are generally 
expensive and require specialized personnel and are there-
fore not suited for large scale use in general clinical prac-
tice. Because of the limitations of these currently available 
methods, we propose that metabolite-based methods war-
rant further investigation. Many health care laboratories are 
already equipped to perform metabolites measurements, so 
a panel of metabolites to diagnose lipid accumulation would 
be a comparatively quick and practical method that could be 
performed in tandem with blood testing that is already part 
of cardiovascular risk assessment.

The pathophysiological role of the metabolite associa-
tions we observed is not completely understood. Phosphati-
dylcholines are an important component of cell membranes 
and lipoproteins (Cole et al. 2012) and in addition to their 
structural role appear to be involved in for example the secre-
tion of very large density lipoproteins by the liver as well as 
glucose regulation (Cole et al. 2012; Furse and Kroon 2015). 
Indeed, changes in the concentrations of phosphocholine 
containing lipids have been associated with cardiometabolic 
alterations associated with excess liver and visceral fat such 
as insulin resistance (Floegel et al. 2013) and atherosclerosis 
(Matsumoto et al. 2007). Similarly, sphingomyelins are an 
important component of cell membranes and also seem to be 
involved in the development of insulin resistance (Li et al. 
2011). Tyrosine concentrations also associate with insulin 
resistance and type 2 diabetes (Wang et al. 2011), however it 
is unclear if tyrosine plays a mechanistic role in this process. 
To summarize, although the precise role of most metabolites 
from our study is unclear, they do seem to associate with 
the cardiometabolic sequelae of excess visceral and liver fat 
which makes their association with lipid accumulation in 
these locations plausible.

Our study was limited by a few factors. First, although our 
sample size was larger than some previous metabolomics 
studies on body fat distribution, we lacked the power to 
properly test for interaction by sex or to develop and vali-
date diagnostic quantitative models for lipid accumulation. 
Because of this, the lack of statistically significant inter-
actions by sex should not be interpreted as evidence of 
absence of differences in metabolite associations between 
men and women. Second, a large proportion of our female 



	 S. Boone et al.

1 3

139  Page 10 of 12

participants was peri- or postmenopausal. As menopause 
is associated with substantial metabolic changes including 
changes in visceral fat mass (Polotsky and Polotsky 2010), 
our results may not be extrapolated to a younger population. 
Third, the use of this specific metabolomics platform lim-
ited the selection of metabolites which we could investigate. 
However, an advantage of this platform is that it has been 
extensively validated and consists of a set of analytically and 
biologically well-defined metabolites. Fourth, we were not 
able to replicate our findings as there was no other readily 
available cohort with both Biocrates and 1H-MRS measure-
ments of liver fat. Nevertheless, we showed that Biocrates 
metabolites have the potential to function as biomarkers of 
liver and visceral fat and encourage the use of replication 
cohorts in more extensive studies that aim to develop pre-
diction models using metabolites. Strengths of our study 
are that we performed our analyses in a lipid or glucose 
lowering drug naive sample from a well phenotyped cohort 
with direct, quantitative measures of visceral and liver fat. 
Because of this, we could account for overall obesity by 
including total body fat in our models and assess which 
metabolites were specifically associated with quantitative 
measures of visceral fat or hepatic triglyceride content even 
after accounting for commonly used approximation methods.

In conclusion, we demonstrated specific associations of 
metabolites with visceral fat and hepatic triglyceride content 
that may be useful in diagnostic approaches of lipid accu-
mulation in both locations. We encourage future studies to 
include enough participants to develop and validate diagnos-
tic models containing metabolite data and to compare their 
diagnostic performance against currently used approxima-
tion methods. To determine if such approximation methods 
could also be useful for monitoring changes in visceral and 
liver fat content, we also recommend performing prospective 
studies with repeated measurements.
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