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Image-based promoter prediction: 
a promoter prediction method 
based on evolutionarily generated 
patterns
Sheng Wang, Xuesong Cheng, Yajun Li, Min Wu & Yuhua Zhao

Prediction of promoter regions is crucial for studying gene function and regulation. The well-accepted 
position weight matrix method for this purpose relies on predefined motifs, which would hinder application 
across different species. Here, we introduce image-based promoter prediction (IBPP) as a method that 
creates an “image” from training promoter sequences using an evolutionary approach and predicts 
promoters by matching with the “image”. We used Escherichia coli σ70 promoter sequences to test the 
performance of IBPP and the combination of IBPP and a support vector machine algorithm (IBPP-SVM). 
The “images” generated with IBPP could effectively distinguish promoter from non-promoter sequences. 
Compared with IBPP, IBPP-SVM showed a substantial improvement in sensitivity. Furthermore, both 
methods showed good performance for sequences of up to 2,000 nt in length. The performances of IBPP 
and IBPP-SVM were largely affected by the threshold and dimension of vectors, respectively. The source 
code and documentation are freely available at https://github.com/hahatcdg/IBPP.

Promoters are the most crucial elements in the process of transcription initiation and regulation in prokaryotes 
and eukaryotes. In bacteria, RNA polymerase (RNAP) and its associated sigma factors have to recognize and bind 
to certain regions in promoters in order to initiate transcription. The binding of RNAP and promoters is tightly 
regulated in bacteria and is the key mechanism modulating gene expression1. Therefore, accurate annotation 
of promoter regions in the genome is essential for studying the regulation and expression of bacterial genes. 
Moreover, in bacteria, functionally related genes are usually clustered into a single transcriptional unit called an 
operon2. Therefore, recognition of promoters can also facilitate the identification of operons, which would be 
useful for discovering the functions of unknown genes.

The position weight matrix (PWM) method is the most well-known prediction tool for identifying consen-
sus elements in a promoter sequence3. Such elements include the −10 and −35 hexamers as well as binding 
sites for transcriptional regulators surrounding the core promoter. In addition to the sequence information for 
these elements, the distance between them is another important indicator for identifying promoters. Because the 
PWM method is limited by high false-positive rates, other computational methods have been applied for motif 
recognition, including hidden Markov models (HMMs)4. As more and more transcription factor-binding sites are 
discovered, the precision of these motif-based promoter prediction methods has greatly improved.

Theoretically, by fully illustrating and mimicking the mechanism through which bacteria recognize promot-
ers, it would be possible for feature-based classification algorithms to perfectly predict promoters. However, 
despite great progress in our understanding of bacterial transcription initiation, the complete mechanism remains 
to be elucidated. Moreover, because almost all of our current knowledge on bacterial promoter features has been 
obtained from investigation of only a few species, such as Escherichia coli, there is no guarantee that the same 
prediction performance will be achieved for different bacterial species using these motifs. To overcome this limi-
tation, promoter predictors that do not rely on predefined motifs are needed.

Machine-learning methods can draw information from experimentally characterized transcription start sites 
(TSSs), such as data derived using RNA-Seq, which can then be applied to uncharacterized sequences. In the last 
two decades, several machine-learning methods have been applied to prokaryote promoter prediction, including 
support vector machine (SVM) models5–7, artificial neural networks (ANNs)8,9, and HMMs10. For example, the 
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ANN-based program NNPP2.211 has been trained on both prokaryote and eukaryote promoters. Other exam-
ples of ANN-based programs include BacPP8, which was trained for E. coli promoters, and Dragon Promoter 
Finder12, which was trained on vertebrate promoters. SVM is as popular as ANNs in promoter prediction. Many 
researchers, including Gordon et al.6, Jiang et al.13, and Towsey et al.5, have applied SVM to the prediction of 
both prokaryotic and eukaryotic promoters. To apply ANNs or SVM, promoter regions are usually transformed 
into numerical vectors. In some cases, additional features, such as the distance between the translation start site 
and transcription start site, are added to the input vectors2. Other machine-learning methods, such as genetic 
programming14, and naive Bayes classifiers15, have also been applied to promoter prediction. In addition to being 
used alone, the abovementioned machine-learning methods can also be used in a hybrid manner. In the work of 
Mann et al., a combination of HMM and ANNs was used to identify prokaryote promoters16.

In addition, a deep-learning method has been used for promoter prediction, resulting in a dramatic improve-
ment in recognition accuracy17. Machine-learning methods are powerful for classifying different types of data. 
Instead of alphabetized data, machines tend to accept digital vectors as input. Among the numerous trials of 
machine learning in promoter prediction, there is no widely accepted or standardized data preparation method. 
Indeed, it is quite difficult to create noiseless, clean data with minimal loss of information18. Based on our cur-
rent knowledge of promoters, most sequences in a promoter appear to be required for recognition by RNAP19. 
However, with the exception of the −35 and −10 elements, other promoter sequences exhibit very low similarity. 
Furthermore, the distance between motifs and between motifs and TSSs are variable. For example, the distance 
between the −35 element and the −10 element can range from 14 to 20 nt, even in the same species. As a result, 
it is difficult to align the core promoters appropriately, which poses a challenge for data preparation. To overcome 
this obstacle, several researchers have directly translated the nucleotides in promoter sequences into digits, result-
ing in digital vectors that resemble the DNA sequences. Different approaches have been adopted to accommodate 
the variable distances between motifs, including initial sequence alignment20 and coupling SVM with a sequence 
alignment kernel to affine gaps in the input sequences7. In some studies, the DNA sequences were broken down 
into collections of oligomers tagged with information on their locations relative to TSSs6,21. Despite these efforts, 
it is still a challenge to properly deliver promoter features to machine-learning programs.

Here, we propose a new promoter analysis procedure called image-based promoter prediction (IBPP), which 
can extract features from training sequences simultaneously with information on their spatial relationship and 
then directly apply these features to predict new promoters. We introduced a template-like string termed an 
“image”, which covers the complete core promoter. The “image” can be viewed as certain features inserted into 
the strings of flexible gaps to preserve their spatial relationship. Like the PWM, IBPP conducts the prediction by 
calculating the similarity between a target sequence and the generated “image”. However, in contrast to PWM, 
IBPP generates this “image” automatically using training data. Because known machine-learning methods are 
not suitable for the construction of “images”, we incorporated an evolutionary approach for their generation. 
In other works, the evolutionary algorithm has been proven effective for generating complex features for pro-
moter identification14. In the present work, the performance of IBPP was tested using E. coli σ70 promoters. The 
“images” trained through the evolutionary method were capable of distinguishing E. coli σ70 promoters from 
protein-coding sequences. Although this initial version of IBPP cannot yet effectively balance sensitivity and 
specificity for short sequences, it exhibited good accuracy in the analysis of promoters within long sequences.

Methods
Evolution-driven “image” generation.  The generation of “images” begins with randomly generated 
seed-images. A seed-image has the same length as mature “images” of 81 bp. Seed-images contain 10 continuous 
random nucleotide characters, with other positions filled by ‘–’, indicating gaps. For each seed-image, the position 
of the continuous nucleotides is randomly determined.

The evolution of “images” involves cycles of the following steps (Fig. 1):

	(1)	 Seeding: Initially, 20,000 independent seed-images were pooled into the “image” library. Because many 
“images” would be discarded after the selection step, 2,000 new seed-images were pooled into the “image” 
library whenever the number of “images” was smaller than 400.

	(2)	 Recombination: In each cycle, recombination occurred randomly for N (N = 2 × the size of the “image” 
library) times between any two “images” in the library. From two parental “images”, the recombination cre-
ated a child “image” carrying the sequence from both parental images. The child “image” was the product 
of two crossovers at random positions between the parental images.

	(3)	 Mutation: In each cycle, 20% of the “images” in the “image” library developed random mutations. For these 
“images”, a single randomly selected character was randomly turned into a new character.

	(4)	 Scoring: Each “image” in the library was used to score all promoter and non-promoter sequences in the 
training sets. This score (D-score) was calculated as the difference between the mean scores of non-pro-
moter and promoter sequences.

	(5)	 Screening: By comparing the D-scores, 90% of the “images” with lower D-scores were discarded. The 
remaining “images” in the library then entered the next cycle.

After a certain number of cycles, the “image” in the library with the highest D-score was then chosen for 
promoter analysis.

Scoring.  The score of each sequence was calculated by matching with an “image”. The “image” was a string of 
characters including {‘a’, ‘t’, ‘c’, ‘g’, ‘–’}. The four characters {‘a’, ‘t’, ‘c’, ‘g’} represent four different nucleotides, whereas 
‘–’ represents gaps between nucleotides. To compare a sequence with an “image”, the sequence was first aligned 
with the “image”. Considering the variable gap lengths between promoter motifs, we decided to give the gaps a 
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certain degree of flexibility. Like a spring, a string of gaps could be extended or compressed to a maximum of 20% 
when scoring. For example, if the “image” contained a series of gaps with a length of 10 nt, the program generated 
variations of this “image” with gap lengths of 8, 9, 11, and 12. Instead of comparing with one image, the sequence 
was aligned and scored with a series of gap-varied images. To align a sequence with an “image” or gap-varied 
image, the sequence was placed alongside the “image” and moved back and forth for 5 bp, resulting in 10 different 
alignments, and the highest score was recorded. The score was calculated using the following equation:

= − . ×score N N0 4 , (1)y x

where Ny is the number of matched nucleotides, and Nx is the number of mismatches (gaps are not considered as 
mismatches).

SVM analysis.  IBPP was further coupled with SVM analysis (IBPP-SVM) to evaluate the effects of combining 
information from different “images” on the predictive performance. The vector corresponding to each sequence 
was comprised of scores calculated from several independently generated images; the dimension of vectors was 
determined by the number of “images” used. C-SVC coupled with the radical basis function kernel was used for 
solving the SVM problem, using LibSVM22 with gamma and C values of 0.1 and 1, respectively.

Data sets.  A total of 1,888 σ70 promoter sequences of E. coli K12 MG1655 (NC_000913) were retrieved 
from RegulonDB (version 9.0). Each promoter sequence spanned positions −60 to +20 relative to the TSS. 
The non-promoter sequences were randomly generated using the protein-coding sequences of E. coli K12 

Figure 1.  Workflow of the “image” generation process.
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MG1655, which all had the same lengths as promoters. A collection of non-promoter sequences contained 10,000 
sequences.

In the initial test of IBPP, 500 promoter and non-promoter sequences were randomly picked from each collec-
tion to build the training sets. For each test, the remaining sequences in both collections were used as the testing 
sets. The testing set for non-promoters had the same amount of sequences as the testing set for promoters.

To compare the performances of IBPP and IBPP-SVM on short sequences, 800 promoter sequences were ran-
domly selected as a subcollection. To generate “images” for IBPP and IBPP-SVM, 500 sequences from the subcol-
lection of promoters and 500 sequences from the collection of non-promoter sequences were randomly picked to 
build the training sets. For IBPP-SVM, the SVM algorithm was trained using the 800 promoter sequences and the 
first collection of non-promoter sequences. The remaining 1,088 TSSs and 1,088 sequences from the collection 
of non-promoter sequences were used as testing sets. To test the performance of IBPP and IBPP-SVM on long 
sequences, 2,000-nt-long sequences centered at the TSSs were retrieved from the genome of E. coli K12 MG1655.

For each test, the testing sets were confirmed to be free of contamination from the training sets.

Analysis of long sequences.  To analyze sequences with lengths of 2,000 nt, we used a sliding window 
approach with a step size of 1 and window size of 81 nt. For each position analyzed by IBPP, the score was 
recorded if it was above a threshold. However, with IBPP-SVM, the mean score calculated with several “images” 
was recorded for positions that tested positive. After the window slid through the sequence, scores were recorded 
for multiple positions. Positions with a distance of less than 50 nt were merged by ignoring the positions with 
smaller scores.

Evaluation methods.  For short sequences, the sensitivity, specificity, and F1 score were calculated as 
follows:

=
+

Sensitivity TP
TP FN (2)

=
+

Specificity TN
TN FP (3)

=
+ +

TP
TP FP FN

F1 score 2
2 (4)

where TP, TN, FP, and FN represent the numbers of true positives, true negatives, false positives, and false nega-
tives, respectively.

For the long sequences, TP was defined as the number of sequences with a hit in the [−50, 50] range relative 
to TSSs. FP was defined as the number of hits in the range [−50, 50] divided by the length of this range. The sen-
sitivity and specificity for long sequences were calculated as follows:

=
TP

Total number of sequ nces
Sensitivity

e (5)

=
+

TN
TN FP

Specificity
(6)

Nucleotide diversity π was calculated as described previously23. The sequence profile illustrated in Fig. 2 was 
generated by WebLogo24.

Figure 2.  The generation of “images” from training sets. Analysis of 100 “images” with scores higher than 
others showed that the consensus was greater at the 100th generation (b) than at the first generation (a). The 
diversity of the top 100 “images” in the library decreased during evolution (c). The results in (c) were obtained 
from 55 independent replications.
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Results and Discussion
Generation of “images” by an evolutionary approach.  The basis of IBPP is to generate an “image” 
from training sequences, which is then used to assess any target sequence and evaluate its similarity to the 
“image”. Starting from random seed-images, the final “images” were obtained using an evolutionary approach. 
The evolutionary method had a uniformization effect on the “images”, which was the foundation of this process. 
Although new seed-images were continually supplemented throughout the evolution process, we found that the 
diversity of the “images” showed a decreasing trend (Figs 2, S1). There was an increase in diversity in the first 
five generations caused by replacement of ‘–’ with nucleotide symbols. However, after the 60th generation, the 
decrease in diversity slowed down (Fig. 2c). Although the diversity appeared to continue to decrease by the 100th 
generation (Fig. 2c), we stopped the evolution at this point to test the predictive ability of the generated images.

Promoter and non-promoter sequences in the test sets were scored with the “image” generated at the 100th 
generation. As shown in Table 1, the average score of promoter sequences was higher than that of non-promoter 
sequences (p < 0.001). This showed that the “images” had the potential to distinguish promoters from 
non-promoters. With an appropriate threshold, sequences with scores above the threshold were predicted as 
promoters, whereas sequences with scores below the threshold were predicted as non-promoters. However, there 
was still some overlap between the scores of promoter and non-promoter sequences, indicating that the method 
could not simultaneously meet the requirements of both sensitivity and specificity.

Indeed, the sensitivity was negatively correlated with the threshold (r = 0.999), whereas the specificity was 
positively correlated with the threshold (r = 0.999; Fig. 3a). When the threshold was below 9, IBPP acquired a sen-
sitivity higher than 87%, but the specificity was reduced to below 70%. In our experiments, the highest F1 score 
was obtained with a threshold of 9 (F1 = 77.9%). However, in practice, a specificity below 90% can cause consid-
erable issues. Therefore, a threshold of 12 is recommended, with a sensitivity and specificity of 58.2% ± 5.1% and 
92.8% ± 1.6%, respectively. For promoters in other species, the optimum threshold may differ.

The predicted sensitivities of the “images” increased over the generations, showing a strong positive corre-
lation in the fitted logarithmic regression model (r = 0.99; Fig. 3b). In the first 40 generations, the average TP 
increased from 0% to 47%, and then increased more gradually, ultimately reaching 58% in the 90th generation. 
In contrast, the average FP did not change substantially over time, remaining near 5% for most generations. 
Considering that the predictive performance of the images exhibited only slight improvements after the 60th gen-
eration and almost no change after the 90th generation, 100 generations should be sufficient for promoters with a 
length of 81 bp. In our experiments, the preparation of images for shorter sequences required fewer generations.

The most well-known features of bacterial promoters are the −10 region (TATAAT) and −35 region 
(TTGACA). Because the “images” were trained from E. coli σ70 promoters, they should contain some features 
similar to the E. coli σ70 promoter. Although it was easy to detect the −10 region in all “images”, the −35 region 
was always more difficult to find. Moreover, the −10 region always appeared earlier than the −35 region. We 
assumed that this feature of earlier appearance may alter the appearance of other features. To evaluate the forma-
tion of different features, the algorithm was slightly modified. When a string of continuous nucleotide characters 
stably appeared, the region was fixed and was not used in the subsequent image-generation processes. Using 

Promoter Non-promoter

Score 10.9 ± 4.5 4.3 ± 3.5

Table 1.  Comparison of scores of promoter and non-promoter sequences calculated using an “image”a. 
aThe average score of promoter sequences (±1 SD) was significantly higher that of non-promoter sequences 
(p < 0.001, independent t-test).

Figure 3.  Promoter prediction ability of IBPP. The performance of IBPP on E. coli σ70 promoters was largely 
affected by the threshold (a). The predictive ability of the “image” increased along with evolution (b). The results 
are from 55 independent replications. Sn, sensitivity; Sp, specificity; FP, false-positive rate; TP, true-positive rate.



www.nature.com/scientificreports/

6Scientific REPOrTS |         (2018) 8:17695  | DOI:10.1038/s41598-018-36308-0

this method, we investigated the effects of the mismatch penalty for image scoring on the formation of features. 
The results (Table S1) showed that lower penalty scores (0.4) caused the formation of longer continuous NTs. As 
the penalty score increased, the length of the continuous NTs was reduced. The –10 and –35 regions could be 
recognized as “features” with different lengths. Although “features” generated with a higher penalty score (0.75) 
seemed “clean”, the “images” generated with a lower penalty score yielded better results for promoter prediction 
(data not shown).

Combining the SVM and evolutionary algorithm.  “Images” generated in independent evolutionary 
processes showed certain diversity (data not shown), implying that different “images” may carry complemen-
tary information. Thus, although single “images” exhibited similar predictive ability, the combination of differ-
ent “images” in one analysis may improve the predictive performance. To evaluate this combination effect, we 
employed SVM for promoter analysis using vectors consisting of values generated by different images.

The sensitivity of IBPP-SVM for short sequences was largely affected by the dimension of the vectors 
(Fig. 4a). When the length of vectors was below 6, the sensitivity of IBPP-SVM increased slightly with increas-
ing vector dimensions (e.g., 64.5% ± 1.1% for a 2-dimensional vector and 68.7% ± 1.4% for a 5-dimensional 
vector). However, the sensitivity decreased with higher dimensions, dropping to only 31.1% ± 0.8% for the 
10-dimensional vector. In contrast, the specificity of IBPP-SVM for short sequences was not affected by vector 
length and was maintained at around 95% in all cases. The combination of different “images” by introducing 
SVM improved the performance for short sequences compared with IBPP. Under the same testing conditions, the 
best results obtained using IBPP-SVM (sensitivity = 68.7% ± 1.4%, specificity = 94.3% ± 0.2%) were significantly 
higher than those of IBPP with a threshold of 12 (sensitivity = 56.4% ± 4.9%, specificity = 94.1% ± 1.2%; Fig. 4b).

When the number of promoter sequences in the training dataset was fixed, a higher number of non-promoter 
sequences resulted in lower sensitivity but higher specificity (Fig. S2). The relationship between sensitivity and 
specificity was analyzed using a 5-dimensional vector, and the results demonstrated that the sensitivity decreased 
rapidly when the specificity was above 85%. Considering the overall performance, the best performance of 
IBPP-SVM was obtained with a sensitivity of 89.3% and specificity of 85.9%.

To evaluate the performances of IBPP and IBPP-SVM, the testing sets used to analyze the performance of 
NNPP2.211 and BPROM25 were used for promoters and non-promoters. Using these same testing sets, NNPP2.2 
obtained a sensitivity of 64.6% and specificity of 90.3%, whereas BPROM obtained a sensitivity of 95.7% and spec-
ificity of 98.9%. The F1 scores obtained by NNPP2.2 and BPROM were 74.1% and 97.3%, respectively. IBPP-SVM 
showed higher sensitivity and specificity than NNPP2.2, but the performance was still incomparable to that of 
BPROM. This result showed that IBPP-SVM could achieve an efficiency comparable to or even higher than some 
machine learning algorithms; however, further improvements are required to achieve a performance similar to 
that of BPROM.

The algorithm for IBPP does not require knowledge of features of promoters, such as the −10 region and −35 
region of E. coli promoters. Unlike machine-learning programs, which rely on statistical data for the classifica-
tion of promoters, the application of an “image” in promoter prediction is similar to that in the PWM approach. 
An “image” is comprised of strings of nucleotides and gaps between them; thus, the continuous nucleotides in 
an “image” resemble the features of bacterial promoter sequences, and the gaps resemble the spacing between 
features, restricting pseudofeatures to certain positions. Because such “images” cannot readily be constructed 
by machine-learning algorithms, such as SVM and ANN, we applied an evolutionary algorithm. Without any 
manual intervention, the “images” would self-improve with the help of the evolution process. Theoretically, 
this evolutionary system could be applied for drawing information from other types of sequences, such as 
ribosome-binding sites and coding sequences.

Figure 4.  Promoter prediction ability of IBPP-SVM. The performance of IBPP-SVM was tested with vectors of 
different dimensions (a) and compared with IBPP (b). Both results were from three independent replications. 
Sn, sensitivity; Sp, specificity; FP, false-positive rate; TP, true-positive rate.
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Performance of long sequences.  Next, we tested the ability of IBPP and IBPP-SVM to deal with longer 
sequences of 2,000 nt. For all tested methods, there were hits at positions close to or far from the TSSs simul-
taneously; however, the hits were more concentrated in the range of [−50, 50] relative to TSSs (Figs 5, S3). For 
long sequences, we adopted new definitions for sensitivity and specificity so that predictions with more hits in 
the [−50, 50] range exhibited higher sensitivity, while predictions with more hits outside of the [−50, 50] range 
exhibited lower specificity. Although BPROM outperformed IBPP-SVM for short sequences, the predictive ability 
of IBPP-SVM for long sequences was comparable to that of BPROM (Table 2). The best result of IBPP-SVM was 
obtained with 10-dimensional vectors, which was even better than that of BPROM considering both sensitivity 
and specificity. This is in large contrast to the analysis of short sequences, in which IBPP-SVM with 10 dimen-
sional vectors showed very low sensitivity (31.08% ± 0.8%, Fig. 4). When the vector dimension was 5, IBPP-SVM 
showed the best performance for short sequences but did not exhibit good specificity for long sequences (Table 2). 
This comparison revealed that IBPP-SVM could achieve excellent performance with long sequences and that the 
performance was largely affected by the vector dimension.

We then tested IBPP with thresholds of 12 and 13 on long sequences. Under both conditions, IBPP showed 
a sensitivity and specificity comparable to those of BPROM (Table 2). Although IBPP with a threshold of 12 had 
a slightly higher sensitivity, higher specificity was achieved with a threshold of 13. Because BPROM had such 
extraordinary performance for the analysis of short sequences, the performance of IBPP in the analysis of long 
sequences exceeded our expectations. This may be because BPROM was designed for intergenic sequences much 
shorter than 2 kb. In addition, as we only ran BPROM with the default set of parameters in this comparison, the 
performance of BPROM on long sequences may improve upon optimization of the parameters. Because bacterial 
genes are usually ~l kb in length, there may be more than one TSS in each fragment. Thus, some hits outside of the 
[−50, 50] range may be caused by other promoters in the fragments.

The sequences around promoters have the potential to bias the prediction algorithm. In this study, no obvi-
ous bias was detected for IBPP due to surrounding sequences. For example, when the threshold was 12, IBPP 
obtained TP and FP rates of 56% and 5.88% for short sequences, respectively, and a TP rate of 59% for long 
sequences. Therefore, the extended sequence length itself may not have a negative impact on the performance 
of IBPP. The reason for this difference could be related to the scoring system. Although the FP rate for short 
sequences was 5.88%, the scores of these FP sequences were lower than those of the TP sequences overall. When 

Figure 5.  Analysis of long sequences using IBPP-SVM (a), IBPP (b), and BPROM (c) for sequences spanning 
the [–1000, 1000] region related to TSSs. The results of IBPP-SVM and IBPP were from three independent 
replications.

Sensitivity (%) Specificity (%)

IBPP-SVM

Dimension = 2 64.1 ± 3 64.6 ± 1.5

Dimension = 3 66.2 ± 2.7 65.5 ± 1

Dimension = 4 67.3 ± 2.1 65.2 ± 1

Dimension = 5 67.7 ± 1.2 64.7 ± 0.4

Dimension = 6 64.4 ± 2.3 64 ± 0.5

Dimension = 7 56.2 ± 0.5 63.5 ± 0.4

Dimension = 8 54.8 ± 0.4 64.3 ± 0.5

Dimension = 9 56.1 ± 1.7 67.1 ± 1.1

Dimension = 10 65.9 ± 5.2 73 ± 2.1

Dimension = 11 35 ± 17.3 77.7 ± 2.7

IBPP

Threshold = 12 59.8 ± 1.4 69 ± 1.4

Threshold = 13 55.5 ± 1.7 73.6 ± 1.3

BPROM 57.5 69.5

Table 2.  Performance of IBPP-SVM and IBPP for long sequencesa. aThe values are averages from triplicate 
experiments ± SDs for IBPP-SVM and IBPP.



www.nature.com/scientificreports/

8Scientific REPOrTS |         (2018) 8:17695  | DOI:10.1038/s41598-018-36308-0

applied to long sequences, instead of being biased by these FP hits, such hits would be drawn toward the nearby 
TP hits. In addition, the combination of IBPP and SVM showed interesting results; similar to the performance 
on short sequences, the performance of IBPP-SVM for analysis of long sequences also exceeded that of IBPP. 
The effects of vector dimension on IBPP-SVM were largely different between long sequence and short sequence 
analyses. With a vector dimension of 10, the TP rate dropped to 31% for short sequences, accompanied by an FP 
rate of 2.3%, which was much lower than that with a vector dimension of 5. However, under the same conditions, 
IBPP-SVM with a vector length of 10 showed a TP rate of 65.6% for long sequences and a lower FP rate than that 
with a vector length of 5. Although we cannot currently explain this phenomenon, the results advanced us toward 
finding a resolution for further improvement of this prediction method on long sequences.

Conclusion
In this study, we created a new promoter prediction algorithm called IBPP, which was combined with SVM 
(IBPP-SVM). IBPP used a dataset for a group of promoters characterized experimentally (e.g., with RNA-Seq) 
as training sequences to build a sequence template (“image”) through an evolutionary approach. The key to 
promoter prediction by IBPP and IBPP-SVM was comparison of sequences with the “image”. Both IBPP and 
IBPP-SVM could discriminate promoter and non-promoter sequences in long sequences (2,000 nt) or short 
sequences (81 nt).

Based on an algorithm that is fundamentally different from those presented in previous methods, IBPP 
showed good ability to identify E. coli σ70 promoters. IBPP analyzed sequences by matching them with an 
“image”, which imitated the organization of sequence features in a promoter. Similar to the PWM method, IBPP 
exhibited sequence features in an intuitive way. However, similar to machine-learning methods, the “image” 
was not designed manually but was instead trained from known sequences. When training with full-length pro-
moter sequences, the “images” had more of a chance to include more sequence features than possible with the 
commonly used motifs in the PWM method. New “images” could also be trained using TSSs from other species, 
which may allow for cross-species promoter prediction. Although IBPP exhibited moderate performance on 
short DNA sequences, the combination of IBPP and SVM could further enhance its performance. IBPP showed 
good sensitivity and specificity when predicting promoters from long sequences. Although there is still sub-
stantial room for improvement, the evolutionary algorithm showed its ability to draw information from DNA 
sequences.

Nevertheless, there is still much room for improvement in the sensitivity of IBPP on short sequences. Since 
the creation of the “image” is largely affected by the training group of promoter and non-promoter sequences 
chosen, it may be possible to enhance performance by pre-characterizing and subgrouping the training set. The 
evolutionary algorithm used in this study was quite simple. In future studies, we are planning to integrate more 
parameters (e.g., GC content, stability) to the selective criteria of the evolutionary algorithm.

Data Availability Statement
The datasets generated during and/or analyzed during the current study are available from the corresponding 
authors upon request.
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