
2022, Vol. 64(2)  359 –371

Judging One’s Own or Another Person’s Responsibility in 
Interactions With Automation

Nir Douer and Joachim Meyer  , Tel Aviv University, Israel

Address correspondence to Joachim Meyer, Tel Aviv 
University, Wolfson Building, Ramat Aviv, Tel Aviv, 
69978, Israel; e-mail:  jmeyer@ tau. ac. il

HUMAN FACTORS

 DOI: 10. 1177/ 0018 7208 20940516
Article reuse guidelines:  sagepub. com/ journals-  
permissions
Copyright © 2020, The Author(s).

  

Objective: We explore users’ and observers’ subjec-
tive assessments of human and automation capabilities and 
human causal responsibility for outcomes.

Background: In intelligent systems and advanced  
automation, human responsibility for outcomes becomes 
equivocal, as do subjective perceptions of responsibility. In 
particular, actors who actively work with a system may per-
ceive responsibility differently from observers.

Method: In a laboratory experiment with pairs of par-
ticipants, one participant (the “actor”) performed a decision 
task, aided by an automated system, and the other (the “ob-
server”) passively observed the actor. We compared the 
perceptions of responsibility between the two roles when 
interacting with two systems with different capabilities.

Results: Actors’ behavior matched the theoretical 
predictions, and actors and observers assessed the system 
and human capabilities and the comparative human respon-
sibility similarly. However, actors tended to relate adverse 
outcomes more to system characteristics than to their own 
limitations, whereas the observers insufficiently considered 
system capabilities when evaluating the actors’ comparative 
responsibility.

Conclusion: When intelligent systems greatly exceed 
human capabilities, users may correctly feel they contrib-
ute little to system performance. They may interfere more 
than necessary, impairing the overall performance. Outside 
observers, such as managers, may overweigh users’ contri-
bution to outcomes, holding users responsible for adverse 
outcomes when they rightly trusted the system.

Application: Presenting users of intelligent systems 
and others with performance measures and the compara-
tive human responsibility may help them calibrate subjective 
assessments of performance, reducing users’ and outside 
observers’ biases and attribution errors.

Keywords: human- automation interaction, decision 
making, warning systems, warning compliance

INTRODUCTION

Artificial intelligence (AI) and advanced auto-
mation made it possible to create systems, in 
which computers and humans share the collection 
and evaluation of information, decision- making, 
and action implementation. In these systems, 
human responsibility has become equivocal.

Responsibility is a complex issue, involving 
role responsibility, causal responsibility, legal 
responsibility, and moral responsibility (Hart, 
2008; Hart & Honor, 1985; Vincent, 2011). We 
focus on human causal responsibility when inter-
acting with intelligent systems, which we define 
as the comparative human contribution to out-
comes. For humans to have causal responsibility, 
they must be able to control the system and the 
resulting consequences (Noorman & Johnson, 
2014).

As systems become more intelligent, there is 
a shift toward shared control, in which humans 
and computers jointly make decisions and con-
trol actions, or supervisory control, in which the 
human sets high- level goals, monitors the system, 
and only intervenes if necessary (Abbink et al., 
2018). These types of control are used in com-
plex sociotechnical systems, characterized by 
large problem spaces, highly coupled subsystems, 
advanced automation, interaction mediation via 
computers, uncertainty in the available data, and 
disturbance by unanticipated events (Vicente, 
1999). AI algorithms increase these difficulties, 
as the internal processes can be opaque (“black 
box”) and occasionally produce peculiar coun-
terintuitive results (Castelvecchi, 2016; Scharre, 
2016). Consequently, humans may no longer be 
able to control intelligent systems sufficiently to 
be considered fully responsible for the outcomes 
(Crootof, 2015; Cummings, 2006; Docherty 
et al., 2012; Sparrow, 2009), and the system (or its 
developers) may share some of the responsibility 
(Coeckelbergh, 2012; Johnson & Powers, 2005). 
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This leads to a “responsibility gap” in the ability 
to divide causal responsibility between humans 
and systems (Docherty et al., 2012; Johnson 
et al., 2014; Matthias, 2004).

We developed a Responsibility Quantification 
(“ResQu”) model to compute measures of human 
causal responsibility in intelligent systems (Douer 
& Meyer, 2020a). Using information theory, we 
quantified human causal responsibility as the 
expected share of unique human contribution to 
the overall outcomes. The measure reflects char-
acteristics of the operational environment, the 
system and the human, and the function alloca-
tion between them.

With binary classification systems, such as 
alerts or alarms, the model is reduced to rela-
tively simple calculations. Let X denote the 
binary set of the human’s possible actions, and 
Y denote the binary classification output from 
the system. Then, the ResQu model defines 
human responsibility as

 
Resp

(
X
)
def
=

H
(
X/Y

)
H
(
X
) = H

(
X,Y

)
−H

(
X
)

H
(
X
)

  
(1)

where H(X) is Shannon’s entropy, which is a 
measure of uncertainty related to a discrete ran-
dom variable X

 H
(
X
)
= −

∑
x∈χ p

(
x
)
log2p

(
x
)
  (2)

and H(X/Y) is the conditional entropy, which is 
a measure of the remaining uncertainty about a 
variable X when a variable Y is known.
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Resp(X) = 0 if, and only if Y completely deter-
mines X, in which case, the human fully com-
plies with the system’s classifications. Resp(X) 
= 1 if, and only if, the human action selection 
X is independent of the system’s classifica-
tion result Y, in which case, the human is fully 
responsible for the output.

For computing the “theoretical responsibil-
ity,” the ResQu model assumes that humans are 
perfectly rational and use the system optimally. 
This implies that the human will assume more 
responsibility when a system has inferior clas-
sification abilities and less responsibility with a 

system with superior abilities. However, people 
may interact nonoptimally with systems, and they 
may also misperceive their contribution to a pro-
cess. We tested the predictive value of the model 
in controlled laboratory experiments (Douer & 
Meyer, 2020b). We demonstrated that the ResQu 
model is not only a theoretical model, but it can 
serve as a descriptive model for predicting human 
behavior (“measured responsibility”) and the per-
ception of one’s own contribution (“subjective 
responsibility”).

We applied the ResQu model to failure detec-
tions in a factory control room. We discovered 
that managers considered control room operators 
as more responsible for adverse outcomes than 
was justified (Douer et al., 2020). These subjec-
tive attributions resemble aspects of the “funda-
mental attribution error” in social psychology, 
in which observers tend to overestimate disposi-
tional factors for behaviors of another actor, while 
underestimating situational and environmental 
explanations for these behaviors (Ross, 1977, 
2018).

The attribution error arises, because the actor’s 
behavior is the primary reference point for the 
observers, and situational constraints receive less 
attention (Andrews, 2001; Lassiter et al., 2002; 
Smith & Miller, 1979). Moreover, observers may 
have unrealistic expectations regarding actors’ 
capabilities and behavior (Gilbert & Malone, 
1995). People from individualistic (Western) cul-
tures, who view themselves and others as inde-
pendent agents, are more prone to make the error 
than people from collectivistic cultures, who are 
more influenced by contextual information (Choi 
et al., 1999; Markus & Kitayama, 1991).

When interacting with systems, users tend to 
blame the system for errors and adverse outcomes 
(Friedman, 1995; Madhavan & Wiegmann, 2007; 
Morgan, 1992). Differently from how they per-
ceive their own errors, users see system errors as 
evidence for characteristics of the system, often 
ignoring temporary or uncontrollable exoge-
nous factors (van Dongen & van Maanen, 2006). 
Managers, however, may wrongly attribute 
failures to employees’ undesirable personality 
traits, ignoring the system contribution (Davison 
& Smothers, 2015; Douer et al., 2020; Rogoff 
et al., 2004; van Dyck et al., 2005). Hence, it is 
important for system designers and policymakers 



Subjective ReSponSibility 361Subjective ReSponSibility 3

to consider how different human and automation 
capabilities affect users’ and observers’ respon-
sibility perceptions, as it may influence users’ 
behavior and the way they are judged by others.

We report here an experiment on perceptions 
of causal responsibility by actors who used 
automated decision support systems and by 
observers who watched the actors’ actions and 
the decision aid’s performance. We designed the 
task so that participants could not perform the 
task well without aid. Either a more or a less- 
accurate decision aid supported participants in 
the task. Based on our literature review and our 
previous research, we pose several hypotheses:

Hypothesis 1 (H1): Actors will behave 
according to the ResQu model predic-
tions, taking on significantly more respon-
sibility with the less- accurate system than 
with the accurate one.

Hypothesis 2 (H2): Both actors and 
observers will realize that the accurate 
system has better capabilities than the 
less- accurate system.

Hypothesis 3 (H3): Actors’ and observers’ 
subjective responsibility perceptions will 
correspond to the actors’ behavior. If H1 
is true, these assessments will be signifi-
cantly lower for the accurate system than 
for the less- accurate system.

Hypothesis 4 (H4): We predict attribu-
tion errors, especially for the interaction 
with the less- accurate system, when both 
the humans’ and the system’s capabili-
ties are similarly poor, and many adverse 
outcomes are expected. Specifically, 
observers will overrate actors’ causal 
responsibility for adverse outcomes, 
whileereas the actors will tend to assess 
systems with (similar) capabilities as 
significantly inferior to themselves.

THE EXPERIMENT
The experiment involved a binary decision, 

aided by a simple binary alert system, resem-
bling decisions in industrial control rooms, 
flight decks, vehicles, medical systems, smart 

homes, and many other systems (Bregman, 
2010; Cicirelli et al., 2016; Doi, 2007; Jalalian 
et al., 2013; Meiring & Myburgh, 2015). In this 
case, the ResQu model is reduced to relatively 
simple calculations and interpretations.

The goal of the binary classification is to 
determine which of two possible categories an 
item belongs to. One usually refers to rare events 
that need to be detected (malfunctions, a pathol-
ogy, etc.) as the signal. We used a Gaussian 
Signal Detection Theory (SDT) model (Green 
& Swets, 1966) to define the probabilistic char-
acteristics of the system and the human user. 
In terms of SDT, aided decision- making is the 
combined performance of the human and the 
system (Maltz & Meyer, 2001; Meyer, 2001; 
Sorkin & Woods, 1985; Sorkin, 1988). Both 
the human and the decision aid obtain different 
information, which is probabilistically related 
to the actual environmental state. This infor-
mation allows some discrimination between the 
two states, but there is ambiguity left regarding 
the true state. The human and the system are 
imperfectly correlated because otherwise, they 
would be redundant.

The detection sensitivity in SDT is the detec-
tor’s ability to distinguish between signal and 
noise. We will denote by d′A and d′H, respec-
tively, the alert and human detection sensitiv-
ities (measured in standard deviations [SD] 
of the distributions of observed stimuli). The 
larger the detection sensitivity, the easier it is 
for the detector to distinguish between signals 
and noise. The response criterion defines the 
detector’s tendency to classify events as signal 
or noise. The alert system has a preset response 
criterion, denoted by βA, which is used to deter-
mine its binary output. When the human works 
alone, without the use of a decision aid, the 
optimal response criterion, βH, that maximizes 
the expected payoffs is:

 βH
∗ = (1−Ps)

Ps · (VCR−VFA)
(VHit−VMiss)  (4)

where PS is the signal probability, 1 − PS is 
the noise probability, VCR, VFA, VHit, and VMiss 
represent, respectively, the payoffs for differ-
ent response outcomes: Correct Rejection (CR; 
correctly responding “noise”), False Alarm 
(FA; falsely responding “signal”), Hit (correctly 
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responding “signal”), and Miss (falsely respond-
ing “noise”).

The alert’s output serves as additional input 
for the human, who uses it to judge the observed 
ambiguous stimulus with two different response 
criteria. With a reliable alert system, the human 
should adopt a lower cutoff point when an alarm 
is issued (i.e., increase the tendency to declare a 
signal) and a higher cutoff point when no alarm 
is issued (Robinson & Sorkin, 1985).

The human’s differential adjustment of the 
cutoff points, according to the alert’s output, 
can serve as a measure for the level of human 
trust in the system (Meyer, 2001; Meyer & Lee, 
2013). If the human uses a single cutoff point, 
regardless of indications from the system, he or 
she obviously ignores the system’s indications 
and has no trust in the system. The larger the 
difference between the cutoffs, the greater the 
trust and the weight given to the information 
from the system, and the lower share of unique 
human contribution (i.e., lower measured 
responsibility)

In the experiment, participants classified 
ambiguous stimuli, receiving the aid from one 
of two alert systems. One system’s detection 
sensitivity exceeded that of the participants, 
whereas the other system’s sensitivity was sim-
ilar to that of the participants. We conducted 
the experiment on pairs of participants. In each 
pair, one participant (the “Actor”) actively per-
formed the aided classification task, whereas 
the other participant (the “Observer”) observed 
passively.

For both alert systems, we computed the 
ResQu model’s theoretical responsibility pre-
dictions for optimal behavior. We computed 
the actors’ actual level of responsibility from 
their performance data and collected subjective 
responsibility assessments from both actors and 
observers.

Materials and Methods

The experiment was conducted in the 
“Interaction with Technology (IwiT) Lab” of the 
Industrial Engineering department at Tel Aviv 
University on groups of up to eight participants. 
The instructions described the experiment as a 
simplified simulation of a quality control task 

in a factory. A certain percentage of items the 
factory produces are defective. A quality con-
trol worker inspects and classifies each item and 
decides if it is “intact” or a “defect” that should 
be discarded. The worker decides, based on the 
height of a displayed rectangle, which was sam-
pled from one of two overlapping distributions. 
Participants were told that the factory considers 
acquiring an alert system to support the classifi-
cation task. The factory considers two candidate 
systems, which may differ in their classification 
accuracy.

The two participants in each pair were ran-
domly assigned to the roles of the actor and 
observer. The actor sat at a computer. The 
observer sat behind and to the right of the actor 
and could see the stimulus, the alert indications, 
the actor’s actions, and the outcomes. Each pair 
did the experiment with two alert systems, and 
participants were told that they will be asked to 
rate and compare the performance and contribu-
tion of the two candidate systems.

This research complied with the American 
Psychological Association Code of Ethics and 
was approved by the Ethics Committee for 
Research with Human Participants at Tel Aviv 
University. Informed consent was obtained 
from each participant.

Participants. Participants were 60 under-
graduate students from the Tel Aviv University 
Faculty of Engineering (ages 20–29, median 
23, 48% females). They were recruited through 
email invitations. Each participant received 40 
Israeli New Shekels (ILS), about US$12, for 
taking part in the experiment. Conscientious 
performance was encouraged by the promise 
of an additional monetary award (100 ILS, 
about US$29) to a randomly selected partici-
pant, using the accumulated individual scores 
as weights.

Design and procedure. The experiment was 
conducted on desktop computers, with Intel® 
i7 3.4 GHz Processor, 8 GB RAM, NVIDIA® 
GeForce GT 610 Video Card, and 23- inch (56 
cm) monitors. The experimental program was 
written in Python.

Figure 1 shows a schematic depiction of the 
experimental screen. It consisted of a 20 cm 
high and wide square at the center of the screen. 
Above the square were two fields, labeled 
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“Total Score” and “Last Trial,” which displayed 
the cumulative number of points and the num-
ber of points gained or lost in the last trial. 
Below the square were two action- selection 
buttons, labeled “Accept” (allowing an item) 
and “Reject” (discarding an item).

The ambiguous stimulus participants saw 
was a rectangle. It appeared inside the large 
square until the participant pressed one of the 
action- selection buttons. The rectangle had a 
fixed width. Its height was sampled either from 
a distribution of long or of short rectangles, rep-
resenting, respectively, the length distributions 
of defective and intact items. In each trial, par-
ticipants had to decide to which distribution the 
rectangle belonged. Similar to a method used in 
previous studies (Meyer, 2001), in each trial, the 
rectangle appeared at a different position inside 

the large square preventing participants to mark 
the cutoff point explicitly by, for instance, plac-
ing their finger on the screen. We controlled the 
human detection sensitivity by setting the over-
lap between the two distributions.

Indications from the aid were randomly 
determined according to preset probabilities for 
Hits and FA. Participants saw the indications 
from the aid in a small square at the top of the 
screen, which could be either red, indicating 
an alert, or green, indicating no alert. The indi-
cation from the aid appeared together with the 
rectangle, and it remained visible when the rect-
angle was shown.

Actors responded by clicking on either the 
“Accept” or the “Reject” button at the bottom 
of the screen, according to whether they thought 
that the rectangle belonged to the shorter or the 

Figure 1. A schematic depiction of the experimental screen when 
there is an alert, the cumulative number of points is 20, and the 
participant chose a correct response in the last trial, which awarded 
an additional point.
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longer distribution. After the response, the pay-
off for the trial appeared in the “Last Trial” field, 
and the “Score” field was updated. A feedback 
message, stating either “correct” or “incorrect,” 
appeared for 2 seconds, and then the next trial 
began.

The experiment included two alert systems, 
one with the low detection sensitivity d′A = 1 
(the “less- accurate” system) and the other with 
the high detection sensitivity d′A = 2.3 (the 
“accurate” system). In both cases, we assigned 
the participants a low detection sensitivity (d′H 
= 1), by setting a matching overlap between the 
long and short distributions of the displayed 
rectangles.

Actors received 1 point for correctly classi-
fying an intact or a defective item (which were 
40% of the items). They lost 1 point for dis-
carding an intact item and lost 2 points for not 
detecting a defective item. This payoff scheme 
reflects a factory’s incentive not to deliver 
defective items to customers, which is stronger 
than the incentive not to discard intact items. In 
both alert systems, the response criterion was 
βA = 1, equal to participants’ optimal unaided 
response criterion, as calculated in Equation 4:

 βH
∗ = (1−Ps)

Ps
. (VCR−VFA)
(VHit−VMiss)

= 0.6
0.4 .

1−(−1)
1−(−2) =

0.6
0.4 .

2
3 = 1  (5)

Table 1 summarizes the outcome probabilities 
for the two systems and presents their positive 
and negative predictive values (PPV and NPV, 
respectively). These are the probabilities that an 
item was defective when the system indicated 

a defect (PPV) and that it was intact when the 
system indicated that it was intact (NPV).

For the above experimental settings, the 
ResQu model predicts, through Equation 1, 
optimal theoretical responsibility of 12% with 
the “accurate” alert system and 69% with the 
“less- accurate” alert system. Hence, the optimal 
prescribed actor behavior is to rely heavily on 
the accurate system’s abilities and only moder-
ately on the less- accurate system.

In two parts of the experiment, participants 
saw alerts from the “less- accurate” system and 
the “accurate” system. The order of examining 
the two alert systems was counterbalanced so 
that half of the pairs saw alerts from the accu-
rate system first, and the other half saw the 
systems in reversed order. Actors performed 
100 trials with each of the two alert systems, 
deciding on each trial whether to discard or 
allow the presented item. The 100 trials with 
each system were divided into two blocks, each 
with 50 trials. The participants were told that 
the first block of 50 trials was mainly for learn-
ing and gaining experience with their own and 
the system’s abilities, and performance will be 
assessed according to the achievements in the 
second block.

After completing 100 trials with an alert 
system, the participants filled out a question-
naire, providing their subjective judgments on 
the actor’s and system’s detection capabilities 
and comparative human responsibility. In each 
question, the participants rated their level of 

TABLE 1: Outcome Probabilities for the Two Alert Systems in Experiment 1

Type of Alert System Parameters

Defect
(Signal)

Intact
(Noise)

PPV NPV
Red
(Hit)

Green
(Miss)

Red
(False Alarm)

Green
(Correct 

Rejection)

Less- accurate dA′ = 1.0,  
βA = 1

69% 31% 31% 69% 60% 77%

Accurate dA′ = 2.3,  
βA = 1

87% 13% 13% 87% 82% 91%

Note. PPV = positive predictive value; NPV = negative predictive value.
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longer distribution. After the response, the pay-
off for the trial appeared in the “Last Trial” field, 
and the “Score” field was updated. A feedback 
message, stating either “correct” or “incorrect,” 
appeared for 2 seconds, and then the next trial 
began.

The experiment included two alert systems, 
one with the low detection sensitivity d′A = 1 
(the “less- accurate” system) and the other with 
the high detection sensitivity d′A = 2.3 (the 
“accurate” system). In both cases, we assigned 
the participants a low detection sensitivity (d′H 
= 1), by setting a matching overlap between the 
long and short distributions of the displayed 
rectangles.

Actors received 1 point for correctly classi-
fying an intact or a defective item (which were 
40% of the items). They lost 1 point for dis-
carding an intact item and lost 2 points for not 
detecting a defective item. This payoff scheme 
reflects a factory’s incentive not to deliver 
defective items to customers, which is stronger 
than the incentive not to discard intact items. In 
both alert systems, the response criterion was 
βA = 1, equal to participants’ optimal unaided 
response criterion, as calculated in Equation 4:
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Table 1 summarizes the outcome probabilities 
for the two systems and presents their positive 
and negative predictive values (PPV and NPV, 
respectively). These are the probabilities that an 
item was defective when the system indicated 

a defect (PPV) and that it was intact when the 
system indicated that it was intact (NPV).

For the above experimental settings, the 
ResQu model predicts, through Equation 1, 
optimal theoretical responsibility of 12% with 
the “accurate” alert system and 69% with the 
“less- accurate” alert system. Hence, the optimal 
prescribed actor behavior is to rely heavily on 
the accurate system’s abilities and only moder-
ately on the less- accurate system.

In two parts of the experiment, participants 
saw alerts from the “less- accurate” system and 
the “accurate” system. The order of examining 
the two alert systems was counterbalanced so 
that half of the pairs saw alerts from the accu-
rate system first, and the other half saw the 
systems in reversed order. Actors performed 
100 trials with each of the two alert systems, 
deciding on each trial whether to discard or 
allow the presented item. The 100 trials with 
each system were divided into two blocks, each 
with 50 trials. The participants were told that 
the first block of 50 trials was mainly for learn-
ing and gaining experience with their own and 
the system’s abilities, and performance will be 
assessed according to the achievements in the 
second block.

After completing 100 trials with an alert 
system, the participants filled out a question-
naire, providing their subjective judgments on 
the actor’s and system’s detection capabilities 
and comparative human responsibility. In each 
question, the participants rated their level of 

TABLE 1: Outcome Probabilities for the Two Alert Systems in Experiment 1

Type of Alert System Parameters

Defect
(Signal)

Intact
(Noise)

PPV NPV
Red
(Hit)

Green
(Miss)

Red
(False Alarm)

Green
(Correct 

Rejection)

Less- accurate dA′ = 1.0,  
βA = 1

69% 31% 31% 69% 60% 77%

Accurate dA′ = 2.3,  
βA = 1

87% 13% 13% 87% 82% 91%

Note. PPV = positive predictive value; NPV = negative predictive value.
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agreement on a scale between 1 (not at all) and 
7 (very much). After using the second alert sys-
tem, participants answered a concluding ques-
tion. It asked for their impression on which of 
the two systems they had relied more, using a 
verbal scale that included seven options (“the 
first system by far,” “the first system,” “the first 
system slightly more,” “no difference,” “the 
second system slightly more,” “the second sys-
tem,” “the second system by far”).

Actors and observers completed identical 
questionnaires in different areas of the lab, so 
they could not discuss or influence each other’s 
evaluations. They were also instructed not to 
communicate with each other during the exper-
iment. Table 2 presents the questions and the 
factors to which they relate.

RESULTS

Table 3 shows the mean probabilities for 
actors’ Hit and FA responses with and without 
an alert for the two systems, the computed levels 
of responsibility the actors assumed (the mea-
sured responsibility) and their cutoff difference, 
as well as the theoretical predictions for the 
responsibility and the cutoff difference. A two- 
way mixed analysis of variance, with the type 
of alert system as a within- subjects variable and 
the order in which the systems were examined 
as a between- subject variable. There was no 
significant main effect of the order or any sig-
nificant interaction. Thus, we focus on system 
type. As predicted, actors assumed significantly 
more responsibility with the less- accurate 

TABLE 2: Questions for Participants’ Subjective Assessments

Factor Question # Question

Alert detection capabilities Q1 The alert system could distinguish between intact 
and faulty items.

Human detection capabilities Q2 The human could distinguish (without the aid of the 
alert) between intact and faulty items.

Human responsibility
(human contribution to action 

selection)

Q3 The human used the indications from the alert 
system to select an action.

Q4 When selecting actions, the human relied more on 
the indications from the alert system than on own 
detection abilities

Q5 The alert system had a low contribution—the 
human could have similar performance without it

Concluding
responsibility comparison

F1 On which alert system did the human rely more, 
when making decisions?

TABLE 3: Theoretical Predictions and Empirical Behavior of the Actors

Alert 
System

Outcomes as a Function of Alert 
Indications

Responsibility SDT—Cutoffs DifferenceAlert  No Alert  

d′A Hit False 
Alarm

Hit False 
Alarm

Theoretical
Prediction

Measured Diff. Theoretical
Prediction

Measured 
Mean

Diff.

1
(Less- 

accurate)

71% 50% 40% 16% 69% 81% 12% 1.6 1.1 −.5

2.3
(Accurate)

85% 62% 30% 10% 12% 49% 37% 3.9 1.8 −2.1

Note. SDT = Signal Detection Theory.
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system, F(1,28) = 55.10, p < .0001; Par. η2 = 
.66. The actors’ measured responsibility was 
significantly closer to the theoretical predic-
tion with the less- accurate system than with the 
accurate system, with which the actors assumed 
much higher- than- optimal responsibility, t(29) 
= 6.07, p < .0001.

In both systems, the cutoff difference was 
lower than optimal, implying that actors tended 
to under- trust the indications from the systems. 
Like the measured responsibility, the deviance 
was significantly larger with the accurate sys-
tem, implying that with it, actors overestimated 
their own capabilities, causing them to select 
substantially nonoptimal cutoffs, t(29) = 10.52, 
p < .0001.

When the alert systems indicated a defect 
item, the actors’ Hit and FA rates were signifi-
cantly higher with the accurate system t(29) 
= 4.77, p < .0001 and t(29) = 2.49, p = .01, 
respectively. This shows that actors tended to 
comply more with the accurate system’s alerts, 
whether they were correct or false. Without 
alert, the actors’ Hit and FA rates were lower 
with the accurate system, t(29) = 1.71, p = .10 
and t(29) = 2.47, p = .01, respectively, which 
implies higher Miss and CR rates. Hence, sim-
ilarly, actors tended to comply more with the 
accurate system when there was no alert.

Questions Q3–Q5 measured participants’ 
subjective assessments of the actors’ responsi-
bility. After reverse- scoring questions Q3 and 
Q4, we computed the reliability to measure 

the consistency of the questions. The analysis 
showed high reliability, with Cronbach’s α = 
.84, so we used the average of the questions as 
an estimate for subjective responsibility.

We analyzed the subjective assessments with 
a three- way mixed repeated measures analy-
ses of variance (ANOVA), with the role of the 
participant (“Observer”/“Actor”) and the alert 
type (“Accurate”/“Less- accurate”) as within- 
subjects variables and the alert order as a 
between- subject variable. We excluded two out-
liers (one actor and one observer) because their 
mean score was more than two SDs from the 
mean. Table 4 summarizes the ANOVA results. 
Table 5 presents the mean values for the signif-
icant variables.

In the analysis of question Q1, the difference 
between the two alert system capabilities was 
significant with large effect size and so was the 
order of experiencing the systems. Also signif-
icant, but with smaller effect sizes, were inter-
actions between the participant’s role and the 
other two variables. Both types of participants 
rated the accurate alert significantly higher than 
the less- accurate system, especially when it was 
examined second. In most cases, both types of 
participants gave the less- accurate system simi-
lar low ratings, but when it was examined first, 
observers rated it significantly higher.

In the analysis of question Q2, both actors 
and observers evaluated the human detec-
tion capability as moderate, regardless of the 
alert type and the order. When working with 

TABLE 4: Analysis of Variance Results for Questions Q1, Q2, Q3–Q5

Variable

Q1: Alert
Detection 
Capability

Q2: Human Detection 
Capability

Q3–Q5: Human 
Responsibility

F(1,26) Par. η2 F(1,26) Par. η2 F(1,26) Par. η2

Role 1.08 .06 2.16 .08 0.42 .02

Alert 65.63**** .72 1.51 .06 52.11**** .67

Order 12.75** .33 0.31 .01 1.77 .07

Role × Alert 7.77* .23 0.44 .02 8.52** .25

Role × Order 4.54* .15 0.09 .00 1.33 .05

Alert × Order 0.01 .00 1.88 .07 0.26 .01

Role × Alert × Order 5.30* .17 0.72 .03 0.79 .03

Note. *p < .05; **p < .01; ***p < .005; ****p < .0001.
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system, F(1,28) = 55.10, p < .0001; Par. η2 = 
.66. The actors’ measured responsibility was 
significantly closer to the theoretical predic-
tion with the less- accurate system than with the 
accurate system, with which the actors assumed 
much higher- than- optimal responsibility, t(29) 
= 6.07, p < .0001.

In both systems, the cutoff difference was 
lower than optimal, implying that actors tended 
to under- trust the indications from the systems. 
Like the measured responsibility, the deviance 
was significantly larger with the accurate sys-
tem, implying that with it, actors overestimated 
their own capabilities, causing them to select 
substantially nonoptimal cutoffs, t(29) = 10.52, 
p < .0001.

When the alert systems indicated a defect 
item, the actors’ Hit and FA rates were signifi-
cantly higher with the accurate system t(29) 
= 4.77, p < .0001 and t(29) = 2.49, p = .01, 
respectively. This shows that actors tended to 
comply more with the accurate system’s alerts, 
whether they were correct or false. Without 
alert, the actors’ Hit and FA rates were lower 
with the accurate system, t(29) = 1.71, p = .10 
and t(29) = 2.47, p = .01, respectively, which 
implies higher Miss and CR rates. Hence, sim-
ilarly, actors tended to comply more with the 
accurate system when there was no alert.

Questions Q3–Q5 measured participants’ 
subjective assessments of the actors’ responsi-
bility. After reverse- scoring questions Q3 and 
Q4, we computed the reliability to measure 

the consistency of the questions. The analysis 
showed high reliability, with Cronbach’s α = 
.84, so we used the average of the questions as 
an estimate for subjective responsibility.

We analyzed the subjective assessments with 
a three- way mixed repeated measures analy-
ses of variance (ANOVA), with the role of the 
participant (“Observer”/“Actor”) and the alert 
type (“Accurate”/“Less- accurate”) as within- 
subjects variables and the alert order as a 
between- subject variable. We excluded two out-
liers (one actor and one observer) because their 
mean score was more than two SDs from the 
mean. Table 4 summarizes the ANOVA results. 
Table 5 presents the mean values for the signif-
icant variables.

In the analysis of question Q1, the difference 
between the two alert system capabilities was 
significant with large effect size and so was the 
order of experiencing the systems. Also signif-
icant, but with smaller effect sizes, were inter-
actions between the participant’s role and the 
other two variables. Both types of participants 
rated the accurate alert significantly higher than 
the less- accurate system, especially when it was 
examined second. In most cases, both types of 
participants gave the less- accurate system simi-
lar low ratings, but when it was examined first, 
observers rated it significantly higher.

In the analysis of question Q2, both actors 
and observers evaluated the human detec-
tion capability as moderate, regardless of the 
alert type and the order. When working with 

TABLE 4: Analysis of Variance Results for Questions Q1, Q2, Q3–Q5

Variable

Q1: Alert
Detection 
Capability

Q2: Human Detection 
Capability

Q3–Q5: Human 
Responsibility

F(1,26) Par. η2 F(1,26) Par. η2 F(1,26) Par. η2

Role 1.08 .06 2.16 .08 0.42 .02

Alert 65.63**** .72 1.51 .06 52.11**** .67

Order 12.75** .33 0.31 .01 1.77 .07

Role × Alert 7.77* .23 0.44 .02 8.52** .25

Role × Order 4.54* .15 0.09 .00 1.33 .05

Alert × Order 0.01 .00 1.88 .07 0.26 .01

Role × Alert × Order 5.30* .17 0.72 .03 0.79 .03

Note. *p < .05; **p < .01; ***p < .005; ****p < .0001.
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the less- accurate system, the system’s and the 
human’s detection sensitivities were low. We 
compared participants’ answers to questions 
Q1 and Q2, with the less- accurate system, 
using a two- way mixed ANOVA, with the ques-
tion type as a within- subjects variable and the 
order of observing the less- accurate system as a 
between- subject variable (mean values are pre-
sented in Table 5). The actors perceived their 
own detection capability as significantly higher 
than that of the less- accurate system, F(1,27) = 
4.5, p < .05; Par. η2 = .14.

The observers perceived the actors’ and the 
less- accurate system’s capabilities as similar 
when this system was examined first, p = .17. 
When it was examined second, the observers 
rated its capabilities as significantly lower than 
those of the actors, F(1,13) = 7.5, p < .05; Par. 
η2 = .37. Similar comparisons of participants’ 
answers to questions Q1 and Q2 with the accu-
rate system revealed that observers evaluated 
this system’s detection capabilities as signifi-
cantly higher than those of the actors F(1,27) 
= 11.16, p < .005; Par. η2 = .29, and so did the 
actors, F(1,27) = 33.50, p < .0001; Par. η2 = .55

The analysis of questions Q3–Q5 revealed 
highly significant effects of the type of alert 
system and the participant’s role. Both types 
of participants saw the actors’ responsibility 
as significantly lower with the accurate sys-
tem. However, the observers differentiated less 

between the actor’s levels of responsibility with 
the two systems.

We analyzed the answers to question F1, in 
which participants compared their reliance on 
the two systems, with two- way mixed ANOVA, 
with participants’ role as a within- subjects vari-
able and order as a between- subject variable. 
The order had no significant main or interac-
tion effect. There was a very large difference 
between actors and observers, F(1,26) = 13.95, 
p = .001; Par. η2 = .35. The actors stated that 
they relied much more on the accurate alert sys-
tem (M = 6.2, SD = .2), although the observers 
stated that actors relied on it only slightly more 
(M = 5.0, SD = .3). Hence, again, the observers 
differentiated less between the actors’ levels of 
responsibility with the two systems.

DISCUSSION

Actors behaved according to the ResQu 
model’s predictions, assuming significantly 
more responsibility with the less- accurate sys-
tem than with the accurate system (see H1). 
The ResQu model predictions of the actual 
measured responsibility fit the results for the 
less- accurate system well. With the accurate 
system, the actors assumed more than optimal 
responsibility, due to under- reliance on the sys-
tem. This is in line with previous results from 
behavioral research in aided detection tasks, in 

TABLE 5: Actors’ and Observers’ Mean Subjective Ratings of Q1, Q2, Q3–Q5

Q1: Subjective Assessment 
of the Alert Detection 

Capability

Q2: Subjective Assessment 
of Human Detection 

Capability

Q3- Q5: Subjective 
Assessment of Human 

Responsibility

Less- Accurate 
system

Accurate 
system

Less- Accurate 
system

Accurate 
system

Less- Accurate 
system

Accurate 
system

Actors 3.7a

(SD = .3)
6.1b

(SD = .2)
4.3

(SD = .2)
3.9

(SD = .2)
4.5

(SD = .1)
2.5

(SD = .2)

3.6b

(SD = .3)
5.3a

(SD = .3)

Observers 5.0a

(SD = .2)
5.9b

(SD = .3)
4.4

(SD = .2)
4.2

(SD = .2)
4.2

(SD = .2)
3.1

(SD = .2)

3.6b

(SD = .2)
5.1a

(SD = .3)

Abbreviation: SD = standard deviation.
Notes. aWhen examined first; bWhen examined second; SD = standard deviation.
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which users tended to overestimate their own 
capabilities and under- trust the system, espe-
cially when they performed poorly, compared 
with the system (Bartlett & McCarley, 2017; 
Douer & Meyer, 2020b; Meyer et al., 2014).

The experimental points in the current exper-
iment were identical to two experimental points 
in a previous study that included only actors 
(Douer & Meyer, 2020b). Actors’ behavior was 
consistent, as measured responsibilities and 
the cutoff differences were almost identical in 
the two studies, both for the accurate system, 
t(58) = .48, and the less- accurate system, t(58) = 
.80. Hence, we can conclude that in the current 
study the observers’ presence did not affect the 
actors’ behavior.

H2 was fully supported by the results. Due 
to the substantial difference between the two 
systems’ detection capabilities, both actors and 
observers realized that the accurate system had 
significantly better capabilities than the less- 
accurate system. The accurate system received 
significantly higher scores when it was exam-
ined second. A possible explanation is that after 
experiencing the less- accurate system first, the 
accurate system’s performance was perceived as 
much better.

H3 was also fully supported by the results. 
Matching the actors’ measured responsibility, 
both actors and observers rated the actors’ respon-
sibility as significantly lower with the accurate 
system than with the less- accurate system.

H4 was supported, with the less- accurate sys-
tem, and not supported with the accurate system. 
With the accurate system, the system’s superior 
capabilities and contribution were clear, so both 
actors and observers rated the system and human 
capabilities and actors’ responsibility similarly, 
rightly assessing the system’s capabilities as 
higher than those of the actors. However, with the 
less- accurate system, the humans’ and system’s 
capabilities were similarly poor, leading to more 
adverse outcomes and making it more difficult to 
ascribe responsibility. In this case, the actors per-
ceived system capabilities as significantly inferior 
to their own, despite both having similar detec-
tion sensitivity. This indicates that, differently 
from their perception of own errors, actors inter-
preted the abundance of system errors as repre-
sentative characteristics of the system, with lesser 

consideration to exogenous probabilistic fac-
tors. Conversely, when the less- accurate system 
was examined first, the observers perceived its 
capabilities to be somewhat better than those of 
the actors. In this case, they attributed the abun-
dance of adverse outcomes mainly to the actors’ 
capabilities. When it was examined second, the 
observers rated its capabilities to be significantly 
lower. It seems that in the latter case, the observ-
ers generated a reference point for a very good 
system when observing the accurate system first, 
which biased down their perception of the less- 
accurate system. The order of experiencing the 
systems did not affect the actors, maybe because 
they tended to attribute much lower capabilities 
to the less- accurate system, regardless if it was 
examined first or second. Finally, observers dif-
ferentiated less between the actors’ responsibility 
and level of reliance across the two systems, both 
immediately after the trials with each system and 
at the end of the experiment, after experiencing 
both systems.

To conclude, actors’ and observers’ subjective 
perceptions matched the actual difference in sys-
tem capabilities and the actors’ empirical behav-
ior, even when this behavior was not optimal. 
They correctly assessed that the better system’s 
capabilities exceeded those of the actors and 
led to lower human contribution. With the less- 
accurate system, there were actor–observer dif-
ferences, and possible attribution errors and other 
biases arose. Lastly, observers differentiated less 
between actors’ responsibility and reliance on the 
two systems.

Implications

As predicted by the ResQu model, the 
result shows that better automation, which 
greatly exceeds human capabilities, may 
lower the human comparative responsibility 
and level of involvement. In line with pre-
vious behavioral research results, users may 
feel (correctly) that they make no significant 
contribution with such superior systems and 
may attempt to be more involved by interfer-
ing more than necessary. In contrast, they may 
become complacent and less vigilant to take 
necessary actions (Hassenzahl & Klapperich, 
2014; Moray, 2003; Rangarajan et al., 2005; 
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which users tended to overestimate their own 
capabilities and under- trust the system, espe-
cially when they performed poorly, compared 
with the system (Bartlett & McCarley, 2017; 
Douer & Meyer, 2020b; Meyer et al., 2014).

The experimental points in the current exper-
iment were identical to two experimental points 
in a previous study that included only actors 
(Douer & Meyer, 2020b). Actors’ behavior was 
consistent, as measured responsibilities and 
the cutoff differences were almost identical in 
the two studies, both for the accurate system, 
t(58) = .48, and the less- accurate system, t(58) = 
.80. Hence, we can conclude that in the current 
study the observers’ presence did not affect the 
actors’ behavior.

H2 was fully supported by the results. Due 
to the substantial difference between the two 
systems’ detection capabilities, both actors and 
observers realized that the accurate system had 
significantly better capabilities than the less- 
accurate system. The accurate system received 
significantly higher scores when it was exam-
ined second. A possible explanation is that after 
experiencing the less- accurate system first, the 
accurate system’s performance was perceived as 
much better.

H3 was also fully supported by the results. 
Matching the actors’ measured responsibility, 
both actors and observers rated the actors’ respon-
sibility as significantly lower with the accurate 
system than with the less- accurate system.

H4 was supported, with the less- accurate sys-
tem, and not supported with the accurate system. 
With the accurate system, the system’s superior 
capabilities and contribution were clear, so both 
actors and observers rated the system and human 
capabilities and actors’ responsibility similarly, 
rightly assessing the system’s capabilities as 
higher than those of the actors. However, with the 
less- accurate system, the humans’ and system’s 
capabilities were similarly poor, leading to more 
adverse outcomes and making it more difficult to 
ascribe responsibility. In this case, the actors per-
ceived system capabilities as significantly inferior 
to their own, despite both having similar detec-
tion sensitivity. This indicates that, differently 
from their perception of own errors, actors inter-
preted the abundance of system errors as repre-
sentative characteristics of the system, with lesser 

consideration to exogenous probabilistic fac-
tors. Conversely, when the less- accurate system 
was examined first, the observers perceived its 
capabilities to be somewhat better than those of 
the actors. In this case, they attributed the abun-
dance of adverse outcomes mainly to the actors’ 
capabilities. When it was examined second, the 
observers rated its capabilities to be significantly 
lower. It seems that in the latter case, the observ-
ers generated a reference point for a very good 
system when observing the accurate system first, 
which biased down their perception of the less- 
accurate system. The order of experiencing the 
systems did not affect the actors, maybe because 
they tended to attribute much lower capabilities 
to the less- accurate system, regardless if it was 
examined first or second. Finally, observers dif-
ferentiated less between the actors’ responsibility 
and level of reliance across the two systems, both 
immediately after the trials with each system and 
at the end of the experiment, after experiencing 
both systems.

To conclude, actors’ and observers’ subjective 
perceptions matched the actual difference in sys-
tem capabilities and the actors’ empirical behav-
ior, even when this behavior was not optimal. 
They correctly assessed that the better system’s 
capabilities exceeded those of the actors and 
led to lower human contribution. With the less- 
accurate system, there were actor–observer dif-
ferences, and possible attribution errors and other 
biases arose. Lastly, observers differentiated less 
between actors’ responsibility and reliance on the 
two systems.

Implications

As predicted by the ResQu model, the 
result shows that better automation, which 
greatly exceeds human capabilities, may 
lower the human comparative responsibility 
and level of involvement. In line with pre-
vious behavioral research results, users may 
feel (correctly) that they make no significant 
contribution with such superior systems and 
may attempt to be more involved by interfer-
ing more than necessary. In contrast, they may 
become complacent and less vigilant to take 
necessary actions (Hassenzahl & Klapperich, 
2014; Moray, 2003; Rangarajan et al., 2005; 
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Smith et al., 1999). Both responses will proba-
bly impair the overall performance. One needs 
to be prepared to deal with these implications 
on the overall performance and the humans’ 
attitudes toward advanced intelligent systems 
and their role in them.

Our results showed actors’ systematic ten-
dency to attribute adverse outcomes and errors 
to system characteristics, in a manner that 
resembled the fundamental attribution error. 
Observers differentiated less between the two 
systems when judging human comparative 
responsibility, even though they monitored 
the human–automation interaction closely. 
Possibly, a more distant observer, such as a 
manager, might have even larger biases, hold-
ing users of intelligent systems responsible for 
adverse outcomes in situations in which they 
rightly trusted the system (Douer et al., 2020). 
This may allow system designers to keep 
humans in the loop to cope with unexpected 
events, even when humans may be unable to 
cope with such events. In this case, humans 
function as “moral crumple zones,” to whom 
outside observers unjustly assign high moral 
and legal responsibility when the system fails 
(Elish, 2019; Elish & Hwang, 2015).

Lastly, our results suggest that periodical 
presentations of human and system perfor-
mance measures (e.g., sensitivity and specific-
ity) may aid to calibrate subjective assessments 
of both actors and observers, reducing human 
biases and attribution errors when interacting 
with intelligent systems. The ResQu measured 
responsibility can aid in this, too, by quantify-
ing the actual marginal level of human contribu-
tions to the outcomes.

Limitation and Further Directions

The study was conducted in a controlled 
lab environment, in which actors performed 
a simple task and received immediate feed-
back, and observers attentively examined the 
interaction and the capabilities of both actors 
and systems. Further work, which we have 
started (Douer et al., 2020), should expand the 
research to real- world settings.

The study was limited to Israeli students, all 
of which were undergraduate students from the 

Faculty of Engineering. Future work should 
examine how cultural and educational differ-
ences affect the subjective responsibility attri-
bution in human interaction with intelligent 
systems.

We made defective parts fairly common to 
obtain stable Hit and FA probabilities while 
keeping the experiment short. With rare signals, 
human operators may become complacent, rely-
ing on the alert system to let them know when a 
problem occurs, assuming that “all is well” other-
wise. In such cases, the comparative human con-
tribution to outcomes will decrease. Future work 
should examine human responsibility with rare 
events and intelligent classification systems.

Future work should also address temporal 
effects, such as the time required to make a 
decision and to act, and its implications on the 
human’s tendency to rely on the automation 
and the corresponding subjective assessments 
of human responsibility, made by actors and 
observers. We plan to address this issue, too.
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KEY POINTS

 ● Subjective perceptions of responsibility, in 
human interaction with intelligent systems, are 
complex and depend on the relative system capa-
bilities and the human’s role as an active partici-
pant or a passive observer.

 ● In the interaction with advanced intelligent 
systems with superior capabilities, users may 
subjectively feel (correctly) that they do not 
significantly contribute to the outcomes and 
may attempt to be more involved, interfering 
more than necessary and impairing the combined 
performance.

 ● Observers may differentiate insufficiently 
between situations in terms of human compar-
ative responsibility and may fail to consider 
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the causal contribution of the system to adverse 
outcomes.

 ● We demonstrate how the properties of the 
system and the human’s role affect subjective 
responsibility assessments in an experimental 
environment.
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