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Distance metrics facilitate a number of methods for statistical

analysis. For statistical mechanical applications, it is useful to

be able to compute the distance between two different orien-

tations of a molecule. However, a number of distance metrics

for rotation have been employed, and in this study, we con-

sider different distance metrics and their utility in entropy esti-

mation using the k-nearest neighbors (KNN) algorithm. This

approach shows a number of advantages over entropy estima-

tion using a histogram method, and the different approaches

are assessed using uniform randomly generated data, biased

randomly generated data, and data from a molecular dynamics

(MD) simulation of bulk water. The results identify quaternion

metrics as superior to a metric based on the Euler angles.

However, it is demonstrated that samples from MD simulation

must be independent for effective use of the KNN algorithm

and this finding impacts any application to time series data.
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Introduction

Metrics for defining the distance between sample points are

an important concept for statistical analysis and have utility in

numerous algorithms. In the context of statistical mechanics,

one can consider a metric describing the distance between two

poses of a molecule. However, although the distance between

two points in Euclidean space is well-understood and is simple to

calculate from basic trigonometry, the distance between two ori-

entations is more complicated. Inhomogeneous fluid solvation

theory (IFST) is a statistical mechanical method for calculating sol-

vation free energies by quantifying the effect of a solute acting as

a perturbation to bulk solvent.[1,2] The solvent is commonly water

and IFST has proven useful in understanding hydration phenom-

ena,[3,4] explaining binding affinity,[5,6] and calculating hydration

free energies.[7,8] The solvation entropy is calculated in terms of

translational and orientational ordering of solvent molecules in

the solute reference frame (solute-water terms) and translational

and orientational ordering of solvent molecules relative to one

another (water-water terms). In this work, we study the solute-

water orientational entropy and do not consider the other three

entropy terms commonly calculated by IFST: the solute-water

translational entropy, water-water translational entropy, and

water-water orientational entropy.

In IFST, the solute-water orientational entropy has generally

been estimated by integrating correlation functions using a

histogram method. However, histogram methods suffer from

two fundamental and related problems. The first problem is

that the widths of the histogram bins must be sufficient to

capture the underlying probability density function (PDF). Bins

that are too large are unable to describe sharply peaked PDFs

and will underestimate the entropy. Conversely, bins that are
too small require vast amounts of sampling to reach conver-
gence and will otherwise overestimate the entropy.[3,9] This
inherent bias is the second problem with the histogram method.
Recent work has highlighted these problem in relation to esti-

mation of the solute-water orientational entropy using IFST.[8]

One alternative to this histogram method is to estimate the

entropy using the k-nearest neighbors (KNN) algorithm.[10,11]

KNN provides an asymptotically unbiased estimate of the

entropy and can deal effectively with sharply peaked PDFs.[12–14]

The KNN algorithm is suitable for entropy estimation in numer-

ous contexts and has found applications in genetics,[15] stenog-

raphy,[16] and astronomy.[17] KNN has also been identified as

superior to a histogram method in the context of IFST.[4,18] How-
ever, the KNN algorithm estimates the probability density at a
sample point by calculating the shortest distance to any other
sample point and, thus, requires a distance metric to be defined.
In this study, we consider a number of distance metrics for rota-
tions in three-dimensional (3D) space and their suitability for
application in the KNN algorithm. Each distance metric is com-
pared with the histogram method for three datasets; uniform
randomly generated data, biased randomly generated data, and
data from a molecular dynamics (MD) simulation of bulk water.

Methods

In this article, we consider two methods for estimating the

entropy of a set of sample points, where each sample point is
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a rotation in 3D space. The first involves binning the sample

points in a uniform histogram and the second involves esti-

mating the density at sample points by considering a series of

nearest neighbors. In the following work, the term absolute

entropy refers to the Shannon entropy and the term relative

entropy refers to the entropy relative to a uniform distribution.

Entropy estimation from histogram sampling

Using a histogram method, the relative orientational entropy

(Hhistogram) can be calculated by numerical integration using

the Euler angles (x).

Hhistogram 52
1

X

ð
g xð ÞlngðxÞdx (1)

The orientational correlation functions g(x) can be calcu-

lated by computing a, cosb, and c in the laboratory reference

frame for each sample point. X is the integral over the Euler

angles. The limits of integration for a rotation are [0, 2p] for a,

[21, 1] for cosb, and [0, 2p] for c. We used an angular bin size

of 45�, leading to 8, 4, and 8 angular bins for a, cosb, and c
and, thus, 256 angular bins in total. Histogramming is the

most commonly applied method in the context of IFST.[6,7,19]

Entropy estimation from KNN

The KNN algorithm provides an unbiased estimate of the abso-

lute entropy from the general expression in eq. (2).[10]
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n is the number of samples, Ri,k is the distance between sam-

ple point i and its k-th nearest neighbor, p is the number of

degrees of freedom (three in this case), C is the gamma func-

tion, L0 is 0, and c is Euler’s constant. C(5/2) is equal to 3/4p1/

2. To compute the relative entropy (HKNN), eq. (2) must be cor-

rected by the total angular volume X 5 8p2.[4,20]
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A key aspect of the KNN algorithm is the definition of a dis-

tance metric. A number of distance metrics in 3D rotational

space are considered in section “Metrics for 3D rotation”

below. The nearest neighbor distances were calculated by an

exhaustive search of all distances at all sample points.

Metrics for 3D Rotations

A position in 3D Euclidean space can be defined as a vector

relative to the origin. The distance between two points (a and

b) in 3D Euclidean space is calculated using the Euclidean

metric in eq. (6):

dða; bÞ5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðax2bxÞ21ðay2byÞ21ðaz2bzÞ2

q
(6)

An orientation in 3D Euclidean space can be defined as a

rotation relative to a reference orientation. In this work, we

use a reference orientation with the primary axis aligned with

the z axis and the secondary axis aligned with the y axis. We

consider three representations of a rotation. The Euler angles,

the quaternion representation, and the matrix representation.

The unit quaternion representation (w, x, y, z) of a rotation of

h� about a unit vector axis (i, j, k) is given by 7.[21]

w

x

y

z

2
666664

3
7777755

cos u=2ð Þ

i 3 sin u=2ð Þ

j 3 sin u=2ð Þ

k 3 sin u=2ð Þ

2
666664

3
777775 (7)

The matrix representation of this rotation is given by (8).

cos u1i2ð12 cos uÞ ij 12cos uð Þ2 ksin u ik 12 cos uð Þ1 jsin u

ij 12cos uð Þ1ksin u cos u1j2ð12cos uÞ jk 12cos uð Þ2isin u

ik 12cos uð Þ2jsin u jk 12cos uð Þ1isin u cos u1k2ð12cos uÞ

2
664

3
775

(8)

Orientations can also be defined using spherical coordinates,

Hopf coordinates, or axis and angle representations.[22] The

distance between two orientations (1 and 2) can be derived

by calculating the distance between the two rotations that

bring them to the same reference orientation. However, rota-

tions are described by Riemannian geometry rather than

Euclidean geometry and a number of alternatives for calculat-

ing the distance between two rotations have been used previ-

ously. A number of these metrics are considered by Huynh.[23]

In this article, we consider four of these distance metrics and

their utility for the KNN algorithm.

Euclidean distance between the Euler angles

If Rotation 1 is described by the Euler angles a1, b1, c1 and

Rotation 2 is described by the Euler angles a2, b2, c2, then the

Euclidean difference (D1) can be defined as:

D15dð1; 2Þ5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dða1;a2Þ21dðcos b1; cos b2Þ

2
1dðc1; c2Þ

2
q

(9)

dða1;a2Þ5min fja12a2j; 2p2ja12a2jg (10)

dðcos b1; cos b2Þ5jcos b12cos b2j (11)

dðc1; c2Þ5min fjc12c2j; 2p2jc12c2jg (12)

|x| represents the absolute value of the variable x. To avoid

the problems of ambiguous representation, a and c are in the

range [0, 2p] and b is in the range [0, p]. D1 takes the range of

values {0, �(4 1 2p2)}. A Euclidean distance metric has been

used previously for KNN entropy estimation in the context of

IFST.[4]
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Norm of the difference of quaternions

This metric (D2) defines the distance between two rotations as

twice the Euclidean distance between the two unit quaternion

representations (q1 and q2) of the rotations.[24]

D25dð1;2Þ52 3 min jjq1 2 q2jj; jjq1 1 q2jjf g (13)

||q|| represents the Euclidean norm of the quaternion q. The

minimum operator is required because the unit quaternions q

and 2q represent the same rotation. D2 takes the range of

values {0, 2�2}.

Geodesic on the unit sphere

This metric (D3) employs the matrix representations of the two

rotations (R1 and R2) and is the natural Riemannian metric for

the rotation group.[25]

D35dð1;2Þ5jjlog ðR1RT
2Þjj (14)

||M|| represents the Euclidean (Frobenius) norm of the

matrix M and MT represents the transpose of the matrix M. As

shown by Huynh, D3 can be calculated more simply from the

shortest arc between the two rotations on the S3 hypersphere

using the inverse cosine of the inner product of the two unit

quaternion representations (q1 and q2) of the rotations.[23]

D35dð1; 2Þ523a cos ðjq1 � q2jÞ (15)

D3 takes the range of values {0, p} and is twice the value of

the metric used by Wunsch.[26]

Deviation from the identity matrix

This metric (D4) also employs the matrix representations of the

two rotations (R1 and R2).[27]

D45dð1;2Þ5 1ffiffiffi
2
p 3 jjI2R1RT

2 jj (16)

I represents the identity matrix. D4 takes the range of values

{0, 2}.

Efficiency Considerations

The efficiency of using metrics D1, D2, and D3 can be increased

significantly by performing the square root or cosine functions

only on the nearest neighbor to each sample point rather

than on all distances. In the case of D3, this means identifying

the largest value of the absolute inner product.

Randomly Generated Test Data

The methods were first assessed using randomly generated

data. Random orientations were created from a random axis

and angle, which were generated from three random numbers

between 0 and 1 (r1, r2, r3) using eqs. (17)–(19).

a52pr1 (17)

cos b52r221 (18)

g52pr3 (19)

These were then used to generate a random unit vector

(x,y,z) for the principal axis using eqs. (20)–(22).

x5sin a sin b (20)

y5cos a sin b (21)

z5cos b (22)

The rotation around the principal axis was determined by

the c angle. To generate biased data with known entropy, r2

can be divided by a divisor A.

r2’5r2=A (23)

The relative entropy of the resulting PDF can be calculated

using eq. (24).

Hbiased
orient 52ln Að Þ (24)

This expression is derived from an A-fold increase in proba-

bility density within 1/A of the sample space. The probability

density is zero in the remainder of the space. Each test was

performed 1000 times to calculate a mean and standard devia-

tion for the relative entropy estimate. The data can also be

biased by restricting the rotations to a specified distance from

the reference orientation. This requires defining the distance

metric and here we have used the natural metric of the short-

est arc between the two rotations on the S3 hypersphere. This

is the geodesic distance. The maximum distance was specified

by the divisor B.

Dmax 5p=2B (25)

In this case, the orientations were generated using eqs. (17–

19) and orientations with a distance greater than Dmax were

discarded. The entropy of the resulting set of orientations can

be calculated from the remaining fraction of the total PDF. The

uniform PDF for rotations can be derived from the uniform

PDF for quaternions which is equal to the integrated hypersur-

face probability density on the S3 hypersphere.[28] The area of

half the S3 hypersphere (Atotal) is p2 and the area of the two

caps of the S3 hypersphere with solid angle u relative to a

pole (Acaps) is given by eq. (26).[28,29] The area for two caps is

required because the group S3 is a double cover for the rota-

tion group SO(3) and the two caps with solid angle u repre-

sent the same set of rotations. The following derivations are

based on Ref. [28].

Acaps 5Atotal Isin 2u
3

2
;

1

2

� �
(26)

5Atotal ð2u2sin 2uÞ=p (27)

I is the regularized incomplete beta function.
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Hbiased
orient 5ln

Acaps

Atotal

� �
(28)

5ln 2Dmax 2sin 2Dmax½ �2lnðpÞ (29)

5ln p=B2sin p=B½ �2lnðpÞ (30)

Each test was performed 1000 times to calculate a mean

and standard deviation for the entropy estimate.

MD Simulation

The methods were also assessed using data from MD simula-

tions of bulk water. A water molecule in bulk should have no

preferred orientation in the laboratory reference frame and

thus the orientational distribution in the laboratory reference

frame should be random and the contribution of the solute-

water relative orientational entropy should be zero. We use

the TIP4P-2005 water model.[30]

System setup

The first stage was to generate a unit cell of bulk water. To gen-

erate a reasonable initial water density, a water shell of radius

50.0 Å was generated around the origin with the SOLVATE pro-

gram version 1.0 (http://www.mpibpc.mpg.de/grubmueller/sol-

vate) from the Max Planck Institute. The resulting water globule

was then cut to a rhombic dodecahedral unit cell with side

lengths of 25.0 Å containing 364 water molecules. To standard-

ize the geometries of the water molecules, every hydrogen

atom was deleted and all the necessary hydrogen atoms and

lone pairs were built using the appropriate geometry for TIP4P-

2005 water. No ions were included in the systems.

Equilibration

Equilibration was performed for 1.0 ns in an NPT ensemble at

300 K and 1 atm using Langevin temperature control and

Nos�e–Hoover[31] Langevin piston pressure control.[32] The sys-

tem was brought to equilibrium before continuing, by verifying

that the energy fluctuations were stable. MD simulations were

performed using an MD time step of 2.0 fs. Electrostatic interac-

tions were modeled with a uniform dielectric and a dielectric

constant of 1.0 throughout the equilibration and production

runs. Van der Waals interactions were truncated at 11.0 Å with

switching from 9.0 Å. Electrostatics were modeled using the

particle mesh Ewald method,[33] and the system was treated

using rhombic dodecahedral periodic boundary conditions.

Simulation

Production simulation (100.0 ns) in an NPT ensemble were per-

formed at 300 K and 1 atm. System snapshots were saved

every 10.0 fs, yielding 10,000,000 snapshots in total. MD simu-

lations were performed using NAMD[34] version 2.8 compiled

for use with CUDA-accelerated GPUs.

Entropy estimation

The relative orientational entropy was calculated using the his-

togram method and the KNN method (with each distance met-

ric) in each of 1000 cubic voxels in a 10 3 10 3 10 Cartesian

grid centred at the origin with a grid resolution was 0.5 Å.

Rotations of Water

There are a number of additional considerations when apply-

ing these methods to calculate the contribution of solute-

water correlations to the thermodynamic entropy of water.

The first involves accounting for symmetry and the second

involves converting the Shannon entropies to Gibbs entropies.

The effect of symmetry

Due to the C2v symmetry of the water molecule, rotations by c
angles less than p are equivalent to rotations by c 1 p. For the

histogram method, the limits of integration are reduced to [0,

p] for c. For an angular bin size of 45�, this leads to 8, 4, and 4

angular bins for a, cosb, and c and, thus, 128 angular bins in

total. For the KNN method using metric D1, X 5 4p2 and eqs.

(31) and (32) must be used.

dðc1; c2Þ5min fjc12c2j; p2jc12c2jg (31)

HKNN 5
1

n
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i51

ln
nR3

i;k
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" #
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For the quaternion-based metrics (D2, D3, and D4), rotations

by h angles less than p are equivalent to rotations by h 1 p and

h is replaced by 2h in eq. (7). In terms of the randomly gener-

ated biased data, only one half of the random number affects

the data and the divisor must thus be doubled in eq. (23).

r2’5r2=2A (33)

Conversion to molar entropy

IFST provides a means to calculate the contribution of the

solute-water orientational entropies to the molar solvation free

energy in a given subvolume. This can be calculated using the

relative orientational entropy (Horient) calculated using the his-

togram method or the KNN method.

2TDSorient 52NAkTnHorient (34)

T is the temperature (298 K), NA is Avogadro’s number, k is

Boltzmann’s constant, and n is the mean number of water

molecules within the subvolume, derived from the MD simula-

tion. The orientational correlation functions are assumed to be

independent of the position within the subvolume. It is impor-

tant to note that higher-order correlations must be included

to calculate the total orientational entropy of water. The

higher-order relative entropy terms (such as the water-water

relative orientational entropy that is typically calculated by

IFST) are not zero in bulk water.

Results and Discussion

The histogram method is compared with the KNN algorithm

using four distance metrics by considering randomly
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generated data and data from MD simulations of bulk water.

The results for randomly generated data in this section are for

randomly generated water data and, thus, include the meas-

ures described in section “System setup.” The results for nor-

mal rotations are given in Supporting Information and show

almost identical behavior.

The effect of increasing K

It is well-known for the KNN algorithm that increasing k will

increase the precision but decrease the accuracy. We explored

this by considering a range of k values between 1 and 50 for

a fixed number (6400) of randomly generated rotations. The

results for the four different metrics can be seen in Figure 1.

As expected, the estimate at k 5 1 is the closest to the

expected relative entropy of zero for all four metrics but the

standard deviation decreases as k increases. It is notable that

metric 1 is significantly farther from zero than the other three

metrics for all k values. It is also interesting that the entropies

are always negative for the D4 metric and always positive for

the other three metrics.

The effect of increasing sampling

The next step was to consider the effect of increasing the

amount of sampling for a given metric. We explored this by

considering a range of k values between 1 and 50 for 800,

3200, 12,800, and 51,200 randomly generated rotations. The

results for D3 can be seen in Figure 2. The expected relative

entropy is again zero. As expected, the estimates improve and

the standard deviations decrease as the amount of sampling

increases. Again, the estimate at k 5 1 is the closest to the

expected value of zero for all four levels of sampling. As we

are looking for alternatives to a histogram method and bias is

one of the main problems we wish to avoid, we will only con-

sider the k 5 1 estimates from this point forth.

Comparison of the metrics for uniform random data

We first wished to compare the k 5 1 KNN relative entropy

estimates against a histogram method using randomly gener-

ated data. Figure 3 shows the comparison for different num-

bers of sample points. The results show that using metric D1

leads to significantly poorer performance. Metrics D2 and D3

appear to oscillate around zero and metric D4 shows a slight

offset. The histogram method has a lower standard deviation

than any of the KNN methods but the estimate is farther from

zero for all levels of sampling for every metric except D1 and

the performance suffers greatly when few data points are

sampled. Metrics D2 and D3 perform well even with very few

samples.

Comparison of the metrics for biased random data

In addition to reducing bias, it is also important that the

entropy estimates are accurate for nonuniform PDFs. We

explored this by calculating the relative entropies for a set of

rotations that were biased to certain regions of the parameter

space. This was achieved using eq. (23), and the true relative

entropies were calculated using eq. (24). Table 1 shows the

results for the k 5 1 KNN relative entropy estimates and the

histogram method. As expected, the histogram method is

unable to describe the sharply peaked PDFs and drastically

underestimates the relative entropy when the divisor is large.

This of course depends on the number of bins used (128 in

this case) but is indicative of the problem with the histogram

method. The KNN algorithm performs well with the metrics

D2, D3, and D4, providing a reasonable estimate of the true rel-

ative entropy even when the divisor A is large. Conversely, the

performance of the metric D1 deteriorates as the PDFs become

more sharply peaked. The standard deviations are much

smaller for the histogram method, as noted above for the uni-

form distribution, and are very similar for the four KNN met-

rics. This finding was explored further by biasing the

Figure 1. The KNN entropy estimates between k 5 1 and k 5 50 for 6400

randomly generated data points using the four distance metrics. D1 is in

blue, D2 is in red, D3 is in green, and D4 is in purple. The entropy has natu-

ral units and the error bars represent one standard deviation from 1000

repeats of the process. [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]

Figure 2. The KNN entropy estimates between k 5 1 and k 5 50 for 800

(cyan), 3200 (red), 12,800 (green), and 51,200 (purple) randomly generated

samples using the distance metric D3. The entropy has natural units and

the error bars represent one standard deviation from 1000 repeats of the

process. [Color figure can be viewed in the online issue, which is available

at wileyonlinelibrary.com.]
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orientations using eq. (25). Table 2 shows the results for the

k 5 1 KNN relative entropy estimates. Metrics D2, D3, and D4

again display the best performance, with the performance of

metric D1 deteriorating slightly as the PDFs become more

sharply peaked. It is important to note that the geodesic dis-

tance is used to generate the data in this case and it is thus

unsurprising that metrics based on the geodesic distance per-

form well. However, this is the correct approach to limit a set

of rotations and the conclusions are thus relevant to real data.

Comparison of the metrics for data from MD

Although the analysis of random data is very revealing, useful

application of the KNN algorithm for statistical mechanics

requires that it functions with data sampled from simulation.

We tested this by performing a 100-ns MD simulation of bulk

water and considering the solute-water orientational correla-

tion function of water molecules in small voxels. The solute-

water relative orientational entropy should be zero, as the

water molecules have no preferred orientation in the labora-

tory reference frame. However, there is an additional concern

that must be considered in this case. For the randomly gener-

ated data, each sample point is independent of every other.

For the MD simulation, samples that are close together in time

will be highly correlated. This will not affect the accuracy of a

histogram method, as long as sufficient samples are taken.

However, it will affect the KNN method because the correla-

tion between orientations in snapshots that are close together

in time will lead to closer nearest neighbours and, thus,

skewed entropy estimates. This effect is independent of how

many samples are taken. This issue has not been reported pre-

viously and the requirement for independent samples requires

careful analysis of the sampling frequency. In our simulation,

10,000,000 samples were taken from the 100-ns simulation

corresponding to a sampling interval of 10 fs. Figure 4 shows

the effect of decreasing the sampling frequency on the relative

entropy estimates for the histogram method and the KNN

algorithm using the four metrics across 1000 voxels. The histo-

gram methods behave as expected, with the most accurate

estimate using the largest number of samples at a sampling

interval of 10 fs. The histogram estimates worsen rapidly as

the sampling frequency decreases. Metric D1 makes notably

poorer estimates than the other three KNN distance metrics

(as observed for the randomly generated data in Fig. 1) and

diverges from zero as the number of samples decreases. This

can be seen more clearly in Figure 4b. The performances of

Table 1. The histogram and KNN relative entropy estimates with k 5 1 using the four distance metrics for 25,600 randomly generated data points.

Histogram KNN 2 D1 KNN 2 D2 KNN 2 D3 KNN 2 D4

A True H Mean SD Mean SD Mean SD Mean SD Mean SD

1 0.00 0.00 0.00 0.02 0.01 0.00 0.01 0.00 0.01 0.00 0.01

2 20.69 20.69 0.00 20.67 0.01 20.68 0.01 20.68 0.01 20.68 0.01

4 21.39 21.39 0.00 21.35 0.01 21.36 0.01 21.36 0.01 21.36 0.01

8 22.08 21.39 0.00 22.02 0.01 22.05 0.01 22.05 0.01 22.05 0.01

16 22.77 21.39 0.00 22.67 0.01 22.74 0.01 22.74 0.01 22.74 0.01

32 23.47 21.39 0.00 23.31 0.01 23.43 0.01 23.43 0.01 23.43 0.01

64 24.16 21.39 0.00 23.90 0.01 24.12 0.01 24.12 0.01 24.12 0.01

128 24.85 21.39 0.00 24.38 0.01 24.81 0.01 24.81 0.01 24.81 0.01

256 25.55 21.39 0.00 24.66 0.01 25.50 0.01 25.50 0.01 25.50 0.01

512 26.24 21.39 0.00 24.78 0.01 26.18 0.01 26.18 0.01 26.18 0.01

1024 26.93 21.39 0.00 24.83 0.01 26.87 0.01 26.87 0.01 26.87 0.01

2048 27.62 21.39 0.00 24.84 0.01 27.55 0.01 27.55 0.01 27.55 0.01

4096 28.32 21.39 0.00 24.85 0.01 28.24 0.01 28.24 0.01 28.24 0.01

8192 29.01 21.39 0.00 24.85 0.01 28.92 0.01 28.92 0.01 28.92 0.01

16384 29.70 21.39 0.00 24.85 0.01 29.60 0.01 29.60 0.01 29.60 0.01

32768 210.40 21.39 0.00 24.85 0.01 210.28 0.01 210.28 0.01 210.28 0.01

The range of r2 was restricted using eq. (23) with the value of A reported in the table. The true relative entropies were calculated using eq. (24). The

process was repeated 1000 times to calculate a mean and SD which are reported in the table for each case. The relative entropies have natural units.

Figure 3. a) The histogram and KNN entropy estimates with k 5 1 for 100,

200, 400, 800, 1600, 3200, 6400, 12,800, 25,600, 51,200, 102,400, and

204,800 randomly generated data points using the four distance metrics.

The histogram estimates are represented as a blue line and diamonds, the

D1 estimates are represented as a red line and squares, the D2 estimates

are represented as a green line and squares, the D3 estimates are repre-

sented as a purple line and triangles, and the D4 estimates are represented

as a cyan line and circles. The entropy has natural units and the error bars

represent one standard deviation from 1000 repeats of the process and (b)

the data for H between the limits of 20.01 and 0.01.
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the other three metrics show interesting behavior and are

comparable, though metrics D2 and D3 appear to be superior.

As noted above, the performance is weaker at high and low

sampling frequencies, leading to a peak in performance for

sampling frequencies between 400 and 1250 fs. In this range,

the samples are sufficiently uncorrelated to be effectively inde-

pendent, but contain enough information to yield an accurate

entropy estimate.

Application to thermodynamic predictions

To really understand the utility of these methods, we explored

the effect on the predicted thermodynamic properties. As dis-

cussed, the solute-water relative orientational entropy should

make zero contribution to the molar free energy of bulk water.

This contribution can be calculated for each voxel from the ori-

entational entropies using eq. (33). The 1000 voxels correspond

to a total volume of 125 Å3 and the contribution from this vol-

ume can be computed by summing the contribution of each

voxel. This data can be seen in Table 3. In the window of 400–

1250 fs, metrics D2 and D3 make the closest estimates to zero

and are better than the histogram estimate with a 10 fs sam-

pling interval. Although the histogram estimate with a 10 fs

sampling interval of 1 0.013 kcal/mol may seem a reasonable

error, it is important to note that 125 Å3 is a small volume in

the context of molecular simulation. Results suggest that sol-

utes perturb the surrounding water to a distance of two or

three solvation shells.[8],[35–37] Even for a very small solute, the

region of interest has an approximate radius of 12 Å and the

volume of interest is approximately 7250 Å3. Extrapolating the

error, this volume would lead to an error of 1 0.75 kcal/mol.

This is very similar to the results found in recent studies.[8]

Because the KNN method is unbiased, the error is not expected

to be extensive and increasing the volume is actually expected

to decrease the total error, as the average will tend toward the

mean. However, the estimate in each voxel is expected to have

a large standard deviation and be less reliable than the total.

Conclusions

The KNN algorithm is a very appealing method for entropy esti-

mation, due to being unbiased and having modest sampling

requirements. In this study, we have highlighted the importance

of using a suitable distance metric for the calculation and

explored four distance metrics for rotation in 3D. This allowed us

Figure 4. a) The histogram and KNN entropy estimates with k 5 1 using

the four distance metrics from the MD simulation. The sampling intervals

were 10, 50, 100, 200, 250, 400, 500, 800, 1000, 1250, 1600, 2000, 2500,

3200, 4000, 5000, and 10,000 fs. The histogram estimates are represented

as a blue line and diamonds, the D1 estimates are represented as a red

line and squares, the D2 estimates are represented as a green line and

squares, the D3 estimates are represented as a purple line and triangles,

and the D4 estimates are represented as a cyan line and circles. The

entropy has natural units and the error bars represent one standard devia-

tion from the 1000 voxels and b) The data for H between the limits of

20.01 and 0.01.

Table 2. The KNN relative entropy estimates with k 5 1 using the four distance metrics for 25,600 randomly generated data points.

KNN 2 D1 KNN 2 D2 KNN 2 D3 KNN 2 D4

B True H Mean SD Mean SD Mean SD Mean SD

1 0.000 0.018 0.010 0.000 0.010 0.000 0.010 20.001 0.010

2 21.705 21.653 0.010 21.685 0.009 21.685 0.009 21.685 0.009

3 22.853 22.791 0.010 22.832 0.010 22.832 0.010 22.832 0.010

4 23.692 23.620 0.010 23.671 0.010 23.671 0.010 23.671 0.010

5 24.350 24.269 0.010 24.328 0.010 24.328 0.010 24.328 0.010

6 24.891 24.801 0.010 24.869 0.010 24.869 0.010 24.869 0.010

7 25.350 25.249 0.010 25.328 0.009 25.328 0.009 25.328 0.009

8 25.748 25.637 0.010 25.726 0.010 25.726 0.010 25.726 0.010

9 26.100 25.979 0.010 26.078 0.010 26.078 0.010 26.078 0.010

10 26.415 26.283 0.010 26.393 0.009 26.393 0.009 26.393 0.009

11 26.700 26.557 0.010 26.678 0.010 26.678 0.010 26.678 0.010

12 26.960 26.807 0.010 26.938 0.010 26.938 0.010 26.938 0.010

13 27.200 27.035 0.010 27.178 0.010 27.178 0.010 27.178 0.010

14 27.422 27.245 0.010 27.400 0.010 27.400 0.010 27.400 0.010

15 27.629 27.440 0.010 27.606 0.010 27.606 0.010 27.606 0.010

16 27.822 27.623 0.010 27.800 0.010 27.800 0.010 27.800 0.010

The distributions were restricted using eq. (25) with the value of B reported in the table. The true relative entropies were calculated using eq. (30). The

process was repeated 1000 times to calculate a mean and SD which are reported in the table for each case. The relative entropies have natural units.
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to explore the entropy associated with a dataset of orientations,

as each orientation can be represented as a rotation from a ref-

erence orientation. The relative entropy estimates for the KNN

method with the four metrics was then compared to a histo-

gram method. The results of the study apply to all molecules

with a single C2 primary axis (such as the C2v point group of

water). The results in the Supporting Information apply to mole-

cules with no rotational axis of symmetry (such as those in the

C1 point group) and are very similar leading to the same conclu-

sions. It is also worth noting that the KNN method for entropy

estimation is a useful test of the suitability of distance metrics,

using the approach described here.

Before summarizing the findings, it is worth examining the

assumptions. A major assumption is that the random orienta-

tions are actually random. In truth, random number generation

is not entirely random and thus the relative entropy is not

zero. However, the results suggest that the relative entropy is

very close to zero and thus estimates far from zero are inaccu-

rate. One of the main findings of the study is that the distance

metric based on Euler angles (D1) is not as effective as dis-

tance metrics based on quaternions (D2, D3, and D4). Tables 1

and 2 show that the three quaternion metrics yield identical

results (to two decimal places). Thus, metrics D2 and D4 yield

very similar distances to the natural metric D3. Good distance

metrics will yield the same distance as the natural distance

metric for sufficiently close points. This suggests that metrics

D2 and D4 will be good distance metrics, given sufficient sam-

pling such that the NN distances are small. Conversely, dis-

tance metrics based on Euler angles are flawed because the

summed difference between the individual angle components

of two rotations can be large in cases where the two rotations

are very similar.[23,38] This is true both for uniform and sharply

peaked PDFs. The ability to model uniform PDFs is important

in the statistical mechanical modeling of solvent regions far

from the solute and the ability to model sharply peaked PDFs

is important in the statistical mechanical modeling of solvent

regions near complex solutes. Further studies in this area

should consider how sharply peaked the orientational PDFs of

water are in the complex environment surrounding a solute or

protein binding site. This will highlight the effectiveness of the

distance metrics. It is worth noting that the relative entropy

for metric D1 also converges to zero in Figure 3 and this sug-

gests that D1is a good distance metric but requires signifi-

cantly more sampling than the quaternion metrics to reach

the same level of accuracy. Further work should also consider

alternatives to the KNN algorithm, or extensions to it such as

kernel-density estimation.[39,40]

Another finding, which is not unexpected, is that for the ran-

domly generated data the k 5 1 estimates are closer to zero

than estimates with larger k values but have larger standard

deviations. Real-world applications of KNN need to consider the

balance of accuracy and precision that is desired. As is also

expected, increased sampling of the randomly generated data

improves the performance of the KNN algorithm for any value of

k. However, when considering the data from MD simulations,

the results highlight the necessity for the samples to be inde-

pendent. This finding is relevant to KNN entropy estimation in

any context. For the simulation of bulk TIP4P-2005 water at 298

K and 1 atm, sampling intervals less than 400 fs yields correlated

samples and impairs performance even though more samples

are taken. A key advantage of the KNN algorithm is the lack of

bias. Although the bias in the histogram method leads to an

extensive error as the volume of the system increases, the per-

formance of the KNN algorithm is expected to improve with

increased volume. However, for each voxel the KNN entropy esti-

mate may show significant deviation due to the high variance

and this may affect the utility of visualising the contributions of

different regions to solvation free energies.

In summary, the results of this study identify the quaternion

metrics as superior to the metric based on the Euler angles,

for solute-water orientational entropy estimation. These results

are applicable to any entropy calculations that consider orien-

tational correlations and are also of interest for torsional corre-

lations. Importantly, sufficient samples of independent data

must be taken to achieve optimal performance of the KNN

algorithm with time series data.
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Table 3. The thermodynamic estimates of 2TDSorient using the histogram

method and KNN with k 5 1 from the MD simulation for the 1000 voxels

using the four distance metrics.

Sampling

interval (fs)

2TDSorient (kcal/mol)

Histogram KNN 2 D1 KNN 2 D2 KNN 2 D3 KNN 2 D4

10 0.013 0.093 0.123 0.123 0.125

50 0.018 0.031 0.081 0.079 0.084

100 0.026 20.019 0.044 0.042 0.049

200 0.043 20.058 0.025 0.022 0.034

250 0.052 20.069 0.025 0.021 0.035

400 0.081 20.098 0.007 0.002 0.022

500 0.101 20.103 0.011 0.005 0.027

800 0.164 20.117 0.006 20.002 0.028

1000 0.207 20.147 20.006 20.015 0.020

1250 0.262 20.155 0.013 0.003 0.044

1600 0.346 20.174 20.010 20.023 0.026

2000 0.437 20.206 20.015 20.029 0.028

2500 0.548 20.193 20.001 20.018 0.048

3200 0.694 20.224 20.025 20.044 0.034

4000 0.844 20.254 20.022 20.045 0.046

5000 1.012 20.262 20.027 20.053 0.053

10,000 1.635 20.350 20.059 20.102 0.069

The sampling intervals were 10, 50, 100, 200, 250, 400, 500, 800, 1000,

1250, 1600, 2000, 2500, 3200, 4000, 5000, and 10,000 fs.
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