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Abstract

Due to narrow therapeutic window of cancer therapeutic agents and the development of resistance against these
agents, there is a need to discover novel agents to treat breast cancer. The antitumor activities of thymoquinone
(TQ), a compound isolated from Nigella sativa oil, were investigated in breast carcinoma in vitro and in vivo. Cell
responses after TQ treatment were assessed by using different assays including MTT assay, annexin V-propidium
iodide staining, Mitosox staining and Western blot. The antitumor effect was studied by breast tumor xenograft
mouse model, and the tumor tissues were examined by histology and immunohistochemistry. The level of anti-
oxidant enzymes/molecules in mouse liver tissues was measured by commercial kits. Here, we show that TQ
induced p38 phosphorylation and ROS production in breast cancer cells. These inductions were found to be
responsible for TQ’s anti-proliferative and pro-apoptotic effects. Moreover, TQ-induced ROS production regulated
p38 phosphorylation but not vice versa. TQ treatment was found to suppress the tumor growth and this effect was
further enhanced by combination with doxorubicin. TQ also inhibited the protein expression of anti-apoptotic genes,
such as XIAP, survivin, Bcl-xL and Bcl-2, in breast cancer cells and breast tumor xenograft. Reduced Ki67 and
increased TUNEL staining were observed in TQ-treated tumors. TQ was also found to increase the level of catalase,
superoxide dismutase and glutathione in mouse liver tissues. Overall, our results demonstrated that the anti-
proliferative and pro-apoptotic effects of TQ in breast cancer are mediated through p38 phosphorylation via ROS
generation.
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Introduction

In the last decade, numerous papers have reported that
thymoquinone (TQ), a compound isolated from Nigella sativa
oil, was able to suppress a range of carcinomas including
breast, liver, prostate and colorectal carcinoma [1]. Many
potential targets which TQ regulates for its anticancer activities
have been identified including p53 [2,3], p73 [4], STAT3 [5],
NF-κB [6], PPAR-γ [7] and reactive oxygen species (ROS)
[4,8]. In addition, the combination of TQ with conventional
medicine can result in greater anticancer effect, for example in
NCI-H460 non-small cell lung cancer cells [9] and U266
multiple myeloma cells [5]. Moreover, TQ can even protect
against the toxicity caused by conventional medicine, for

example, to ameliorate the nephrotoxicity induced by cisplatin
in rodents [10] and the cardiotoxicity of doxorubicin in mice
[11]. However, the detailed molecular mechanisms of the
antineoplastic effects of TQ are yet to be elucidated, and the
potential therapeutic effects of TQ in breast carcinoma are also
not clear.

The p38 pathway plays a number of roles including
regulation of apoptosis, cell cycle progression, cell growth and
differentiation. A number of diseases have been found to be
associated with p38 signaling, namely rheumatoid arthritis [12],
cardiovascular disease [13] and Parkinson’s disease [14].
Many studies suggest that the p38 pathway may play an
important role in cancer as a tumor suppressor. p38 MAPK was
shown to up-regulate p16 expression, which in turn inhibits
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cyclin D1/cdk4 activity [15]. p38 MAPK can stabilize HBP1
protein by phosphorylating it [16], whereby HBP1 can then
negatively regulate cell cycle genes, including cyclin D1 and N-
myc [17,18]. It had been shown that several chemotherapeutic
agents, such as nocodazole, taxol, vincristine and vinblastine,
can induce p38 MAPK activation and mitotic cell cycle arrest
[19]. The p38 inhibitor was found to reverse nocodazole-
induced apoptosis [19]. Moreover, phospho-p38 is almost
undetectable in most solid tumors including breast, lung, liver,
gastric, renal and ovarian cancers, while this protein is
relatively higher expressed in normal organs [20]. Together,
these findings explain the potential role of p38 MAPK in
anticancer therapy. The agent that can modulate p38 pathway
could thus be a solution to tumor malignancy.

ROS are oxygen-containing reactive molecules or ions,
which are formed via incomplete one electron reduction of
oxygen [21]. Although studies on the effect of ROS in oncology
are not fully understood, there are reports suggesting that ROS
can promote tumorigenesis through Ras-Raf-MEK-ERK
pathway, or suppress tumorigenesis via p38 pathway [21]. It
has been reported that ROS, via Ras, can activate ERK1/2,
where ERK1/2 plays important roles in tumorigenesis such as
cell growth and apoptosis prevention [22,23]. In contrast, ROS
was shown to activate p38 MAPK for apoptotic cell death in
human cervical cancer cells [24]. The p53/ROS/p38α cascade,
whereby p38α can be activated via p53-mediated ROS
production, plays an essential role in cisplatin-induced
apoptosis in HCT116 colorectal cancer cells [25]. Interestingly,
there was a study which suggested that ROS is tumor-
promoting, and that p38 MAPK-induced apoptosis is initiated in
response to ROS accumulation. This response is believed to
play an important role in inhibiting tumor initiation during
oxidative stress [26].

Despite the identification of various targets for TQ, the effect
of TQ on MAPKs, particularly p38, still remains unexplained.
The present work seeks to explain the role of p38 MAPK on the
anticancer effects of TQ in breast cancer cells and in the breast
tumor xenograft mouse model. We also investigate the role of
ROS and its interaction with p38 MAPK. We believe the results
will add significant knowledge to the potential use of TQ in
breast cancer therapy, in particular its effects on growth
inhibition and apoptosis.

Materials and Methods

Chemicals and Antibodies
Trypsin EDTA, trypan blue, thiazolyl blue tetrazolium

bromide (MTT), thymoquinone and N-acetylcysteine were
purchased from Sigma-Aldrich (St. Louis, MO, USA), while
doxorubicin was purchased from Euroasian Chemical Private
Ltd. (Mumbai, India). SB203580 was purchased from Promega
(WI, USA). RPMI1640 and fetal bovine serum were purchased
from Hyclone (Loughborough, UK). Antibiotic-antimycotic
mixture was purchased from Gemini Bio-products (West
Sacramento, CA, USA). Dimethyl sulfoxide was purchased
from MP Biomedicals (Solon, OH, USA). BD matrigel was
purchased from BD Biosciences (Franklin Lakes, NJ, USA).
Antibodies to Bcl-2, Bcl-xL, Ki67, XIAP, JNK, p-JNK, ERK, p-

ERK and PARP were purchased from Santa Cruz
Biotechnology (Santa Cruz, CA, USA), while survivin, p38, p-
p38 and β-actin were purchased from Cell Signaling (Beverly,
MA, USA). Chicken anti-rabbit IgG HRP-conjugated, chicken
anti-mouse IgG HRP-conjugated, chicken anti-rabbit IgG TR-
conjugated antibodies, p38 siRNA and control siRNA-A were
purchased from Santa Cruz Biotechnology.

Cell lines
MCF-7 and MDA-MB-231 breast cancer cell lines were

purchased from ATCC (Manassas, VA, USA). These cell lines
were cultured in RPMI1640 medium supplemented with 10%
fetal bovine serum and 1% antibiotic-antimycotic. All cell
culture were maintained at 37 °C and 5% CO2 in a humidified
atmosphere.

3: (4,5-Dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium
bromide (MTT) assay

The anti-proliferative effect of TQ was assessed by MTT
assay. TQ was dissolved in PBS containing 0.5% DMSO for all
in vitro studies. Briefly, breast cancer cells were seeded (104

cells/well) in a 96-well microtiter plate followed by overnight
incubation. After appropriate treatment, 10 µl MTT solution (5
mg/ml) was added to each well for 4 h. The mixture was
removed carefully via pipette, and the remaining formazan
crystals formed were dissolved by 100 µl DMSO. After 30 mins,
the absorbance of each well was read at 570 nm with an
absorbance reader (Tecan Infinite M200, Mannedorf,
Switzerland).

Annexin V-propidium iodide analysis
The level of apoptosis of cancer cells was assessed with

Annexin V-propidium iodide kit from Miltenyi Biotec (Bergisch
Gladbach, Germany). Briefly, breast cancer cells were seeded
(2.6 X 105 cells/well) in a 6-well microtiter plate followed by
overnight incubation. After appropriate treatment, the cells
were trypsinized, washed, and incubated with Annexin V-FITC
solution for 15 mins under dark condition. After washing, the
cells were analyzed with flow cytometry (CyAnTM ADP from
Beckman Coulter, Brea, CA, USA) immediately after propidium
iodide solution was added.

Western blot analysis
The protein expressions of genes of interest in breast cancer

cells and breast tumor tissues were measured by Western blot.
Briefly, the cells were seeded (2.6 X 105 cells/well) in a 6-well
microtiter plate followed by overnight incubation. After
appropriate treatment, the cells were trypsinized followed by
whole cell lysate extraction. For in vivo study, the tumor tissues
were homogenized for tissue lysate extraction. Both cell lysate
and tissue lysate were centrifuged and the supernatants were
collected. After protein estimation with Bio-Rad protein assay
(Hercules, CA, USA), a calculated volume of lysate was mixed
with laemmli sample buffer, whereby the mixture was resolved
by 10% or 12% SDS/PAGE gel and then electroblotted onto a
nitrocellulose membrane. The membrane was probed with
primary antibody (1:1000) for overnight incubation at 4°C, and
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then washed and incubated with HRP-conjugated secondary
antibody (1:10000) for 1 h at room temperature. The
membrane was examined for its chemiluminescence by ECL
(GE Healthcare, Little Chalfont, Buckinghamshire, UK).
Densitometric analysis of the scanned blots was measured
using ImageJ software and the results were expressed as fold
change relative to the control after normalization to β-actin.

ROS measurement
The ROS level of cancer cells was measured by flow

cytometry after Mitosox staining (Invitrogen, Carlsbad, CA,
USA). Briefly, breast cancer cells were seeded (2.6 X 105 cells/
well) in a 6-well microtiter plate followed by overnight
incubation. After appropriate treatment, the cells were
trypsinized and washed with PBS buffer before mixing with
Mitosox-added serum-free medium. The cells were then
incubated under dark condition for 15 mins at 37°C before
analysis with a flow cytometer (BD LSRII, Franklin Lakes, NJ,
USA).

PathScan® Phospho-p38 MAPK (Thr180/Tyr182)
Sandwich ELISA Kit

The p-p38 MAPK level of cancer cells was examined with
PathScan® Phospho-p38 MAPK (Thr180/Tyr182) Sandwich
ELISA Kit (Cell Signaling, Beverly, MA, USA). The
experimental procedures were carried out according to the
manufacturer’s protocol. Briefly, breast cancer cells were
seeded (2.6 X 105 cells/well) in a 6-well microtiter plate
followed by overnight incubation. After appropriate treatment,
the cells were lysed followed by centrifugation. The resulting
supernatant was added into the wells supplied by the
manufacturer. After 4 h incubation at 37°C, the wells were
washed with buffer for 4 times. Detection antibody was then
added for 1 h at 37°C. The washing step was repeated,
followed by incubation for 30 mins with HRP-Linked secondary
antibody at 37°C. The washing step was again repeated,
followed by incubation for 10 mins with TMB substrate at 37°C.
STOP solution was then added into each well for 5 mins. The
absorbance was read at 450 nm with an absorbance reader
(Tecan Infinite M200, Mannedorf, Switzerland).

Gene silencing using siRNA
The protein expression of p38/p-p38 was suppressed by

siRNA silencing. Briefly, breast cancer cells were seeded (1.7
X 105 cells/well) in a 6-well microtiter plate followed by
overnight incubation. The cells were then tranfected with 30 nM
of p38 siRNA or control siRNA-A using Oligofectamine
tranfection reagent (Invitrogen, Carlsbad, CA, USA) for 6 h
according to the manufacturer’s protocol. Serum-added
medium was then added for at least 24 h before exposure to
appropriate treatment.

In vivo experiment
Female nude mice (BALB/c OlaHsd-foxn1) were purchased

from Biological Resource Centre (BRC, Biopolis, Singapore).
The animal protocol was approved by The NUS Institutional
Animal Care and Use Committee (IACUC No. 065/11). Upon

arrival, the nude mice were kept in individual disposable cages
with ventilation, and given food and water ad lib. After
acclimatisation over 7 days, each mouse was injected
subcutaneously with 107 MDA-MB-231 human breast cancer
cells (resuspended in matrigel-added serum free medium) at
the right flank region. When the tumor size was about 100 mm3

(Volume = ½ X width2 X length), the mice were divided into
different treatment groups (n=5) as following.

Group 1: Vehicle control saline water (i.p.), 6 days per week.
Group 2: TQ 4 mg/kg (i.p.), 6 days per week.
Group 3: TQ 8 mg/kg (i.p.), 6 days per week.
Group 4: Dox (doxorubicin) 2.5 mg/kg (i.p.), once per week.
Group 5. TQ 4 mg/kg (i.p.), 6 days per week + Dox 2.5 mg/kg

(i.p.), once per week.
TQ and doxorubicin were dissolved in saline water

containing 5% DMSO. The tumor volume and body weight
were measured twice per week. After two weeks of treatment,
the mice were euthanized with CO2 asphyxiation. Tumor
tissues were collected for histological, immunohistochemical
and Western blot analysis, while liver tissues were collected for
enzymatic assays.

Hematoxylin and Eosin (H&E) staining
The tumor tissues were placed in 10% neutral buffered

formalin solution (Sigma-Aldrich, St. Louis, MO, USA) before
being processed and paraffinized. The samples were sectioned
and stained with H&E solution (Merck, Germany). The tissue
section was examined and photographed with a fluorescence
microscope (Olympus BX51, Shinjuku, Japan).

TUNEL staining
The level of apoptosis of tumor tissues was assessed by

TUNEL staining (Promega, WI, USA). The experimental
procedures were carried out according to the manufacturer’s
protocol. Briefly, the tissue section was deparaffinized before
rehydration with decreasing concentrations of ethanol. After
washing with 0.85% NaCl and PBS, the tissue section was
fixed with 4% formaldehyde for 15 mins. Following washing
with PBS, the tissue section was covered with Proteinase K
solution for 8-10 mins. After another PBS wash, the tissue
section was again fixed with 4% formaldehyde for 5 mins.
Following PBS wash, the tissue section was covered with
equilibrium buffer for 5-10 mins before addition of TdT reaction
mixture. After incubation under dark condition for 1 h, the tissue
section was incubated with SSC solution for 15 mins, followed
by a final PBS wash. After DAPI counterstain, the tissue
section was examined and photographed with a fluorescence
microscope (Olympus BX51, Shinjuku, Japan). Average
number of fluorescence dots of three images from each
treatment group was calculated.

Ki67 immunohistochemistry
The tissue section was deparaffinized before undergoing

antigen retrieval step with citrate buffer. The tissue section was
next blocked with 2% fetal bovine serum for 20-30 mins, and
then incubated with rabbit anti-human Ki67 antibody (1:200) for
1 h at room temperature. After rinsing with PBS, the tissue
section was incubated with chicken anti-rabbit IgG TR-
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conjugated antibody (1:500) for 1 h under dark condition.
Following DAPI counterstain, the tissue section was examined
and photographed with a fluorescence microscope (Olympus
BX51, Shinjuku, Japan). Average number of fluorescence dots
of three images from each treatment group was calculated.

Catalase assay
The catalase level in mouse liver tissues was measured

using the catalase assay kit from Cayman Chemical (Ann
Arbor, Michigan, USA). The experimental procedures were
carried out according to the manufacturer’s protocol. Briefly,
the liver tissues were homogenized in cold buffer (50 mM
potassium phosphate, 1 mM EDTA, pH 7). The supernatant
was collected after centrifugation. The sample was mixed with
diluted assay buffer and methanol in a 96-well microtiter plate.
The reaction was initiated by adding diluted hydrogen peroxide
for 20 mins with constant shaking. Diluted potassium hydroxide
was then added followed by catalase purpald. The plate was
incubated immediately for 10 mins with constant shaking.
Catalase potassium periodate was then added followed by 5
mins incubation with constant shaking. The absorbance was
then read at 540 nm with an absorbance reader (Tecan Infinite
M200, Mannedorf, Switzerland).

Superoxide dismutase (SOD) assay
The SOD level in mouse liver tissues was measured using

the SOD assay kit from Cayman Chemical (Ann Arbor,
Michigan, USA). The experimental procedures were carried out
according to the manufacturer’s protocol. Briefly, the liver
tissues were homogenized in HEPES buffer (20 mM HEPES
buffer, 1 mM EGTA, 210 mM mannitol, 70 mM sucrose, pH
7.2). The supernatant was collected after centrifugation. The
sample was added to diluted radical detector in a 96-well
microtiter plate. The reaction was initiated by adding diluted
xanthine oxidase. The plate was incubated immediately for 20
mins with constant shaking. The absorbance was then read at
450 nm with an absorbance reader (Tecan infinite M200,
Mannedorf, Switzerland).

Glutathione assay
The glutathione level in mouse liver tissues was measured

using the glutathione assay kit from Cayman Chemical (Ann
Arbor, Michigan, USA). The experimental procedures were
carried out according to the manufacturer’s protocol. Briefly,
the liver tissues were homogenized in cold buffer (50 mM
phosphate, 1 mM EDTA, pH 6-7). The supernatant was
collected after centrifugation. The sample was first
deproteinated by triethanolamine. The sample was added to
assay cocktail in a 96-well microtiter plate. The plate was
incubated immediately for 25 mins under dark condition with
constant shaking. The absorbance was then read at 405 nm
with an absorbance reader (Tecan Infinite M200, Mannedorf,
Switzerland).

Statistical analysis
Statistical analysis was performed by one way analysis of

variance (ANOVA). A p-value of less than 0.05 was considered
to be statistically significant.

Results

MAPKs protein phosphorylation after TQ treatment
We first determined whether TQ can induce any effect in

MAPKs protein phosphorylation in breast cancer cells. Western
blot analysis demonstrated that TQ significantly up-regulated
the phosphorylation of various MAPKs in MCF-7 cells (Figure
1A). The increase of JNK and p38 protein phosphorylation was
found to be maximal at 12 h. On the other hand, the increase of
ERK protein phosphorylation peaked at 4 h and gradually
decreased till 12 h.

The specific p38 inhibitor (SB203580) abrogates TQ-
induced p38 phosphorylation

Having determined the potential effect of TQ on p38 MAPK,
we further investigated the specificity of this effect on both
MCF-7 and MDA-MB-231 breast cancer cell lines. Both cell
lines were pre-treated with 10 µM SB203580 followed by TQ
treatment. In both cell lines, TQ was found to induce the
phosphorylation of p38, and this induction was reversed by
SB203580 treatment (Figure 1B). In addition to western blot, a
p38 MAPK ELISA kit (as described in Materials and Methods)
was also used to measure the p-p38 level in TQ-treated cells.
We found that TQ significantly increased the p-p38 level in both
cell lines after exposure to 40 µM TQ for 12 h (Figure 1C). This
increase was also significantly reversed by SB203580
treatment.

The involvement of p38 MAPK in TQ-induced anti-
proliferative and pro-apoptotic effects

MCF-7 and MDA-MB-231 cells were treated with increasing
doses of TQ for 24 h with or without SB203580 treatment. The
results from MTT assay indicated that SB203580 treatment
significantly reversed the anti-proliferative effect of TQ in both
cell lines, at least partially (Figure 2A). We also examined
whether the level of p38 phosphorylation interfered with TQ-
induced apoptosis. We found that SB203580 treatment
significantly reversed TQ-induced increased percentage of
Annexin V positive cells (Figure 2B). As shown in Figure 2C,
the cleaved-PARP protein in both cell lines was increased after
TQ treatment, and this increase was reversed when the cells
were pre-treated with SB203580. We also investigated the
protein expression of various anti-apoptotic/pro-survival genes
such as survivin, XIAP, Bcl-xL and Bcl-2. In both cell lines, we
found that TQ suppressed the protein expression of these
genes, however, these suppressions were not all reversed by
SB203580 treatment (Figure 2D). We found that the decrease
of XIAP in MCF-7 cells by TQ could be reversed by SB203580
treatment. On the other hand, the decrease of survivin and
Bcl-2 by TQ was reversed by SB203580 treatment in MDA-
MB-231 cells.
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Figure 1.  TQ induces MAPKs protein phosphorylation, particularly p38, in breast cancer cells.  (A) Western blot analysis
showed the protein phosphorylation of MAPKs by TQ. MCF-7 cells were treated with 40 µM TQ for various time periods ranging up
to 12 h. Data are representative of at least three independent experiments. (B) Western blot analysis showed the effect of
SB203580 on TQ-induced p38 phosphorylation. MCF-7 and MDA-MB-231 cells were pre-treated with 10 µM SB203580 for 1 h
before exposure to 40 µM TQ for 12 h. Data are representative of at least three independent experiments. (C) The effect of
SB203580 on TQ-induced p-p38 level was shown by PathScan® phospho-p38 MAPK (Thr180/Tyr182) sandwich ELISA kit as
described under Materials and Methods section. MCF-7 and MDA-MB-231 cells were pre-treated with 10 µM SB203580 for 1 h
before exposure to 40 µM TQ for 12 h. Values are means ± S.E.M. of at least three independent experiments. * p<0.05, *** p<0.001.
doi: 10.1371/journal.pone.0075356.g001
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Figure 2.  The role of p38 MAPK on TQ-induced anti-proliferative and pro-apoptotic effects in breast cancer cells.  (A) MTT
assay results showed the effect of SB203580 on TQ-induced anti-proliferative effect in MCF-7 and MDA-MB-231 cells. The cells
were pre-treated with 10 µM SB203580 for 1 h before exposure to increasing doses of TQ for 24 h. Values are means ± S.E.M. of at
least three independent experiments. * p<0.05, ** p<0.01. (B) Annexin V assay results showed the effect of SB203580 on TQ-
induced pro-apoptotic effect in MCF-7 and MDA-MB-231 cells. The cells were pre-treated with 10 µM SB203580 for 1 h before
exposure to 40 µM TQ (50 µM in MCF-7 cells) for 12 h. Data are representative of at least three independent experiments. Values
are means ± S.E.M. of at least three independent experiments. * p<0.05, ** p<0.01. (C) Western blot analysis showed the effect of
SB203580 on TQ-induced PARP protein cleavage in MCF-7 and MDA-MB-231 cells. The cells were pre-treated with 10 µM
SB203580 for 1 h before exposure to 40 µM TQ for 12 h. Data are representative of at least three independent experiments. (D)
Western blot analysis showed the effect of TQ and SB203580 on the protein expression of various anti-apoptotic genes in MCF-7
and MDA-MB-231 cells. The cells were pre-treated with 10 µM SB203580 for 1 h before exposure to 40 µM TQ for 12 h. Data are
representative of at least three independent experiments.
doi: 10.1371/journal.pone.0075356.g002
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N-acetylcysteine (NAC) prevents TQ-induced ROS
production

There are papers reporting that TQ mediates ROS
production as a mechanism to induce apoptosis and growth
inhibition in various cancer cells [8,27,28] except breast cancer.
In this study, we demonstrated the effect of TQ on ROS
production in breast cancer cells, and its effect on cell
proliferation and apoptosis. MCF-7 cells were treated with 40
µM TQ for various time periods ranging up to 6 h. As shown in
Figure 3A, TQ significantly induced ROS production as early as
30 mins, and this induction was time-dependent up to 3 h after
TQ treatment. TQ-induced ROS production was reversed by
pre-2 h treatment with NAC, a strong antioxidant (Figure 3B).

The role of ROS in TQ-induced anti-proliferative and
pro-apoptotic effects

We also investigated whether ROS level can interfere with
TQ-induced growth inhibition. We found that the anti-
proliferative effect of TQ in MCF-7 cells was reversed by NAC
in a dose-dependent manner (Figure 3C). Next, we pre-treated
MCF-7 cells with 5 mM NAC for 2 h before exposure to TQ for
12 h. Both TQ-induced increased percentage of Annexin V
positive cells (Figure 3D) and cleavage of PARP protein
(Figure 3E) were reversed by NAC treatment, indicating
apoptosis reversal through ROS reduction. We also examined
whether the level of ROS inter-relates with the protein
expression of various anti-apoptotic/pro-survival genes. We
found that the decrease of survivin, XIAP, Bcl-xL and Bcl-2
protein expression by TQ were all reversed by NAC treatment
(Figure 3F).

p38 MAPK gene silencing reversed TQ-induced
apoptosis

As shown in Figure 4A, both p-p38 and p38 protein
expressions were reduced with p38 siRNA transfection.
Moreover, we found that TQ-induced PARP-cleavage (Figure
4B) and increased percentage of Annexin V positive cells
(Figure 4C) were both partially reversed by p38 siRNA
transfection, which confirmed the role of p-p38 in TQ-induced
apoptosis.

ROS regulates p38 phosphorylation
Since TQ was shown to affect ROS and p38 pathways, we

investigated the relationship between ROS and p38 MAPK.
MCF-7 cells were pre-treated with 10 µM SB203580 for 1 h
before exposure to 40 µM TQ for 1 h or 3 h. We found that
SB203580 treatment did not make any significant changes on
TQ-induced ROS level (Figure 4D). This indicates that p38
phosphorylation level did not affect the level of ROS. Next, we
pre-treated MCF-7 cells with 5 mM NAC for 2 h before
exposure to 40 µM TQ for 12 h. Through Western blot analysis,
we found that NAC treatment reversed TQ-induced p38
phosphorylation (Figure 4E). Furthermore, the results from the
p38 MAPK ELISA kit also showed that NAC treatment could
significantly reverse TQ-induced p-p38 level (Figure 4F). These
results indicate that TQ-induced ROS regulates the
phosphorylation of p38 in MCF-7 cells.

TQ inhibits breast tumor growth in nude mice
MDA-MB-231 breast cancer cells were injected

subcutaneously into the right flank region of female nude mice
to develop breast tumor xenograft. As shown in Figure 5A, the
tumor volume of vehicle group was increased aggressively
after 2 weeks (from about 100 mm3 to about 330 mm3).
Treatment with 4 mg/kg TQ, 8 mg/kg TQ and 2.5 mg/kg Dox
significantly slowed the tumor growth, though they did not
completely eliminate the tumors or return to the start level. The
combined treatment (4 mg/kg TQ + 2.5 mg/kg Dox) slowed
tumor growth more significantly than either agent alone.
Although the combined treatment did not completely eliminate
the tumor, it could maintain the tumor growth at the start level
throughout the 2 weeks period of treatment. We also found that
TQ treatment slightly reduced mouse body weight although no
visible adverse effect was observed (Figure 5B). Less than 9%
body weight reduction was observed for all TQ-treated groups
including 4 mg/kg TQ, 8 mg/kg TQ and the combined treatment
group.

The level of anti-oxidant enzymes/molecules in mouse
liver tissues

Since TQ was found to produce ROS in cancer cells, we also
investigated its effect in in vivo model by measuring antioxidant
enzymes/molecules in mouse liver tissues. We found that the
catalase level was significantly increased in TQ-treated groups
compared to the vehicle group (Figure 5C). The catalase level
was significantly higher in the combined treatment group
compared to the either agent alone. On the other hand, SOD
level was significantly higher in the 8 mg/kg TQ and 2.5 mg/kg
Dox groups compared to the vehicle group (Figure 5D).
Though not statistically significant, 4 mg/kg TQ and the
combined treatment groups had higher mean SOD levels
compared to the vehicle group. We also found that glutathione
level was significantly higher in TQ alone groups (Figure 5E).
Interestingly, the glutathione level in the 2.5 mg/kg Dox group
was lower compared to the vehicle group. Glutathione level
was lower in the combined treatment group compared to the
vehicle group but higher than in the 2.5 mg/kg Dox group.

Histology, immunohistochemistry and Western blot
analysis of tumor tissues

The tumor tissues were subjected to H&E staining for
structure analysis. The vehicle group displayed high grade
tumor with irregular cell arrangement (Figure 6A). In contrast,
in the drug treatment groups, alterations in cell architecture
were observed as characterized by an increase in cell debris
and a decrease in stroma. In addition, TUNEL staining was
carried out to study the level of apoptosis of tumor tissues. By
calculating the number of green fluorescent dots relative to the
vehicle group, we observed about 50% higher TUNEL staining
in 4 mg/kg TQ, 8 mg/kg TQ and 2.5 mg/kg Dox groups, and
about 150% higher staining in the combined treatment group,
compared to the vehicle group (Figure 6B). Furthermore,
immunohistochemistry of the tumor tissues targeting Ki67
protein, a cellular marker for proliferation showed that the Ki67
level significantly reduced in the drug treatment groups,
compared to the vehicle group, with the lowest level in the
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Figure 3.  The role of ROS in the anti-proliferative and pro-apoptotic effects induced by TQ in breast cancer cells.  (A)
Mitosox assay results showed the effect of TQ on ROS production in MCF-7 cells. The cells were treated with 40 µM TQ for various
time periods ranging up to 6 h. Values are means ± S.E.M. of at least three independent experiments. ** p<0.01, *** p<0.001 vs.
negative control. (B) Mitosox assay results showed the effect of NAC on TQ-induced ROS production. MCF-7 cells were pre-treated
with 1 or 5 mM NAC for 2 h before exposure to 40 µM TQ for 3 h. Values are means ± S.E.M. of at least three independent
experiments. * p<0.05, ** p<0.01. (C) MTT assay results showed the effect of NAC on TQ-induced anti-proliferative effect in MCF-7
cells. The cells were pre-treated with 1 or 5 mM NAC for 2 h before exposure to increasing doses of TQ for 24 h. Values are means
± S.E.M. of at least three independent experiments. * p<0.05, ** p<0.01, *** p<0.001 vs. PBS control. (D) Annexin V assay results
showed the effect of NAC on TQ-induced pro-apoptotic effect in MCF-7 cells. The cells were pre-treated with 5 mM NAC for 2 h
before exposure to 50 µM TQ for 12 h. Data are representative of at least three independent experiments. Values are means ±
S.E.M. of at least three independent experiments. * p<0.05, ** p<0.01. (E) Western blot analysis showed the effect of NAC on PARP
protein cleavage in MCF-7 cells. The cells were pre-treated with 5 mM NAC for 2 h before exposure to 40 µM TQ for 12 h. Data are
representative of at least three independent experiments. (F) Western blot analysis showed the effect of TQ and NAC on the protein
expression of various anti-apoptotic genes. MCF-7 cells were pre-treated with 5 mM NAC for 2 h before exposure to 40 µM TQ for
12 h. Data are representative of at least three independent experiments.
doi: 10.1371/journal.pone.0075356.g003
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Figure 4.  Effect of p38 siRNA gene silencing on the apoptotic effect of TQ, and investigation on the relationship between
p38 and ROS.  (A) Western blot analysis showed the effect of p38 siRNA gene silencing on the protein expressions of p-p38 and
p38. MCF-7 cells were transfected with 30 nM p38 siRNA for 6 h followed by at least 24 h incubation with serum-added medium.
The cells were then treated with 40 µM TQ for 12 h. Data are representative of at least three independent experiments. (B) Western
blot analysis showed the effect of p38 siRNA gene silencing on TQ-induced PARP protein cleavage in MCF-7 cells. The cells were
transfected with 30 nM p38 siRNA for 6 h followed by at least 24 h incubation with serum-added medium. The cells were treated
with 40 µM TQ for 12 h. Data are representative of at least three independent experiments. (C) Annexin V assay results showed the
effect of p38 siRNA gene silencing on TQ-induced increased percentage of Annexin V positive cells. The cells were transfected with
30 nM p38 siRNA for 6 h followed by at least 24 h incubation with serum-added medium. The cells were treated with 50 µM TQ for
12 h. Data are representative of at least three independent experiments. Values are means ± S.E.M. of at least three independent
experiments. * p<0.05. (D) Mitosox assay results showed the effect of SB203580 on TQ-induced ROS level. MCF-7 cells were pre-
treated with 10 µM SB203580 for 1 h before exposure to 40 µM TQ for 1 or 3 h. Values are means ± S.E.M. of at least three
independent experiments. (E) Western blot analysis showed the effect of NAC on TQ-induced p38 phosphorylation. MCF-7 cells
were pre-treated with 5 mM NAC for 2 h before exposure to 40 µM TQ for 12 h. Data are representative of at least three
independent experiments. (F) The effect of NAC on TQ-induced p-p38 level was shown by PathScan® phospho-p38 MAPK
(Thr180/Tyr182) sandwich ELISA kit. MCF-7 cells were pre-treated with 5 mM NAC for 2 h before exposure to 40 µM TQ for 12 h.
Values are means ± S.E.M. of at least three independent experiments. ** p<0.01.
doi: 10.1371/journal.pone.0075356.g004
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Figure 5.  TQ suppresses breast tumor growth in nude mice, and increases levels of anti-oxidant enzymes/molecules in
liver tissues.  (A) Tumor volume of each treatment group during study period. 107 MDA-MB-231 cells were injected subcutaneously
into the right flank region of each nude mouse. When tumor volume reached 100 mm3, the mice were divided into five treatment
groups, each n=5. Group I: saline water (i.p., 6 days per week), group II: 4 mg/kg TQ (i.p., 6 days per week), group III: 8 mg/kg TQ
(i.p., 6 days per week), group IV: 2.5 mg/kg Dox (i.p., once per week), and group V: 2.5 mg/kg Dox (i.p., once per week) + 4 mg/kg
TQ (i.p., 6 days per week). Tumor volume was measured with Vernier calipers and calculated from the formula, V = (width2 X
length)/2. Values are means ± S.D. of each group. * p<0.05, *** p<0.001 compared to the control group. # p<0.05 is comparison in
between the indicated pair. (B) Mouse body weight relative to the starting measurement. Values are means ± S.D. of each group.
(C-E) Enzymatic assays results showed the effect of TQ on the levels of catalase (C), SOD (D) and glutathione (E) in mouse liver
tissues. Mouse liver tissues were collected for enzymatic assays as described under Materials and Methods. Values are means ±
S.E.M. of at least three independent experiments. * p<0.05, ** p<0.01, *** p<0.001 compared to the vehicle group. # p<0.05, # #
p<0.01, # # # p<0.001 are comparisons in between the indicated pair.
doi: 10.1371/journal.pone.0075356.g005
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combined treatment group (Figure 6C). Western blot analysis
of homogenized tumor tissues showed that p-p38 protein
expression was increased in the TQ-treated groups, but not in
the Dox alone group, compared to vehicle (Figure 6D). The
protein expression of anti-apoptotic/pro-survival genes, such as
survivin, XIAP, Bcl-xL and Bcl-2, were decreased in the drug
treatment groups, compared to the vehicle group (Figure 6D).

Discussion

In this study, we explored the potential effects of TQ on ROS
and p38 pathways both in vitro and in vivo. This is the first
report to suggest that TQ induced ROS production, which, in
turn, resulted in p38 phosphorylation, contributing to TQ’s anti-
proliferative and pro-apoptotic effects in breast cancer. In the
xenograft mouse model, we showed the ability of TQ to
suppress breast tumor growth, and the combined treatment
with doxorubicin to cause significantly higher suppression.
Moreover, TQ was found to increase p-p38 protein expression
in tumor tissues, with down-regulation of XIAP, survivin, Bcl-xL
and Bcl-2 anti-apoptotic gene products. TQ treatment also
increased catalase, SOD and glutathione levels in mouse liver
tissues.

Recent developments have raised a question on the role of
ROS, whether it protects against or promotes oxidative stress
[29]. Accumulating evidence suggests that ROS found in
various chronic diseases might not be the result of disease
damage, but instead, could be the response of host to the
disease. As such, researchers start using pro-oxidant agents to
increase oxidative stress in cancer cells as a strategy to target
resistant tumor cells [30]. For example, TQ-induced ROS
production was found to down-regulate Akt in primary effusion
lymphoma cells [28]. In addition, TQ was shown to induce
ROS-mediated ERK and JNK phosphorylation in human colon
cancer cells [8]. These results have led us to suggest that TQ’s
anticancer effects may be mediated upstream at ROS. Many
studies have identified potential targets of TQ such as p53
[2,3], p73 [4], STAT3 [5], NF-κB [6] and PPAR-γ [7]. One may
raise a question on whether these targets are also regulated by
ROS. A recent review by Maillet and Pervaiz (2012) explained
how ROS production regulates p53 activity [31]. In addition,
STAT3 activation was found to be mediated via ROS in
pulmonary epithelial cells [32] and B lymphocytes [33].
However, this kind of relationship is not always one way, for
example, p53 can act as upstream regulator of ROS production
by binding to promoters such as GPX and PIGs [31].
Therefore, the role of ROS in TQ-induced apoptosis requires
further comprehensive investigation with well-designed models.

Numerous studies have suggested that p38 MAPK can act
as a tumor suppressor by negatively regulating cell cycle
progression, p53 activation and oncogene-induced premature
senescence [34]. It was shown that p38α regulates the
proliferation and differentiation of lung stem and progenitor
cells, and inactivation of this pathway can lead to K-
Ras(G12V)-induced tumorigenesis [35]. Furthermore, p38α
protein expression was found to be approximately 3 times
lower in human lung tumors than in human normal lung tissues
[35]. In the present study, we show that p38 MAPK plays an

important role in TQ’s anti-proliferative and pro-apoptotic
effects. In contrast, the study by El-Najjar et al. (2010)
described the ability of TQ to increase the phosphorylation of
JNK and ERK, but not p38, in human colon cancer cells via
ROS [8]. Interestingly, the phosphorylation of JNK and ERK
was found to serve as a survival mechanism in TQ-induced cell
death, and the inhibition of these MAPKs can potentiate TQ-
induced apoptosis [8]. Nevertheless, both El-Najjar’s study and
this study have explained the role of ROS as an upstream
mediator of phosphorylation of MAPKs, and this fact should
further be explored for its role in cancer therapeutics.

The antitumor effects of TQ have been shown in other types
of carcinoma including lung [9,36], pancreas [37], prostate [38],
gastric [39] and colon [40]. We found that TQ and doxorubicin
in combination suppressed tumor growth more significantly
than either agent alone. A similar finding was also reported for
the combination of TQ and 5-fluorouracil [39], and TQ and
cisplatin [9]. Moreover, TQ in combination with gemcitabine or
oxaliplatin produced greater antitumor effect than either agent
alone in the pancreatic tumor xenograft mouse model [37].
These results strongly suggest the possible use of TQ as a
complementary agent to potentiate the antitumor effect of
conventional anticancer drugs.

We found that TQ increased the levels of catalase, SOD and
glutathione in liver tissues of mouse xenograft model. These
enzymes/molecules are generally known for their involvement
in cellular anti-oxidative activities. However, we are not certain
whether the increase of these enzymes/molecules was due to
TQ induction or the response of cellular defense mechanisms
against TQ-induced ROS production. TQ has been shown to
reverse the decrease of glutathione peroxidase, glutathione-S-
transferase, catalase, and reduced glutathione in kidney and
liver tissues of streptozotocin nicotinamide-induced diabetic rat
[41]. TQ-induced glutathione level in female Lewis rats with
experimental allergic encephalomyelitis is believed to improve
the condition of the disease [42]. In contrast, there was a study
reporting that TQ treatment did not change the level of reduced
glutathione or glutathione-S-transferase in liver and kidney
tissues of normal mice [43]. As such, the nature of TQ as anti-
oxidant or pro-oxidant in different models has to be further
explored.

In conclusion, our study provides evidence for the
mechanism of action of TQ in suppressing human breast
carcinoma in both in vitro and in vivo models. We
demonstrated that the anti-proliferative and pro-apoptotic
effects of TQ are mediated through its induction effect on p38
and ROS signaling. Our results also indicate the anti-tumor
effects of TQ in breast tumor xenograft mice and its ability to
potentiate the antitumor effect of doxorubicin. TQ serves as a
promising anticancer agent and further studies may provide
important leads for its clinical application.
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Figure 6.  TQ induces apoptosis in breast tumor xenograft with down-regulation of anti-apoptotic proteins.  (A) H&E
staining of the tumor tissues. (B) TUNEL staining of the tumor tissues. The graph showed the average number of fluorescence dots
of images from each treatment group. Values are means ± S.D. of three photographs. * p<0.05, ** p<0.01 compared to the vehicle
group. (C) Ki67 immunohistochemical staining of the tumor tissues. The graph showed the average number of fluorescence dots of
images from each treatment group. Values are means ± S.D. of three photographs. * p<0.05, ** p<0.01 compared to the vehicle
group. (D) Western blot analysis showed the effect of drug treatments on the protein expression of various anti-apoptotic genes.
Data are representative of at least three independent experiments.
doi: 10.1371/journal.pone.0075356.g006
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