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ABSTRACT Bradyrhizobium sp. strains were isolated from root nodules of the Australian
legume, Acacia acuminata (Fabaceae). Here, we report the complete genome sequences
of four strains using a hybrid long- and short-read assembly approach. The genome sizes
range between ;7.1Mbp and ;8.1Mbp, each with one single circular chromosome.
Whole-genome alignments show extensive structural rearrangement.

Diazotrophs in the genus Bradyrhizobium (Bradyrhizobiaceae) are common and
widespread root symbionts of many legume species worldwide. Within Australia,

Acacia (Fabaceae) is a highly diverse and functionally important legume genus, and its
symbiosis with Bradyrhizobium provides critical ecosystem services to native Australian
vegetation (1–4).

Here, we report 4 complete Bradyrhizobium sp. genome sequences originally iso-
lated from Acacia acuminata (a host endemic to southwest Australia, a global biodiver-
sity hot spot). These genome sequences were completed to provide preliminary insight
into the chromosome structural variation; the strains sequenced were selected to maxi-
mize genetic variability from a larger population genomic study comprising 375 closely
related yet genetically diverse Bradyrhizobium strains sampled along a large climate
gradient in the same region (5). All 4 Bradyrhizobium strains cluster within a single spe-
cies, having .99.5% 16S rRNA sequence identity, and phylogenetically cluster with
Bradyrhizobium diazoefficiens (5).

All strains were grown on yeast extract mannitol plates from frozen stock cultures
(70% glycerol, 280°C), previously isolated from root nodules of Acacia acuminata (3, 5).
DNA was extracted from a single colony using a modified MoBio Ultraclean microbial
isolation protocol, where cells were heat treated (60°C, 5min) in lysis buffer prior to
mechanical lysing. For genome assembly, we used a hybrid approach using short
Illumina reads and long reads from either the PacBio or Nanopore sequencing plat-
form. Short-read whole-genome paired-end 150-bp Illumina data were generated on
two HiSeq 2000 lanes using Illumina Nextera XT library kits, following standard
Illumina protocols (5), and trimmed using Trimmomatic v0.36 (6) (ILLUMINACLIP:
adapters.fasta:2:30:10 LEADING:5 TRAILING:5 SLIDINGWINDOW:4:20 MINLEN:100). In 3
of 4 strains, long-read data were generated on a PacBio RS II system at the Macrogen
sequencing facilities in South Korea; SMRTbell libraries were created using the protocol
“Procedure and Checklist—10 kb Template Preparation and Sequencing (with Low-
Input DNA)” (7), and each strain was sequenced on two single-molecule real-time
(SMRT) cells. Long reads for the fourth strain were generated in-house at Research
School of Biology labs, Australian National University. In brief, DNA was isolated using
the high-molecular-weight method of Schalamun et al. (8) (excluding the chloroform
cleanup). Unsheared DNA extract was then prepared using the Oxford Nanopore
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library kit (SQK-LSK108) and sequenced on one R9.4 FLO-MIN106 flow cell. The reads
were base called using Guppy v3.0.3.

All genomes were assembled using Unicycler v0.4.8 with default settings (9). With the
long and short reads combined, the total sequence data generated for each strain
exceeded 113� coverage across each genome. The genome size, GC content, and gene
number varied across strains (Table 1), but all strains contained one single chromosome
and were designated with a complete circular status according to Unicycler. Starting genes
were found for strains 65_7, 38_8, and 36_1, and the circular contigs were rotated accord-
ingly, with the starting gene at the beginning of the forward strand. Unicycler did not find
starting genes on strain 41_2. All genomes were annotated using NCBI’s PGAP v5.0 with
default settings (10). Whole-genome alignments, using progressiveMauve v2.4.0 with
default settings (11), confirm large structural rearrangements (Fig. 1) among the strains.

Data availability. The genome data are available in GenBank under BioProject
accession number PRJNA669073 (SRA accession numbers are provided in Table 1). The

FIG 1 Pairwise whole-genome Mauve alignment output confirms the presence of large structural variation among circular chromosomes. Comparisons
between strains where starting genes could be identified (36_1, 38_8, and 65_7; genome lengths in base pairs) are shown. For each comparison (a, b, and
c), matching colored blocks and connecting lines indicate homologous genome sections between each pair. Inversions are indicated in the bottom
genome of each pair (inversions are represented as matching color blocks below the black line). For example, one inverted genomic segment is visible
between the matching purple blocks in panel a and the matching brown blocks in panel b. To facilitate visualization of the larger chromosomal
rearrangements, the Mauve LCB weights (which adjust the single nucleotide polymorphism [SNP] similarity threshold) are adjusted to 13,166 (a), 12,932 (b),
and 6,985 (c) for each pairwise comparison. The fourth strain (41_2) is not included in the comparison since a starting gene could not be identified, and it
would visually indicate some false genomic rearrangements in Mauve’s linear chromosome alignment tool if included.
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Unicycler log files and Mauve alignment files are available on Figshare (https://doi.org/
10.6084/m9.figshare.14134169).
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