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Abstract

Bayesian network is one of the most successful graph models for representing the reactive oxygen species regulatory
pathway. With the increasing number of microarray measurements, it is possible to construct the Bayesian network from
microarray data directly. Although large numbers of Bayesian network learning algorithms have been developed, when
applying them to learn Bayesian networks from microarray data, the accuracies are low due to that the databases they used
to learn Bayesian networks contain too few microarray data. In this paper, we propose a consensus Bayesian network which
is constructed by combining Bayesian networks from relevant literatures and Bayesian networks learned from microarray
data. It would have a higher accuracy than the Bayesian networks learned from one database. In the experiment, we
validated the Bayesian network combination algorithm on several classic machine learning databases and used the
consensus Bayesian network to model the Escherichia coli’s ROS pathway.
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Introduction

Reactive Oxygen Species (ROS) are formed as by-products of

normal metabolism of aerobic organisms, they can react with

DNA and produce damage [1]. Cells protect themselves from

ROS by detoxification mechanisms and repair mechanisms [2,3].

Microarray is a powerful tool for measuring a large number of

genes’ expressions. Given the microarray expressions, it is possible

to construct the regulatory pathway that organisms response to the

oxidative stress directly.

An outstanding idea is the use of Bayesian network for

representing regulatory pathway [4–7]. Bayesian network is a

Directed Acyclic Graph (DAG) used for representing probabilistic

relationships between variables. It was first proposed by Pearl [8],

and Jensen [9] gave an intuitive definition. A lot of work has been

done in the automatic learning of Bayesian network from

database. Consequently, large numbers of Bayesian network

learning algorithms based on different methodologies have been

developed [10–13] and they have high accuracies in learning

Bayesian networks from classic machine learning databases.

However, when applying these algorithms to learn Bayesian

networks from microarray data, the accuracies are low. Careful

studies show that this is because the databases they used to learn

Bayesian networks contain too few microarray data. On the other

hand, microarray chip is expensive, it is difficult to obtain a large

number of microarray data from one laboratory or one database,

and a few hundred expression data can not guarantee a high

learning accuracy.

To overcome this problem, we propose a consensus Bayesian

network which is constructed by combining several Bayesian

networks. This consensus Bayesian network is approximately equal

to the Bayesian network learned from the database obtained by

merging all these combined Bayesian networks’ corresponding

databases, then its equivalent database may have enough data and

the accuracy can be improved. The main procedure of construc-

tion of consensus Bayesian network can be described as follow: (1)

Review all relevant literatures and derive the Bayesian networks.

(2) Search microarray expressions which are not used in relevant

literatures and download them to learn Bayesian networks. (3)

Combine all these Bayesian networks to construct the consensus

Bayesian network.

Combination of Bayesian networks includes combination of

graph models and aggregation of probability distributions [14–17].

Utz [18] proposed a method to combine many different Bayesian

networks into an undirected graph, and each edge in the graph has

a weight represents the frequency with which the edge occurs in

the component networks. Zhang et al. [19] proposed a method for

fusing Bayesian networks. They construct an initial network based

on the union and intersection of the Bayesian networks, and then

search for the structure which maximizes the scoring function(CH

criterion). Our Bayesian network combination algorithm is based

on the properties of probability. Due to probabilistic indepen-

dence, Conditional Probability Tables (CPTs) can be extended,

then corresponding nodes’ CPTs can be changed into a same form

and the aggregation function can be applied to these CPTs. After

extending every corresponding CPTs, the combination of Bayes-

ian networks changed into the aggregations of every corresponding

nodes’ CPTs if these Bayesian networks’ variables’ prior orders are

consistent with each other. Some nodes’ CPTs were extended

previously, so they may have bogus parents after combination,

then we should find them, delete the bogus edges and simplify the

CPTs. The combination algorithm can also be applied to the
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combination of Bayesian networks defined over different variable

sets by using the extension of Bayesian network.

Escherichia coli MG1655 was used in the experiment, a

constructed ROS pathway was derived from the literature wrote

by Hodges et al. [20] and 612 microarray expression data were

downloaded from the Many Microbe Microarrays Database(M3D)

[21]. 27 genes were identified from the EcoCyc [22] ROS

detoxification pathway. A consensus Bayesian network using the

27 genes as variables was constructed by combining the Bayesian

network from the literature and the Bayesian network learned

from the 612 microarray expressions. For demonstrating the

combination of Bayesian networks defined over different variable

sets, we used a prediction program to find genes may be involved

in the ROS pathway, learned a Bayesian network which using the

27 genes and the newly found genes as variables, and then

combined this Bayesian network and the Bayesian network from

the literature to construct a new consensus Bayesian network.

Results

Validation on classic machine learning databases
In order to validate whether the consensus Bayesian network

BNc constructed by combining Bayesian networks BN1 and BN2

is equivalent to the Bayesian network learned from the database

obtained by merging the two Bayesian networks’ corresponding

databases DB1 and DB2 or not, 6 databases were downloaded

from the UCI Machine Learning Repository (http://archive.ics.

uci.edu/ml/), and the databases of ALARM net and Chest-clinic

net were generated by the BN PowerConstructor. For each

database DB, we chose n samples (about 1=3*1=2 of the samples

in DB) randomly and used them as DB1, the rest samples in DB

were used as DB2. Two Bayesian networks BN1 and BN2 were

learned from DB1 and DB2, respectively. Consensus Bayesian

network BNc was constructed by combining BN1 and BN2. After

that, another Bayesian network BN used as a reference was

learned from DB, BNc was compared with BN and the proportion

of the number of identical edges between BNc and BN to the total

number of edges in BNc and BN (similarity S) was computed. The

program was run 100 times to compute the average similarity. All

results of the experiments are shown in Table 1. Table 1 shows

that all the average similarities are greater than 75%. So,

consensus Bayesian network BNc is approximately equal to

Bayesian network BN . Although the combination algorithm is

validated with 8 different databases and the types of data in these

databases are very different, it doesn’t affect the results. The

Bayesian network learning algorithm just compute the distribu-

tions by counting the number of samples, and determine the

relationships between the variables by analyzing the distributions.

The Bayesian network combination algorithm is used to combine

Bayesian networks and it doesn’t involve the data. So, the type of

data doesn’t affect the validation.

Consensus Bayesian network BNc is approximately equal to

Bayesian network BN, then we can view BN’s database DB as

BNc’s equivalent database, and DB have more samples than DB1

or DB2. So, the use of consensus Bayesian network helps to solve

the problem of lack of data in partial databases and the accuracy

can be improved. The true structures of ALARM net and Chest-

clinic net are known. Then we compared the learned networks

with the known networks, the results are shown in Table 2. Table 2

shows that BNc has a higher accuracy than BN1 or BN2.

Construction of consensus Bayesian network for
modeling Escherichia coli’s ROS pathway

The consensus Bayesian network is constructed by combining

Bayesian networks derived from literatures and Bayesian networks

learned from microarray data. First, relevant literatures were

reviewed and a ROS pathway was derived from the literature

wrote by Hodges et al.[20], denoted as BN1. In the literature, 27

genes identified from the EcoCyc ROS detoxification pathway

were chosen as variables and 305 microarray expressions were

used to learn the Bayesian network. Second, microarray data was

searched and a microarray expression build with 612 microarray

expressions was downloaded from the M3D database. Then

Bayesian network BN2 which also uses the 27 genes as variables

was learned from these microarray expressions. Finally, consensus

Bayesian network BNc was constructed by combining these two

Bayesian networks, and the result is shown in Figure 1. In the

combination program, we take weights W1~305, W2~612 and

threshold e~0:026.

A novel prediction algorithm based on the computation of

mutual information was developed to identify genes which are

strongly associated with a particular gene in the regulatory pathway.

If R is a gene in the regulatory pathway, gene O is strongly

associated with R, then O may work together with R and also be

involved in the pathway. The main procedure of this algorithm can

be described as follow: assume set R includes all the known genes in

the regulatory pathway, and set O includes the rest genes of the

organism. Choose one gene Oi in O, for each gene Rj[R, compute

the mutual information I(Oi; Rj), if I(Oi; Rj)we, it means gene Oi

is related to gene Rj , then Oi may be involved in the pathway too.

The program is ended until every gene in O has been tested.

27 genes identified from the EcoCyc ROS detoxification pathway

were used as set R, while the rest genes in Escherichia coli were

used as set O. The program found 4 genes may be involved in the

ROS pathway, and the results are shown in Table 3. A new

Bayesian network BN
0

2 using the 31 (27+4) genes as variables was

learned from the 612 microarray expressions. BN
0

2 contains more

genes than BN1, so BN1 was extended into BN1+BN
0

2. Then a

new consensus Bayesian network BN
0

c was constructed by

combining BN
0

2 and BN1+BN
0

2, and the result is shown in Figure 2.

Discussion

In the discussion, we address this question: does the Bayesian

network learned from microarray expressions match with a known

regulatory pathway?

Before answering this question, we carried out an experiment.

The procedure of the experiment can be described as follow:

assume that V includes all of the genes of Escherichia coli, and

then we construct an undirected graph GV~(V ,E), where

E~f(Xi,Xj)jXi,Xj[V ,I(Xi,Xj)weg. Let C be the largest con-

nected subgraph of GV . Then 99:3% of the genes in

Escherichia coli were included in C. Mutual information

I(Xi,Xj)we means genes Xi and Xj are interacted, so this

phenomenon shows that almost all genes in Escherichia coli are

related directly or indirectly. We can infer that some genes may be

involved in different regulatory pathways, simultaneously. Other-

wise, if there is no gene be involved in more than one regulatory

pathway, that is, the regulatory pathways in Escherichia coli have

no intersection, then we can’t observe the phenomenon that

thousands of genes related directly or indirectly. On the other

hand, before microarray measurements, the Escherichia coli was

alive, so almost all of the regulatory pathways of Escherichia coli
were at work. Then although two genes must be interacted if there

Modeling the Regulatory Pathway
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is a directed edge between them in the Bayesian network, it is hard

to determine the directed edge belongs to which regulatory

pathway. For example, there is a directed edge between marA and

marR in BNc (Figure 1), then there must be an interaction

between marA and marR. They are involved in the regulation of

transcription (EcoCyc database) and this biological process was

working when measuring the expressions of these genes using

microarray, therefore, the existence of marR?marA maybe due

to that they are regulating the transcription. However, the ROS

detoxification pathway (EcoCyc database) also contains marA and

marR, then the existence of marR?marA maybe due to that they

are regulating the response to the oxidative stress. So, it is hard to

determine the directed edge marR?marA belongs to which

regulatory pathway. If there is no edge between two genes in the

Bayesian network, then the two genes are not interacted directly in

any regulatory pathway. So, if a known regulatory pathway

contains n genes and we use these n genes as variables to learn a

Bayesian network from microarray expressions. Then all of the

interactions between the n genes are contained in the Bayesian

network, however, some of these interactions may not contained in

this regulatory pathway. This means the regulatory pathway is a

subgraph of the Bayesian network. Although the Bayesian network

is not equivalent to the regulatory pathway, it still has important

significance. With its guidance, the number of biological

experiments could be greatly reduced when modeling a regulatory

pathway.

Methods

Data preprocessing
The algorithms can only process discrete data in this paper.

However, the 612 microarray expression data of

Escherichia coli MG1655 downloaded from the M3D database

are continuous. Then expression data for each gene was

discretized using a maximum entropy approach which uses three

equally-sized bins (q3 quantization). And the genes’ expressions

were divided into three categories: underexpressed, normal,

overexpressed.

Usually, Bayesian networks derived from literatures only have a

structure, then we have three ways to obtain the parameters: (1) If

the program of the learning algorithm is available on the internet,

then both the structure and the parameters of the Bayesian network

can be obtained by run the program directly. (2) If the microarray

data used in the literatures were collected in a database available on

the internet, then we can download these microarray data to learn

the parameters. (3) Sometimes the corresponding database is unable

to be found, or the Bayesian network is not learned form database,

but constructed by biological experiments directly. Then distribu-

tion for each node can be estimated by analyzing the genes’ special

characteristics and the relationships between genes.

Bayesian network
A Bayesian network defined over a variable set V can be

represented as a pair (G,P), where G is a DAG and each directed

edge in the DAG represents a dependence, P is a group of CPTs

and each node in the DAG has a CPT. Usually, G is called

Bayesian network’s structure and can be represented as a pair

(V ,E), where E is the edge set; P is called Bayesian network’s

parameter. G is a directed acyclic graph, that is, the nodes in G
have a topological order, and we call it prior order. Let BN1 and

BN2 be two Bayesian networks and their DAGs are G1~(V1,E1)

Table 1. Validation of the combination algorithm.

Database similarity T(s) similarity T9(s)

Letter Recognition 17 20000 100.0% 0.000009 100.0% 0.000010

Shuttle 10 14500 100.0% 0.000008 100.0% 0.000008

Parkinsons Telemonitoring 26 5875 79.462.2% 0.086804 77.961.2% 1437.502573

Image Segmentation 20 2310 80.661.7% 0.066748 78.061.9% 835.820385

Contraceptive Method Choice 10 1473 83.262.1% 0.033214 82.562.5% 18.325412

Solar Flare 13 1389 75.063.0% 0.043424 76.662.5% 261.702598

ALARM net 37 10000 97.862.2% 0.123528 95.662.2% 372.952340

Chest-clinic net 8 1000 93.460.4% 0.026708 93.460.4% 12.259816

Where is the number of variables in the database, is the number of samples in the database, similarity is the average proportion of the number of identical edges
between and to the total number of edges in and , and is the execution time of the Bayesian network combination program. The table shows that the similarity is
depend on the number of samples, this is because the algorithms are based on the computation of probabilities and the accuracy of computation of probability is
sensitive to the number of samples. Specifically, there are two reasons: (a)The real distributions of variables can’t be reflected if the database only have several samples;
(b)The equation we used to compute the probabilities is sensitive to the number of samples. Then in the experiments on and , similarity , this is because the two
databases have enough samples and can provide enough information for constructing the real Bayesian networks, then the learned Bayesian networks , and are
completely the same. So, consensus Bayesian network , and and are the same. Similarity and execution time are the results of the experiments using the fusion
method proposed by Zhang et al. [19] instead of our combination algorithm. and show that our algorithm works more efficiently. The time complexity of our algorithm
is , where is the number of nodes in the network. However, the execution time of Zhang’s fusion method grows exponentially as the size of the biggest clique in the
Clique tree increases.
doi:10.1371/journal.pone.0056832.t001

Table 2. Comparison of the accuracies.

ALARM
Chest-
clinic

BN1 BN2 BNc BN1 BN2 BNc

jEnj 52 49 48 10 12 8

jEmj 0 1 0 1 0 0

jEej 6 4 2 3 4 0

Where jEnj is the number of edges in the Bayesian network, jEmj is the number
of missing edges, jEej is the number of extra edges. The true structures of
ALARM net and Chest-clinic net contain 46 directed edges and 8 directed
edges, respectively.
doi:10.1371/journal.pone.0056832.t002

Modeling the Regulatory Pathway
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and G2~(V2,E2), respectively, then BN1 and BN2’s variables’

prior orders are consistent with each other if

G
0
~(V1|V2,E1|E2) is acyclic. Let A be a node in G, A’s

direct precursor nodes are called its parents, denoted as Pa(A),
then A’s CPT represents the conditional probability P(AjPa(A)).
Suppose we have the CPT of A as shown in Figure 3(c), it shows B

is a parent of A and x00 means P(A~a0jB~b0)~x00. Assume

that CPT cpt1 represents P1(AjB,C), cpt2 represents P2(AjB,C)
and cpt3 represents P3(AjC). Then cpt1 and cpt2 are two tables

with the same structure and the conditional probabilities in the

corresponding positions of the two tables represents the same

conditional probability, so we say they have a same form. While

cpt1 and cpt3 do not have a same form.

Bayesian network learning algorithm
Usually, Bayesian network is learned from database, it

represents the probabilistic relationships between the variables in

the database. So, a Bayesian network matches with a database,

and we call this database Bayesian network’s corresponding

database. Bayesian network learning includes structure learning

and parameter learning. We use an information-theory based

learning algorithm proposed by Cheng et al. [11] to learn

Bayesian network’s structure in this paper.

Dependence between two variables can be quantitatively

computed by using mutual information. Mutual information

I(Xi; Xj) between two variables Xi and Xj can be defined as:

I(Xi; Xj)~
X

xi ,xj

P(xi,xj)log
P(xi,xj)

P(xi)P(xj)
ð1Þ

where xi, xj are the expression values of Xi and Xj , respectively.

Mutual information is non-negative, it means I(Xi; Xj)§0.

I(Xi; Xj)~0 holds if and only if Xi and Xj are independent.

Given a threshold e (ew0), Xi and Xj are related if I(Xi; Xj)we.

Similarly, conditional mutual information I(Xi,Xj jXk) can be

defined as:

I(Xi; Xj jXk)~
X

xi ,xj ,xk

P(xi,xj ,xk)log
P(xi,xj jxk)

P(xijxk)P(xj jxk)
ð2Þ

Then the main procedure of Cheng’s Bayesian network

structure learning algorithm can be described as follow:

Step 1. Create initial undirected graph. A Maximum Weight

Span Tree (MWST) [23] is used as the initial graph. Let

L~f(Xi,Xj)jXi,Xj[V ,I(Xi; Xj)weg be an undirected edge list,

where V is the variable set. Sort L in descending order of mutual

information. For each (Xi,Xj)[L, add it into the undirected

graph(and delete it from L) if it doesn’t form a circle. End this loop

until the graph contains n{1 edges.

Step 2. Add edges. Assume that set DXi
(Xi,Xj) contains all the

nodes which are in the paths between Xi and Xj and in the

neighborhood of Xi, simultaneously. DX (Xi,Xj) represents one of

sets DXi
(Xi,Xj) and DXj

(Xi,Xj) which contains less nodes. For

each (Xi,Xj)[L, add it into the undirected graph(and delete it from

L) if I(Xi; Xj jDX (Xi,Xj))we holds.

Step 3. Remove redundant edges. For each edge (Xi,Xj) in the

undirected graph, delete it if I(Xi; Xj jDX (Xi,Xj))ve holds.

Step 4. Determine edges’ directions. For each Xi{Y{Xj ,

direct them Xi?Y/Xj if

Figure 1. Consensus Bayesian network BNc. 27 genes were identified from the EcoCyc ROS detoxification pathway.
doi:10.1371/journal.pone.0056832.g001
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I(Xi; Xj jY )

I(Xi; Xj)
w(1zd) ð3Þ

holds, where threshold dw0. Some undirected edges’ directions

can be determined by using Bayesian network’s acyclic property.

For the rest undirected edges, use the local Minimal Description

Length (MDL) score [24] to choose the direction which makes the

MDL score more smaller.

Figure 2. Consensus Bayesian network BN
0
c. 27 genes were identified from the EcoCyc ROS detoxification pathway, while genes dusB, hdeB, slp,

hdeA were identified by the prediction program.
doi:10.1371/journal.pone.0056832.g002

Table 3. 4 genes identified by the prediction program.

Gene O Gene R

Mutual information
I(O,R)

dusB fis 0:6599

hdeA gadE 0:5559

hdeB gadE 0:5811

slp gadE 0:5689

Genes fis, gadE were identified from the EcoCyc ROS detoxification pathway.
The interactions between gene O and gene R can also be found in EcoCyc
database.
doi:10.1371/journal.pone.0056832.t003

Figure 3. Extension and simplification of CPT.
doi:10.1371/journal.pone.0056832.g003

Modeling the Regulatory Pathway
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Figure 4. An example to demonstrate the combination of two Bayesian networks. Assume that weights W1~W2 , e~0:001, and we have
two Bayesian networks as shown in (a) and (b). The CPTs of A in the two Bayesian networks do not have a same form, so they need to be extended.
After extending the CPTs, the two Bayesian networks’ structures and every corresponding CPTs’ forms are completely the same(as shown in (c) and
(d), the dashed edges represent bogus edges), and then the aggregation function can be applied to aggregate the conditional probabilities in
corresponding positions of each corresponding CPTs. For example, P(A~a0jB~b0,C~c0) ~(0:10z0:40)=2~0:25. In the combined Bayesian
network as shown in (e), we need to use variance to test A’s two parent nodes, DB~0:0025 we, DC~0:000625ve, so C is a bogus parent. Then the
CPT of A need to be simplified and the bogus edge C?A should be deleted. The consensus Bayesian network is shown in (f ).
doi:10.1371/journal.pone.0056832.g004
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In Bayesian network parameter learning, the following equation

is used to compute the conditional probabilities in each node’s

CPT:

P(A~aijPa(A)~pk)~
N(A~ai,Pa(A)~pk)

N(Pa(A)~pk)
ð4Þ

where N(Conditions) is the number of samples satisfies

Conditions in the database.

Extension and simplification of CPT
Theorem 1. Given variables A and B, then P(AjB)~P(A)

(P(B)=0) holds if A and B are independent.

Corollary 1. Given A, B and any other variable C, then

P(AjB,C)~P(AjC) (P(BjC)=0) holds if A and B are indepen-

dent given C.

Suppose we have the CPT of node A as shown in Figure 3(a), it

can be extended into the form as shown in Figure 3(b) if A and B
are independent of each other. Since A and B are independent, B
can not affect the distribution of A, then for Vbj[B,

P(A~aijB~bj)~P(A~ai) holds. According to that, two CPTs

of a same node in different Bayesian networks can be extended

into a same form, and then can be aggregated even if the node

does not have a same parent set in these Bayesian networks.

Specifically, for a node A, and its parent sets are Pa1(A) and

Pa2(A) (Pa2(A)=Pa1(A)) in BN1 and BN2, respectively. Then

the two CPTs of A do not have a same form, and the aggregation

function can’t be applied (See the CPTs of A shown in Figure 3(b)

and Figure 3(c), they have a same form, then the aggregation

function can be applied to aggregate the conditional probabilities

in the corresponding position of the two CPTs, and the

aggregation function can’t be applied to aggregate the CPTs

shown in Figure 3(a) and Figure 3(c)). However, we can take

Pa(A)~Pa1(A)|Pa2(A) as the parent set and extend both the

CPTs of A in BN1 and BN2 into form P(AjPa(A)), then the two

CPTs of A have a same form and the aggregation function can be

applied. This means we also view the nodes in Pa2(A){Pa1(A) as

the parents of A in BN1, although they are not real parents and do

not affect A’s conditional probability. We call these parents bogus

parents and the directed edges between a node and its bogus

parents bogus edges. As shown in Figure 4(c), C is a bogus parent

of A, and C?A is a bogus edge.

Theorem 2. Given variables A and B, A is independent of B
if the conditional probability of A does not change when B takes

different values.

Proof. Assume that the number of expression values of B is n
and for Vbj[B, P(B~bj)=0. Then for Vai[A, we have:

P(A~aijB~b1)~ � � �~P(A~aijB~bn)

u
P(A~ai,B~b1)

P(B~b1)
~ � � �~ P(A~ai,B~bn)

P(B~bn)

u
P(A~ai,B~bj)

P(B~bj)
~

Pn

j~1

P(A~ai,B~bj)

Pn

j~1

P(B~bj)

u
P(A~ai,B~bj)

P(B~bj)
~

P(A~ai)

1

u P(A~aijB~bj)~P(A~ai)

So, P(AjB)~P(A), then A and B are independent.

End of the proof.

Corollary 2. Given A, B and any other variable C, A is

independent of B given C if the conditional probability of A does

not change when B takes different values (only B changes).

Theorem 2 and Corollary 2 can be used to determine whether

two nodes are independent of each other or not. Suppose we have

the CPT of node A as shown in Figure 3(c), if x00~x10, x01~x11

or they are approximately equal, it deduces that A and B are

independent, and B is not the parent node of A. Then the CPT of

node A can be simplified into the form as shown in Figure 3(d).

Conditional probabilities in the CPT of A are discrete values, then

variance can be used to determine whether the conditional

probability of A changes or not when B takes different values.

Assume that A’s parent set is fB,OtherParentsg. First, compute

each variance Daipk
of the conditional probabilities satisfy A~ai,

OtherParents~pk and B takes different values. Second, compute

the average variance DB of all Daipk
when A and OtherParents

take different values. Given a threshold e (ew0), if DBve, it

means the conditional probability of A almost does not change

when B takes different values, then A and B are independent and

B is not the parent node of A. In the combination algorithm,

CPTs were extended previously, then some nodes may have bogus

parents after the aggregation of CPTs. However, we can use this

method to find them, and then simplify the CPTs and delete the

bogus edges. Threshold e can be selected by using domain

knowledge. Specifically, we have DXj
~Dkwe if variables Xi and

Xj are related, and DX
0
j
~D

0

kve if variables X
0

i and X
0

j are

independent. And then we have fDkwejk~1,2, � � � ,ng if there is

n pair of variables related, and fD0

kvejk~1,2, � � � ,mg if there is

m pair of variables independent each other. So we have

minfD1,D2,D3, � � � ,DngwewmaxfD0

1,D
0

2,D
0

3, � � � ,D0

mg.

Aggregation function
Assume that the conditional probability of node A in Bayesian

networks BN1 and BN2 are P1(A~aijPa(A)~pk)~x1 and

P2(A~aijPa(A)~pk)~x2, respectively. Then in the consensus

Bayesian network, the conditional probability of A can be

computed using the following equation:

P(A~aijPa(A)~pk)~
W1 � x1zW2 � x2

W1zW2
ð5Þ

where W1 is the weight of BN1 and W2 is the weight of BN2.

Weight W is a positive integer representing a belief to the

Bayesian network. W1wW2 means BN1 is more reliable than

BN2; W1?? means BN1 is absolutely reliable.

Next, we would like to discuss why we choose this aggregation

function. The combination of Bayesian networks must satisfies this

property: the consensus Bayesian network BNc constructed by

combining Bayesian networks BN1 and BN2 is equivalent to the

Bayesian network learned from the database obtained by merging

the two Bayesian networks’ corresponding databases DB1 and

DB2. Then the aggregation function should satisfy it too. Assume

that node X is not the parent of A in any Bayesian network, then

in the consensus Bayesian network, X can not be the parent of A.

Then CPTs of A in different Bayesian networks after extension not

only have a same form, but also contains all of A’s possible parent

nodes. So, we needn’t consider the nodes which are not included

in the parent set of A when aggregating the CPTs. When

computing the conditional probability of one node in Bayesian

network, Equation (4) is used. The conditional probability of A in

Modeling the Regulatory Pathway

PLOS ONE | www.plosone.org 7 February 2013 | Volume 8 | Issue 2 | e56832



Bayesian networks BN1 and BN2 are P1(A~aijPa(A)~pk)~x1

and P2(A~aijPa(A)~pk)~x2, respectively. Assume that the

number of samples satisfy Pa(A)~pk in DB1 is n1, then the

number of samples satisfy A~ai and Pa(A)~pk in DB1 is n1 � x1;

the number of samples satisfy Pa(A)~pk in DB2 is n2, then the

number of samples satisfy A~ai and Pa(A)~pk in DB2 is n2 � x2.

So, the conditional probability of A in the Bayesian network

learned from the database obtained by merging DB1 and DB2 is:

P(A~aijPa(A)~pk)~
n1 � x1zn2 � x2

n1zn2
ð6Þ

On the other hand, samples satisfy Pa(A)~pk in DB1 and in

DB2 obey the same distribution. So, we have:

n1

N1
&

n2

N2
ð7Þ

where N1 and N2 are the total numbers of samples in DB1 and

DB2, respectively. Then the conditional probability of A changed

to be:

P(A~aijPa(A)~pk)~
N1 � x1zN2 � x2

N1zN2
ð8Þ

Total numbers of samples in databases are unable to be known

sometimes, so we use the weights of the Bayesian networks instead

of them, then Equation (8) changed into Equation (5). In the

experiment, we still use the total numbers of samples as they are

already known.

Combination of Bayesian networks
If two Bayesian networks are defined over the same variable set

and their variables’ prior orders are consistent with each other,

then they can be combined using the method described as follow:

Step 1. Extend every corresponding CPTs in the two Bayesian

networks into same form. Then the structures of the two Bayesian

networks are completely the same(although some of their edges are

bogus edges).

Step 2. Use the aggregation function to aggregate the

conditional probabilities in the corresponding positions of each

corresponding CPTs.

Step 3. In each CPT after aggregation, compute variance DX

for each parent node X , determine whether DX ve holds or not to

judge node X is a bogus parent or not, then simplify the CPT and

delete the bogus edge if DX ve holds.

After simplifying the CPTs and deleting the bogus edges, the

consensus Bayesian network is obtained. Figure 4 shows an

example of combination of two Bayesian networks. However,

Bayesian networks’ variables’ prior orders do not always consistent

with each other, then it needs to reverse some directed edges

sometimes. The principle of reversal is to ensure that the Bayesian

network after reversal is equivalent to the original Bayesian

network.

Extension of Bayesian network
Sometimes the Bayesian networks going to be combined may

not defined over the same variable set, then they need to be

extended. Specifically, given two Bayesian networks BN1 and BN2

with their variable sets satisfy V1=V2 and V1\V2=1, if their

variables’ prior orders are consistent with each other, BN1 can be

extended into BN1+BN2 using the method described as follow:

Step 1. Extend BN1’s DAG G1 into G1+G2. Let

G1+G2~(V1|V2,E1), and then add all the directed edges satisfy

f(C,A)[E2jC,A[V2{V1 or C[V2{V1,A[V1 or C[V1,A[V2{V1g

into graph G1+G2. These added edges are not in BN1

originally, so we call them extended edges.

Step 2. Compute each node’s CPT. For a node A[G1+G2, if

A[V2{V1, then its CPT is the same as the CPT of A in BN2; if

A[V1 and there is no directed edge satisfies

f(C,A)[E2jC[V2{V1g, then its CPT is the same as the CPT

of A in BN1; if A[V1 and has directed edges satisfy

f(C,A)[E2jC[V2{V1g, in this case, there are three possible

situations may appeared in the extended Bayesian network as

shown in Figure 5. Then the conditional probabilities of A in these

three situations can be computed using the following equations,

respectively:

In Figure 5(a)

P(A~aijB~bj ,C~ck)~

P1(A~aijB~bj) �
P2(C~ckjA~ai,B~bj)

P2(C~ckjB~bj)

Pm

i~1

P1(A~aijB~bj) �
P2(C~ckjA~ai,B~bj)

P2(C~ckjB~bj)

ð9Þ

where m is the number of expression values of A.

P2(C~ckjA~ai,B~bj) and P2(C~ckjB~bj) can be computed

using the standard Bayesian network inference algorithm [25] in

BN2, while P1(A~aijB~bj) is already known in BN1.

In Figure 5(b)

P(A~aijB~bj ,C~ck)~

P1(A~aijB~bj) �
P2(C~ckjA~ai)

P2(C~ck)
Pm

i~1

P1(A~aijB~bj) �
P2(C~ckjA~ai)

P2(C~ck)

ð10Þ

In Figure 5(c)

P(A~aijC~ck)~

P1(A~ai) �
P2(C~ckjA~ai)

P2(C~ck)
Pm

i~1

P1(A~ai) �
P2(C~ckjA~ai)

P2(C~ck)

ð11Þ

If B and A are disconnect in BN2, it can only deduce that B and

A are independent given C, however, it doesn’t affect the

conditional probabilities P2(C~ckjB~bj ,A~ai) and

P2(C~ckjB~bj), then the conditional probability of A can be

computed using Equation (9). If both B and C, B and A are

disconnect in BN2, it deduces B and C are independent, then the

conditional probability of A can be computed using Equation (10).

After obtaining every node’s CPT in G1+G2, the extension of

Bayesian network BN1 is finished.
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After extending BN1 into BN1+BN2 and BN2 into

BN2+BN1, BN1+BN2 and BN2+BN1 are defined over the

same variable set V1|V2, and then they can be combined using

the combination algorithm.

Author Contributions

Conceived and designed the experiments: LDH LMW. Performed the

experiments: LDH LMW. Analyzed the data: LDH LMW. Wrote the

paper: LDH.

References

1. Ramotar D, Popoff SC, Gralla EB, Demple B (1991) Cellular role of yeast apn1

apurinic endonuclease/39-diesterase: repair of oxidative and alkylation dna
damage and control of spontaneous mutation. Molecular and Cellular Biology

11: 4537–4544.
2. Demple B, Harrison L (1994) Repair of oxidative damage to dna: enzymology

and biology. Annual Review of Biochemistry 63: 915–948.
3. Bohr VA, Dianov GL (1999) Oxidative dna damage processing in nuclear and

mitochondrial dna. Biochimie 81: 155–160.

4. Friedman N, Linial M, Nachman I, Pe’er D (2000) Using bayesian networks to
analyze expression data. Journal of Computational Biology 7: 601–620.

5. Irene M, Jeremy D, David P (2002) Modelling reguratory pathways in e. coli
from time series expression profiles. Bioinformatics 18: S241–S248.

6. Beal M, Falciani F, Ghahramani Z, Rangel C, Wild D (2005) A bayesian

approach to reconstructing genetic regulatory networks with hidden factors.
Bioinformatics 21: 349–356.

7. Bansal M, Belcastro V, Ambesi-Impiombato A, di Bernardo D (2007) How to
infer gene networks from expression profiles. Molecular Systems Biology 3: 78.

8. Pearl J (1986) Fusion, propagation and structuring in belief networks. Artificial
Intelligence 29: 241–288.

9. Jensen F (2001) Bayesian networks and decision graphs. New York: Springer.

10. Cooper GF, Herskovits E (1992) A bayesian method for the induction of
probabilistic networks from data. Machine Learning 9: 309–347.

11. Cheng J, Greiner R, Kelly J, Bell D, Liu WR (2002) Learning bayesian networks
from data: an information-theory based approach. Artificial Intelligence 137:

43–90.

12. Tsamardinos I, Brown LE, Aliferis CF (2006) The max-min hill-climbing
bayesian network structure learning algorithm. Machine Learning 65: 31–78.

13. Cano A, Masegosa A, Moral S (2011) A method for integrating expert
knowledge when learning bayesian networks from data. IEEE transactions on

systems, man, and cybernetics 41: 1382–1394.

14. Wong SM, Butz CJ (2001) Constructing the dependency structure of a

multiagent probabilistic network. IEEE Transactions on Knowledge and Data
Engineering 13: 395–415.

15. Yang ZQ, Wright RN (2006) Privacy-preserving computation of bayesian
networks on vertically partitioned data. IEEE Transactions on Knowledge and

Data Engineering 18: 1253–1264.
16. Pavlin G, de Oude P, Maris M, Nunnink J, Hood T (2010) A multi-agent

systems approach to distributed bayesian information fusion. Infromation Fusion

11: 267–282.
17. Sagrado J, Moral S (2003) Qualitative combination of bayesian networks.

International Journal of Intelligent Systems 18: 237–249.
18. Utz CM (2010) Learning ensembles of bayesian network structures using

random forest techniques. Master Thesis of University of Oklahoma.

19. Zhang Y, Yue K, Yue M, Liu W (2011) An approach for fusing bayesian
networks. Journal of Information and Computational Science 8: 194–201.

20. Hodges AP, Dai DJ, Xiang ZS, Woolf P, Xi CW, et al. (2010) Bayesian network
expansion identifies new ros and biofilm regulators. PLoS ONE 5: e9513.

21. Faith JJ, Driscoll ME, Fusaro VA, Cosgrove EJ, Hayete B, et al. (2008) Many
microbe microarrays database: uniformly normalized affymetrix compendia

with structured experimental metadata. Nucleic Acids Research 36: D866–

D870.
22. Keseler IM, Collado VJ, Gama CS, Ingraham J, Paley S (2005) Ecocyc: a

comprehensive database resource for escherichia coli. Nucleic Acids Research
33: D334–D337.

23. Chow CK, Liu CN (1968) Approximating discrete probability distributions with

dependence trees. IEEE Transactions on Information Theory 14: 462–467.
24. Lam W, Bacchus F (1994) Learning bayesian belief networks: an approach based

on the mdl principle. Computational Intelligence 10: 269–293.
25. Zhang LW, Guo HP (2006) Introduction to Bayesian network. Peking: Science

Press.

Figure 5. Three possible situations in the extended Bayesian network BN1+BN2. Where A,B[V1, C[V2{V1 , B and C may be two nodes
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lines represent the extended edges. The undirected edge B{C represents one of these three cases: (1) directed edge B?C; (2) directed edge B/C;
(3) B and C is disconnect.
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