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An integrated bioinformatics platform for
investigating the human E3 ubiquitin ligase-
substrate interaction network
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The ubiquitination mediated by ubiquitin activating enzyme (E1), ubiquitin conjugating

enzyme (E2), and ubiquitin ligase (E3) cascade is crucial to protein degradation, transcription

regulation, and cell signaling in eukaryotic cells. The high specificity of ubiquitination is

regulated by the interaction between E3 ubiquitin ligases and their target substrates.

Unfortunately, the landscape of human E3-substrate network has not been systematically

uncovered. Therefore, there is an urgent need to develop a high-throughput and efficient

strategy to identify the E3-substrate interaction. To address this challenge, we develop a

computational model based on multiple types of heterogeneous biological evidence to

investigate the human E3-substrate interactions. Furthermore, we provide UbiBrowser as an

integrated bioinformatics platform to predict and present the proteome-wide human

E3-substrate interaction network (http://ubibrowser.ncpsb.org).
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Ubiquitin, which is an abundant 76 amino acid polypeptide,
can covalently conjugate to certain proteins by an
isopeptide bond between its carboxyl and the amino

group of a lysine residue. This process is mediated by a cascade
consistent with ubiquitin activating enzyme (E1), ubiquitin con-
jugating enzyme (E2), and ubiquitin ligase (E3)1. Ubiquitination
regulates a wide spectrum of proteolytic and nonproteolytic cel-
lular processes in eukaryotes, including proteasome-mediated
protein degradation, inflammatory signaling, DNA damage
response, and enzymatic activity regulation2. Thus, ubiquitination
is closely related to the development of many diseases like Alz-
heimer’s disease3, 4, Parkinson’s disease5, and multiple cancers6–8.

During the ubiquitination procedure, the interaction between
ubiquitin ligase and substrate decides the substrate’s specificity
and determines the substrate’s fate. Multiple traditional
experimental strategies (e.g., GPS profiling9, protein micro-
arrays10, live phage display library11, and mass spectrometry12)
have been developed to identify the E3-substrate interaction
(ESI). However, because of E3s’ low substrate levels and their
intrinsically weak interactions with substrates, these methods are
laborious, time intensive, expensive, and low efficient. As a result,
although there are more than 30000 ubiquitin sites on over
5700 substrates in the ubiquitination site database mUbiSiDa
(version 1.0)13, only less than 900 human E3-substrate relation-
ships are collected in database14, which means that only a small
proportion (~15%) of ubiquitinated proteins has the known
corresponding ubiquitin ligase information. Therefore, a robust
computational strategy is desirable to systematically identify the
potential E3-substrate interaction at proteome scale.

To address this issue, we developed a naïve Bayesian
classifier-based computational algorithm to combine multiple types
of heterogeneous biological evidence including homology E3-
substrate interaction, enriched domain and Gene Ontology (GO)
term pair, protein interaction network loop, and inferred E3
recognition consensus motif, to predict human E3-substrate inter-
actions. Then we implemented a proteome-wide E3-substrate
interactions scanning generating a predicted E3-substrate interac-
tion data set (PESID). Finally, to facilitate the usage of our algo-
rithm and PESID, we presented an online platform (UbiBrowser) to
investigate human ubiquitin ligase-substrate interaction network.

Results
Overview of our prediction protocol. UbiBrowser was designed
to be a naïve Bayesian classification-based platform to predict and

present human proteome-wide E3-substrate interactions (Fig. 1).
First, we compiled a golden standard data set with 913
E3-substrate pairs (GESID, golden standard E3-substrate
interaction data set) by manual literature mining (Papers before
1 January 2010). Then, we evaluated five types of heterogeneous
evidence for the model, including homology E3-substrate
interaction, enriched domain and GO term pair,
protein–protein interaction network loop, and inferred E3
recognition consensus motif. We test the predictive ability of each
evidence by calculating its likelihood ratio (LR). Finally, we
integrated all evidence into the naïve Bayesian classification
model to predict E3-substrate interactions and made the model
available as web services.

Five types of biological evidence for ESI prediction. We used
the golden standard positive (GSP) and golden standard negative
(GSN) data sets to measure the reliability of each biological
evidence (Methods section). For each biological evidence f, we
calculated its LR(f) (Fig. 2). In theory, the biological evidence f
with LR(f)> 1 indicates that it has the ability to identify the true
E3-substrate interaction.

E3-substrate interactions may be conserved across multiple
organisms, therefore we tried to predict human E3-substrate
interactions by mapping mouse E3-substrate interactions to
human orthologs using the Inparanoid15 database. Of 913 ESIs in
GSP, we predicted 279(30.6%) E3-substrate interactions.

Some E3-substrate interactions are mediated by the interacting
protein domains16, therefore we thought that novel E3-substrate
interactions might be predicted by identifying domain pairs
enriched among known E3-substrate interactions. Domain
enrichment ratio (DER) is used to assess domain pair’s
enrichment degree among ESIs (Methods section). We identified
3856 domain pairs that were enriched in known E3-substrate
interactions, and some of them have been reported in literature.
For example, the predicted E3 recognizing domain of “TP53
DNA-binding domain” was reported to interact with the E3 of
WWP117 (Enrichment ratio: 7.21). We used two thirds of the
GSP to define enriched domain pairs and the remaining to
calculate LRs. We repeated this process three times and combined
the results. We found that the degree of domain enrichment in
GSP was strongly associated with the LR (Fig. 2a).

E3 ligases and their substrates involved in ESIs are supposed to
be of the same biological functions. To test this hypothesis, we
adopted the similar strategy as DER to calculate the GO term
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enrichment ratio (GER) for ESIs. We found that there is strong
positive association between an ESI’s GER and its LR (Fig. 2b).

Interacting proteins are always involved in certain network
motifs18. To test whether ESI has such property, we combined the
query ESI with the HPRD19 protein interaction data to generate
an integrated network. We defined N3 and N4 as the number of
the three- and four-interaction loops that ESIs were involved, and

we found that both N3 and N4 can be used for prediction with
satisfying performance (Fig. 2c).

E3s may bind to specific substrates by recognizing short linear
sequence motifs20, 21. For each E3 in GSP, we predicted its
recognition consensus motif based on two parallel sequence data
sets: one is the sequence data of this E3’s substrates in GSP to
build the motif22, and the other is that of all proteins interacting
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with this E3 in HPRD database for background probability
calculations. We identified 10480 potential recognition consensus
motifs with motif score> 2 (Supplementary Methods), these
motifs were shown to be of certain prediction power (Fig. 2d),
and some of them have been reported in literature. For example,
“KEN” sequence motif was recognized by ubiquitin ligase
complex APC/C23, 24, and in our prediction results, “KEN” motif
was identified as APC/C’s recognizing motif with the motif score:
16.13.

The combined LR to measure the reliability of ESI. The naïve
Bayesian classification was used to integrate LRs from multiple
types of data sources based on the following speculation: Bayesian
classification can integrate multiple heterogeneous data sources
into a common probabilistic framework and its result is easy to
interpret as they represent conditional probability relationships
among information sources compared to other “black-box”
strategies. According to the Bayesian rules, during the prediction
procedure we first identified the supporting evidence for the
query ESI and assigned it the LR values. If there is more than one
source for each type of biological evidence, the maximum LR is
retained. And then the naïve Bayesian classifier was used to
integrate these LRs from multiple types of biological evidence to
generate LRcomp.

We performed a test to check whether LRcomp can measure the
reliability of an E3-substrate interaction: we changed the LR
cutoff during the fivefold cross-validation against the golden
standard data set, and plotted the ratio of the true to false positive
(TP/FP) as the function of the cutoff of LR (Fig. 3). As shown in
Fig. 3, TP/FP, acting as a measure to the accuracy of a test,
increased monotonically with the cutoff of LRcomp, and this result
confirmed that LRcomp can be used as an appropriate confidence
score to measure the odds of a real interaction as well as the
individual LRs. Besides the Bayesian classification model, we also
established the “Single Evidence Models” for each type of
biological evidence, where the confidence of each E3 ligase-
substrate interaction was assigned by its LR from single type of
evidence.

Performance evaluation for UbiBrowser. Fivefold cross-
validation protocol was used to evaluate the performance of our
prediction model. The resulting receiver operating characteristic
(ROC) curves are illustrated in Fig. 4, where each point on the
ROC curves denotes the sensitivity and specificity obtained from
one test against a particular LRcutoff, and the area under ROC
curve (AUROC) indicates the efficacy of the corresponding
assessment system. An ideal test with perfect discrimination
(100% sensitivity, 100% specificity) has an AUC 1.0, whereas a
non-informative prediction has the area 0.5, indicating that it
may be achieved by mere guess. The more a test’s AUROC
approximates to 1.0, the higher its overall efficacy will be. We
found that our Bayesian model has the area of 0.827 (95% CI =
0.811–0.842) against the fivefold cross-validation, suggesting its
relatively high ability to identify the ESI (Fig. 4).

Because the AUROC is an indicator of the discriminatory
power for the prediction system, here we also used it to compare
the efficacy of different prediction models. From Fig. 4, we
noticed that those “Single Evidence Models” had different
AUROCs, and that these models had significantly lower efficacy
than our Bayesian model.

In addition to the fivefold cross-validation, we assessed our
model on a novel independent test set of 402 ESIs that were
compiled from literature after January, 2010 (none of them was
used in the cross-validation for training). We found that our
Bayesian model has the ROC curve area of 0.73 (95% CI=
0.697–0.769), which suggests that our model is of great prediction
power for new ESIs.

Using UbiBrowser to predict and present ESIs. To facilitate the
broad access to our ESI prediction model, we developed a user-
friendly web portal-UbiBrowser. For each query of human E3
ligase or substrate protein, this portal will present the potential
E3-substrate interactions in two main views: network view and
sequence view (Fig. 5).

In the network view, a node is positioned in the center of
canvas representing the queried E3 ligase or substrate, sur-
rounded by the nodes representing predicted substrates or E3
ligases. In the confidence mode of network view, both edge width
and node size are positively correlated with the UbiBrowser score.
And in the evidence mode of network view, the edge of each
predicted E3-substrate interaction is composed by multiple
colored lines, with different colors representing different types
of supporting evidence.

In the network view, clicking on each surrounding node will
access to the corresponding sequence view of the involved E3’s
substrate, and in the popped sequence view, the literature-
reported ubiquitination sites and predicted domains/motifs
recognized by the corresponding E3 will be marked.

Use cases of UbiBrowser. In some pathological process, some
proteins can act as the disease promoters, such as multiple
oncogenes, and overexpression of these promoters will cause the
occurrence and worsening of these diseases25. E3 ligases can
regulate the stability of these disease promoters by mediating
their proteasomal degradation. Detection of the E3 ligases for
these disease promoters will help to reveal the underlying
pathological mechanisms and further therapeutical treatments26.
Using UbiBrowser, we tried to predict the interaction between the
disease promoters and their potential upstream regulatory E3
ligases.

ITCH-TAB1: TAB1 (TGF-beta-activated kinase 1-binding
protein 1) can activate p38α (a mitogen-activated protein kinase).
The activation of p38α can induce several inflammatory skin
disorders, such as hapten-induced contact dermatitis, ultraviolet
irradiation–induced dermatitis, and human psoriatic lesions27–29.
Therefore TAB1 was regarded as potential promoter for
inflammatory skin disorders. Among the predicted E3 ligases
for TAB1 in UbiBrowser, ITCH ((itchy E3 ubiquitin protein

Fig. 2 Diverse types of biological evidences contributing to the reliable evaluation. a Domain pairs enriched among E3-substrate interaction. DER was used
to measure domain pair enrichment, which was calculated as the probability (Pr) of observing a pair of domain in a set of known E3-substrate interactions
divided by the product of probabilities of observing each domain independently. b GO term pairs enriched among E3-substrate interaction. GER was used
to measure GO term pair enrichment, which was calculated as the probability of observing a pair of GO term in a set of known E3-substrate interactions
divided by the product of probabilities of observing each GO term independently. c Network Topology. The number of the three- and four-interaction loops
was calculated based on the integrated network with the query interaction and the HPRD19 protein interaction data. d E3 recognition consensus motif.
Recognition consensus motif for each E3 was identified based on two parallel sequence data sets: one was the sequence data of this E3’s substrates in GSP
for motif building, and the other was that of all the proteins interacting with this E3 in HPRD database for background probability calculations. Please refer
to Supplementary Methods for details of the calculation of E3 recognition consensus motif
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ligase) was given a relative high LR: 2.65 (Rank: 12) and was
reported to play an important role in inflammation and the
regulation of epithelial and hematopoietic cell growth30. There-
fore we thought that ITCH is the potential regulator of TAB1. By
further investigating the supporting evidence, we found that
TAB1 matches the PPXY motif and ITCH always recognizes the
substrate’s PPXY motif using the WW domain. Our speculations
about the interaction between TAB1 and ITCH was validated by
the recent paper28.

CHIP-EGFR: EGFR (epidermal growth factor receptor) is the
promoter of pancreatic cancer, which can initiate downstream
signaling cascade, such as MAPK, PI3K/Akt, and Src pathways.
EGFR overexpression is thought to be related with bad outcome of
pancreatic cancer, thus, it is promising to inhibit the EGFR signaling
pathway for treatment31. By UbiBrowser, E3 ligase CHIP (U-box
dependent ubiquitin ligase) was predicted to be a potential regulator
for EGFR (Rank:19; LR: 15.02). And this prediction can be validated
by the paper published on Oncotarget32, which demonstrated that
CHIP is the E3 ligase of EGFR, and it might be a novel tumor
suppressor in pancreatic cancer.

NEDD4-HER3: HER3 ((human epidermal growth factor
receptor 3) is another member of the human EGFR family.
HER3 signaling plays important roles in cell migration and
proliferation in various cancers, and oncogenic HER3 mutations
have been reported in human colon and gastric cancers33. There are
currently intense efforts toward developing anti-HER3 antibody
therapeutics for cancer treatment. We searched the potential E3
ligases for HER3 in UbiBrowser, and we speculated that the NEDD4
(neural precursor cell expressed, developmentally down-regulated
4) at rank 1 with a confidence score 0.908 (LR: 195.79) might be a
negative regulator for HER3. Then by retrieving latest literature we
found that NEDD4 can negatively regulate HER3 level and
signaling by mediating its ubiquitination34.

Experimental validation of predicted ESI. UbiBrowser was
designed primarily for assisting researchers to identify potential
E3-substrate interactions. To validate whether UbiBrowser can
provide potential E3-substrate interactions, we experimentally
tested a pair of predicted E3-substrated interaction (Smurf1 and
Smad3, LR= 29.87). We found that when co-expression of Smad3
and Smurf1, Smurf1 decreased Smad3 protein levels in a

dose-dependent manner (Fig. 6a). Then, we analyzed Smad3 in
the present of ectopic wild-type (WT) Smurf1 or its ligase-
inactive C699A mutant. We found that Smurf-WT significantly
reduced Smad3 protein levels in MDA-MB-231 cells. In contrast,
Smurf1 CA mutant hardly affected the levels of Smad3 (Fig. 6b).
Because the ubiquitin ligase activity of Smurf1 was required for
Smad3 degradation, we next sought to determine whether
Smurf1-mediated Smad3 degradation was a consequence of
ubiquitination. We used Smad1 as a positive control, which has
been proved that could be ubiquitinated by Smurf135. We
performed the in vivo ubiquitination assay in MDA-MB-231 cells.
The results showed that overexpression of Smurf1 increased the
poly-ubiquitination of Smad3, but the ubiquitin chain was much
weaker than Smad1 (Fig. 6c). To assess whether Smad3 interacts
with Smurf1 in vivo, a co-immunoprecipitation assay was
performed in MDA-MB-231 cells and the result revealed an
association between Flag-Smurf1 and Myc-Smad3 in the presence
of the proteasome inhibitor MG132 (Fig. 6d, e), which is
consistent with Barrios-Rodiles and Ebisawa’s studies, where they
show there are interactions between Smurf1 and Smad336, 37. As a
positive control, the known ubiquitination E3 of Smad3, Smurf2
was also co-immunoprecipitated with Smad3 (Fig. 6d)38. To
avoid the interfere of IgG Heavy Chain in immunoprecipitation,
we used the anti-Myc-HRP antibody to detect Smad3.
Collectively, these data indicate that under the condition of
overexpression, Smurf1 functions as an E3 ligase to promote the
ubiquitination and proteasomal degradation of Smad3.

Discussion
By analyzing and integrating five types of biological evidence we
have developed a predictive model for human proteome-wide
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ubiquitin ligase-substrate relationship. We measured a total of
14,459,214 E3-protein pairs between 714 E3s and 20,251 human
proteins, and identified 14,419 high confidence potential
E3-substrate interactions. We also build a user-friendly E3-
substrate interaction browser to present the predicted
E3-substrate network together with their supporting evidence.

Kai-Yao et al.39 have tried to construct a full protein ubiqui-
tylation networks, however, their work cannot distinguish the
E3’s substrates and regulators. We examined 100 prediction
results randomly sampling from Kai-Yao Huang et al.’s work and
UbiBrowser. As shown in Supplementary Table 1, we found that
only 2 results are regulators (2%) for UbiBrowser while 21 are
regulators of E3s (21%) for Kai-Yao Huang et al.’s work. The ratio
of regulators from UbiBrowser was significantly lower than that
from Kai-Yao Huang et al.’s work (P value= 1.25 × 10−5,
one-tailed Fisher’s exact test). The underlying reason is that
UbiBrowser was based on a Bayesian classifier trained by the true
E3-substrate interactions as GSP data sets and physical
interactions between E3s and non-substrate proteins as the GSN
data set, while Kai-Yao et al. only mapped the E3 ligases inter-
action networks by simply incorporating experimentally verified
E3 ligases, ubiquitylated substrates and protein–protein
interactions.

UbiBrowser is a type of pair-input computational prediction.
In this case, during the cross-validation, a test pair may share
either the component with some pairs in a training set, or it may
share neither. To avoid the possible over-estimation, we took the
same cross-validation protocol as Park et al.40 to divide our test
data set into three parts: C1 (both E3s and substrates in the test
set can be found in the training set), C2 (either E3s or substrates
in the test set can be found in the training set), and C3 (neither
E3s nor substrates in the test set can be found in the training set).
We found that the AUROC against C1 is 0.855 (95%
CI= 0.833–0.876, Supplementary Fig. 1). Interestingly, compared

to the results in Park et al.’s paper, in the case of C2 and C3,
although there exist E3s or substrates that do not appear in the
training data set, we found that our prediction system has certain
prediction power (AUROC against C2 and C3: 0.816, 95%
CI= 0.794–0.837 and 0.629, 95% CI= 0.468–0.790). The reason
is that UbiBrowser can utilize the underlying domain, motif, and
GO features for proteins even these proteins are absent from the
training data sets.

Yamashita et al. found that the protein abundances of Smad
(1,2,3,5) were not influenced in Smurf1-/- mice, but they also
agreed that BMP pathway and TGF-β pathway were regulated in
cells overexpressing Smurf141. In our experiment, we found that
Smad3 could interact with Smurf1, and Smurf1-mediated Smad3
ubiquitination in overexpression condition (Fig. 6c–e). Several
studies are also available for the interactions between Smurf1 and
Smad3. For example, Miriam Barrios-Rodiles’s42 study showed
the PPI between Smurf1 and Smad3 can be identified by high-
throughput methods. Takanori Ebisawa’s study43 showed that
there is weak interaction between Smurf1 and Smad3. Although
Smad3 ubiquitination reduction is not obvious when in vivo
Smurf1 was knocked out41, we considered that ubiquitination of
Smad3 is compensated by other ubiquitin ligases, such as Smurf2.
Previous study has reported that Smad3 is a major substrate of
Smurf2-mediated ubiquitination44, 45. It has been suggested that
Smurf2 may partially compensate the function for the loss of
Smurf1. Smurf1−/− and Smurf2−/− (Smurf DKO) mice display
embryonic lethality at around E12.5. However, single Smurf1 or
Smurf2 mice have no overt defects in embryogenesis 4. Therefore
the in vivo ubiquitination level change of Smad3 is difficult to be
detect.

Methods
Golden standard positive data sets. Abstracts before 1 January 2010 were
downloaded from PubMed using key words “ubiquitin ligase”. All these abstracts
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were sent to “E3miner” (a text-mining tool) to extract the potential E3-substrate
interactions. Then the potential E3-substrate interactions were manually filtered
based on the following patterns: “E ubiquitylates S…”, “E mediate the
ubiquitination of S…”, “E target S for ubiquitination…”, “E promote the
proteasome degradation of S…”, “E target S for degradation…”, “E promote the
ubiquitination of S…”, “E plays a crucial role in the ubiquitination of S…”, “S is the
substrate of E…”, “S is ubiquitinated and degraded by E…”, or “S is resistant to
degradation mediated by E…”, where E is an E3 and S is an E3 ligase substrate.
Finally, 913 E3-substrate interactions were manually extracted from these
published papers to construct the GSP for cross-validation. Following the same
literature mining protocol, we also obtained a novel independent test set of 402
ESIs from literature after 1 January 2010 to test whether UbiBrowser has the ability
to predict novel ESIs. All these E3-substrate interactions data set together with the
supporting literature information were provided as Supplementary Data 1.

Golden standard negative data set. It is difficult to find an experimental negative
data set, therefore, we built our GSN data set based on protein physical interaction
data set. The physical protein interaction data sets were downloaded from
HPRD19 (Released 13 September 2005), IntAct46 (Released 5 June 2013), and
IrefIndex47 (Released 9 December 2013). These data sets were integrated into a
non-redundancy protein interaction data set for E3s containing 10109 physical
interactions. After random screening, we obtained 2734 results as the GSN data set
(none of them were in GSP and literature).

Construction of multiple types of biological evidence. 366 pairs of mouse E3-
substrate interactions were collected from E3Net14 database. Pairwise ortholog map
file (“mouse to human”) were downloaded from the Inparanoid15 database
(Released 8.0).

Protein domain and family assignments data sets were downloaded from
Pfam48 (Released version 27). In total, 45019 assignments of 5487 protein domains
and families to one or more of 18312 proteins were retrieved. Domain pair
enrichment was assessed with the DER49, which is calculated as the probability (Pr)
of observing a pair of domain in a set of known E3-substrate interactions divided
by the product of probabilities of observing each domain pair independently:

DER ¼ Pr de3:dsubjGSPð Þ � Pr de3jGSPð Þ ´ Pr dsubjGSPð Þð Þ ð1Þ

where de3 is a domain of E3, dsub is a domain of substrate, and de3:dsub is an
E3-substrate interaction in which E3 has de3 and substrate has dsub.

GO annotation data was downloaded from Gene Ontology Consortium
(http://geneontology.org, Released on 27 November 2014). GO term pair
enrichment was assessed with the GER, which is calculated as the probability (Pr)
of observing a pair of GO terms in a set of known E3-substrate interactions divided
by the product of probabilities of observing each GO term independently:

GER ¼ Pr ge3:gsubjGSP
� �� Pr ge3jGSPð Þ ´Pr gsubjGSP

� �� � ð2Þ

where ge3 is a GO term of E3, gsub is a GO term of substrate, and ge3:gsub is an
E3-substrate interaction in which E3 has ge3 and substrate has gsub, and GSP is a
GSP set of known E3-substrate interaction.

E3 recognition consensus motif was calculated based on two parallel sequence
data sets: one is the target data set containing sequences of this E3’s substrates in
GSP, the other is background data set those of all proteins in GSP which interact
with this E3 in HPRD19 for background probability calculations. The sequence of
human proteome was downloaded from Swiss-Prot. E3 recognition consensus
motif was identified by modified procedure from motif-x22 (Supplementary
Methods).

Bayesian models for prediction. Here, we defined interactions that ESI occurs as
“positive” and those that does not as “negative”. The prior odds of an interaction
that ESI occurs can be calculated based on the ratio of the probability of detecting a
pair of ESI from all protein pairs (estimated by the golden standard data sets):

Oprior ¼ P PositiveÞ � P Negativeð Þð Þ ¼ P Positiveð Þ � 1� P Positiveð Þð Þ ð3Þ

And the posterior odds (Opost) of an interaction that ESI occurs is defined as:

Opost ¼ P Positivejfð Þ � P Negativejfð Þ ð4Þ

where P(Positive|f) is the probability that an ESI occurs after considering the
biological evidence f, while P(Negative|f) stands for the possibility that it does not.
Following a derivation of Bayesian rules50, the posterior odds (Opost) of an
interaction that ESI occurs can be calculated as the product of the prior odds
(Oprior) and the LR(f) by equation:

Opost ¼ Oprior ´ LR fð Þ ð5Þ

Myc-Smad3 + + + + + + +– –

+ + + +

+

12– 12–Flag-Smurf

Input IP :Flag

IB: Flag

Myc-Smad3

Flag-Smurf1

Input IP : Myc

IB: Flag

IB: Myc-HRP

IB: Myc-HRP

70
50

90

70
40
30

170

110

50

50
90
70

50

90
70

50

90

70

Flag-Smurf1

Myc-Smad3

a b c

d e

– +
+ + +

++

IB: Myc

IB: Flag

IB: GAPDH

70
50

90
70
40
30

Flag-Smurf1

Myc-Smad3

IB: Myc

IB: Flag

IB: GAPDH

– WT C699A

++++

– –+ +
31

+ + + +

Flag-Smurf1

HA-Ub
Myc-Smad

IP: Myc
IB: HA

Input: Flag

IB: Myc-HRP

IP: Myc

Fig. 6 Experimental validation of predicted E3-substrate interaction. a, b Smurf1 destabilizes Smad3 in MDA-MB-231 cells. a MDA-MB-231 cells were
transfected with Myc-Smad3 and Smurf1, after 36 h, cells lysates were analyzed by western blot. b MDA-MB-231 cells were transfected Myc-Smad3, with
Flag-Smurf1 (WT or C699A: 0.5 μg of Flag-Smurf1-WT was transfected into the second band and 1 μg into the third one, and 1 μg of Flag-Smurf1-C699A
into the fourth one). Myc-Smad3 level was analyzed by immunoblotting. c Smurf1 promotes the ubiquitination of Smad3. MDA-MB-231 cells were
transfected with HA-Ub, Myc-Smad3, control vector, or Flag-Smurf1, Smad1 was used as a positive control, and treated with MG132 as indicated.
Ubiquitinated Smad3 was immunoprecipitated (IP) with anti-Myc antibody and detected by immuneblotting with anti-HA antibody. d, e Smurf1 interacts
with Smad3. Co-immunoprecipitation of Smurf1 and Smad3 in MDA-MB-231 cells. In Fig. 6d, Flag-Smurf1 was used as immunoprecipitated, and in Fig. 6e,
Myc-Smad3 was used as immunoprecipitated. To avoid the degradation of Smad3, MG132 (20 µM) was added for 8 h before harvested. Cell lysates were
immunoprecipitated with anti-Myc antibody and analyzed by immunoblotting

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-00299-9 ARTICLE

NATURE COMMUNICATIONS |8:  347 |DOI: 10.1038/s41467-017-00299-9 |www.nature.com/naturecommunications 7

http://geneontology.org
www.nature.com/naturecommunications
www.nature.com/naturecommunications


where LR(f) is the ratio of the probability of meeting condition f of interacting ESI
pair and non-interacting ESI pair in the golden standard data sets. From Eqs. 3 and
5, the LR for biological evidence f can be computed as:

LR fð Þ ¼ P f jPositiveð Þ � P f jNegativeð Þ ¼ TPf =T

FPf =F
ð6Þ

where T and F are the number of all the true and false interactions respectively, TPf
and FPf are the number of true and false interactions with the biological evidence f
respectively. The advantages of Bayesian rules in this system permit us to integrate
multiple heterogeneous data sources into a probabilistic model. Because these
biological data types integrated are obtained by different approaches, we assume
that they are conditionally independent. Therefore, we can get the composite LR
(LRcomp) by simply multiplying the LRs from individual sources, which is namely
the naive Bayes classification (Eq. 7).

LR f 1:::f n
� � ¼

Yi¼n

i¼1

P f ijPositive
� �� Pðf ijNegativeÞ

� � ¼
Yi¼n

i¼1

LR fið Þ ð7Þ

According to the Bayesian rules described above, during the prediction
procedure we first identified the supporting evidence for the query ESI and assign it
the LR values. If the biological evidence in the same data type give more than one
LR, the maximum will be retained. And then the naïve Bayesian classifier was used
to integrate these LRs from multiple types of data sources to generate LRcomp.,
which was further normalized into “UbiBrowser Score” for confidence assessment.

UbiBrowser Score ¼ 1

1þ e�log LRcompð Þ ð8Þ

ROC curve and cross-validation. ROC curve can show the efficacy of one test by
presenting both sensitivity and specificity for different cutoff points51. Sensitivity
and specificity can measure a test’s ability to identify true positives and false
positives in a data set. These two features can be calculated as Senstivity= (TP)/(T)
and Specificity= 1−(FP)/(F), where TP and FP are the number of identified true
and false positives, while T and F represent the total number of positives and
negatives in a test. The ROC curves were plotted and smoothed by SPSS software
with the “sensitivity” on the y-axis and “1-specificity” on the x-axis.

To test the efficacy of the overall performance of various assessment models, the
fivefold cross-validation protocol was used. The GSP and negative data sets were
randomly divided into five approximately equal subsets. Four sets were used as
training data sets to compute the individual evidence’s LRs. The remaining one was
used as the test data set to count the number of predicted true positive (TP) and
false positive (FP) where one protein pair is predicted to be positive if its LR
exceeds a particular cutoff, LRcutoff, and to be negative otherwise. This process was
done in turn five times, and finally the numbers of TPs and FPs against different
LRs across five test data sets were summed to calculate the TP/FP ratio, and the
sensitivity (TP/T) and specificity (1-FP/F) for the ROC curve.

Implementation of UbiBrowser web services. UbiBrowser web services were
constructed based on a MySQL database, which was designed to be a general
database for storing the predicted ESI and their annotations. Above this database,
analysis applications were implemented in PHP and Perl for processing, integrating
and indexing the data, and web presentation application were written in
JavaScript and CSS (Cascaded Style Sheets). UbiBrowser is currently running on a
single 4-CPU Ubuntu Linux server, with the Apache 2 HTTP server.

Experimental validation protocols. Full-length of Smad3 and Smurf1 were
constructed by PCR, followed by subcloning into various vectors. Anti-Smad3
(Cat# 9523, 1:1000)52, anti-Myc (Cat# 2276,1:2000)53 and anti-Myc-HRP
(Cat# 2040, 1:1000)54 was from Cell Signaling Technology. Anti-Smurf1
(Cat# ab117552 1:1000)55 was from Abcam. Anti-Flag M2 monoclonal antibody
(Cat# F3165, 1:2000)56 and the proteasome inhibitor MG132 (Cat# M8699)57 were
from Sigma Aldrich. Anti-HA antibody was from Roche Life Science (Cat#
11867423001, 1:2000). GAPDH (Cat# sc-47724, 1:2000)58 and secondary
antibodies (goat anti-rabbit-HRP Cat# sc-2030, 1:3000; goat anti-mouse-HRP Cat#
sc-2005, 1:3000)59 were purchased from Santa Cruz Biotechnology. The MDA-MB-
231 cell line was kindly gifted by professor Wenguo Jiang from Cardiff University
School of Medicine. These cell lines were authenticated by STR locus analysis
(Genetic Testing Biotechnology Corporation, Suzhou, China) and tested for
mycoplasma contamination. Cell was cultured in DMEM/F12 medium (Hyclone).
These cells were supplemented with 10% fetal bovine serum (Hyclone), penicillin
(50 U/ml), and streptomycin (50 lg/ml) (Hyclone). Cells were transfected with
Lipofectamine 2000 (Invitrogen) according to the manufacturers’ instructions.
Cells were harvested and lysed in HEPES lysis buffer (20 mM HEPES pH 7.2, 50
mM NaCl, 0.5% Triton X-100, 1 mM NaF, 1 mM dithiothreitol) supplemented
with protease inhibitor cocktail (Roche Life Science, Cat# 04693116001). The lysate
was incubated with indicated antibody 3 h at 4 °C, then added protein A/G-plus

agarose and rotated gently more than 8 h at 4 °C. The immunoprecipitates were
washed at least three times in lysis buffer, and analyzed by western blotting.

In vivo modification assays: To prepare cell lysates, cells were solubilized in
modified lysis buffer (50 mM Tris, pH 7.4, 150 mM NaCl, 10% glycerol, 1 mM
EDTA, 1 mM EGTA, 1% sodium dodecyl sulfate (SDS), 1 mM Na3VO4, 1 mM
DTT, and 10 mM NaF) supplemented with a protease inhibitor cocktail. The cell
lysate was incubated at 60 °C for 10 min. The lysate was then diluted 10 times with
modified lysis buffer without SDS. The lysate was incubated with the indicated
antibody for 3 h at 4 °C. Protein A/G-plus Agarose was added, and the lysate was
rotated gently for 8 h at 4 °C. The immunoprecipitates were washed at least three
times in wash buffer (50 mM Tris, pH 7.4, 150 mM NaCl, 10% glycerol, 1 mM
EDTA, 1 mM EGTA, 0.1% SDS, 1 mM DTT, and 10 mM NaF). Proteins were
recovered by boiling the beads in sample buffer and analyzed by western blot
analsis.

Statistical analyses. All statistical analyses were performed using SPSS (version
20). ROCs curves were plotted and smoothed, and the area under the curve
(AUROC) and its 95% confidence interval was simultaneously calculated.
To determine if there are nonrandom associations between two categorical
variables, statistical significance was considered at P< 0.05 using the one-tailed
Fisher’s exact test. Unless otherwise stated, all experiments were repeated at least
thrice (n= 3).

Data Availability. All relevant data and codes are available from the authors upon
request.
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