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Abstract: Halloysite nanotubes (HNTs), novel 1D natural materials with a unique tubular
nanostructure, large aspect ratio, biocompatibility, and high mechanical strength, are promising
nanofillers to improve the properties of polymers. In this review, we summarize the recent progress
toward the development of polysaccharide-HNTs composites, paying attention to the main existence
forms and wastewater treatment application particularly. The purification of HNTs and fabrication
of the composites are discussed first. Polysaccharides, such as alginate, chitosan, starch, and
cellulose, reinforced with HNTs show improved mechanical, thermal, and swelling properties. Finally,
we summarize the unique characteristics of polysaccharide-HNTs composites and review the recent
development of the practical applications.
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1. Introduction

Nanofillers recently have drawn extensive attention from academic and industrial fields due to
their unique performance [1]. The traditional materials, such as black carbon, graphite, silica, and
silicate, can significantly improve the mechanical properties, thermal stability, and permeability of
various polymers [2,3]. Nowadays, clay mineral nanofillers with large aspect ratios, high strength,
and relatively low density have attracted intense research interest [4]. Clay minerals, natural
materials with proven biocompatibility and abundant storage, exhibit unique properties for various
applications [5]. The majority of the research concerning clay minerals is devoted to kaolinite [6],
montmorillonite [7], and illite [8]. In recent years, halloysite nanotubes (HNTs), 1D natural materials
with a unique tubular nanostructure, large aspect ratio, biocompatibility, and high mechanical strength,
have arisen as promising nanofillers to improve the properties of polymers [9,10].

Halloysite was first proposed by Berthier (1826) [11]. Raw halloysite, which is usually white, is
exploited from natural sediments and is easily processed into powder. The sizes of halloysite depend
on its specific geological deposit, as reported in the literature on the basis of microscopy [12] and
scattering techniques [13]. It possesses several typical morphologies, such as spherical, sheet-like, and
tubular particles due to the diversity of crystallization conditions and geological occurrence. Among
them, the tubular structure is the most common and valuable [14]. The tubular structure is caused by
lattice mismatch between adjacent silicone dioxide and aluminum oxide layers [15]. The molecular
formula of HNTs is Al2Si2O5(OH)4·nH2O, where n represents hydration or dehydration. HNTs are
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hydrated when n equals 2 and are dehydrated when n equals 0 [16–19]. Compared with traditional
nanofillers, such as carbon nanotubes (CNTs) [20] and boron nitride nanotubes (BNNTs) [21], HNTs
have a prominent advantage, which is that they are far less expensive [22]. The length of HNTs ranges
from 100 to 2000 nm, with the inner diameter from 10 to 30 nm and the outer diameter from 30 to 50 nm.
In terms of functional groups, HNTs contain a large amount of hydroxyl groups situated between
layers and on the surface, respectively. Due to the multi-layer structure, most of the hydroxyl groups
are inner groups. In addition, the inner surfaces of the HNTs are positively charged, while the outer
surfaces are negatively charged [12,23]. The detailed data of HNTs are listed in Table 1 [14,24].

Table 1. The detailed data of halloysite nanotubes (HNTs) related to combination with polysaccharides.

Molecular Formula Al2Si2O5(OH)4·nH2O

Length 100–2000 nm
Inner diameter 10–30 nm
Outer diameter 30–50 nm

Aspect ratio (L/D) 10–50
Young’s modulus of a single HNTs 130 ± 24 GPa

Elastic modulus 460 GPa
Interlayer water removal temperature 400 ◦C

Water contact angle 10 ± 3◦

Specific surface area 22.1–81.6 m2/g
Total pore volume 0.06–0.25 cm3/g

Density 2.14–2.59 g/cm3

Mean particle size in aqueous solution 143 nm

Although the characteristics above generate excellent mechanical, thermal, and regenerable
properties, the direct application of HNTs is limited. The drawbacks include difficulty in dissolving,
brittleness, and low permeability [25]. With abundantly renewable sources and charming properties,
including inherent biocompatibility, polysaccharides have attracted rising attention, and they have
been widely applied to the medical [26], textile [27], and food fields, among others [28,29]. By preparing
polysaccharide-HNTs composites, we can overcome these shortcomings. Due to the stable tubular
morphology, charge distribution, the specific origin, and unique crystal structure, HNTs can be
dispersed into single particles easily and the lumen diameter of HNTs fits well to macromolecule
and protein diameters, causing the good combination between polysaccharides and HNTs [30–32].
The present research mainly focuses on alginate [33,34], chitosan [35], starch [36], cellulose [37], pectin,
and carrageenan [38].

Although general properties of polysaccharide/halloysite nanotube composites and biomedical
applications have been reviewed earlier by Liu et al. [39], we review the recent progress toward
the development of polysaccharide-HNTs composites, paying attention to the main existence forms,
wastewater treatment, and food packaging applications particularly. Through this review, we have
a better understanding of unique characteristics of polysaccharide-HNTs composites, which can be
helpful to the continuous expansion of their application in the future.

2. Preparation of Polysaccharide-HNTs Composites

2.1. Purification

Raw halloysite has impurities, such as quartz, illite, and perlite, since it is exploited directly
from natural deposits. Therefore, the aggregate nanotubes should be separated to purify the
HNTs before use in practical applications [40]. The traditional method of purification is the
dispersion-centrifugation-drying technique. Firstly, we slowly added HNTs powder into deionized
water under heating and mild stirring conditions. Then, the solution was further processed by
lavation with deionized water three times and centrifugation. Finally, the pure HNTs were obtained
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after desiccation [41]. Figure 1 showed FE-SEM (Left) photos of HNTs and schematic illustration of
crystalline structure (Right) of HNTs.
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2.2. HNTs/Polysaccharide Preparations and Formulations

Using traditional processing techniques, HNTs can be mixed with most polysaccharides, such as
alginate, chitosan, starch, cellulose, and carrageenan. The purpose of different fabrication methods is to
enhance the interfacial interactions and dispersibility. In this section, we introduce the main existence
forms of polysaccharide-HNTs composites.

2.2.1. Hydrogels

The hydrophilic structure of hydrogels enables them to hold large amounts of water in the
three-dimensional networks. Due to the characteristics of high hygroscopicity and low stiffness,
hydrogels are usually described as soft and wet materials [43,44]. Chan et al. prepared a HNTs/alginate
hydrogel and the effects of HNTs on the physicochemical, thermal, mechanical, and mass transfer
properties of alginate hydrogel beads were investigated in detail [45]. It was found that HNTs filled the
interspace in the alginate matrix and allowed more efficient load transfer. The HNTs were embedded
in the layers of alginate hydrogel networks and they had little effect on the size and on the shape of
the alginate beads. The mechanism for enhanced mechanical strength could be attributed to physical
interaction between the alginate and HNTs, and the mechanical strength could be improved at lower
HNTs loading if chemical interactions were present. Zhou et al. reported alginate/HNTs composite
hydrogels via solution mixing and subsequent cross-linking with calcium ions [46]. The static and
shear viscosity of composite solutions increases with the increase of HNTs. The rheological behaviors
of alginate/HNTs solutions were a shear thinning and fit with the power law model. Due to the good
dispersion ability of HNTs, polysaccharides and HNTs are mixed easily via interfacial interactions,
such as electrostatic and hydrogen bonding interactions, contributing to the formation of homogeneous
composites and enhanced properties. Fourier-transform infrared spectroscopy (FTIR) and X-ray
powder diffraction (XRD) are applied to study the interfacial interactions between alginate and HNTs.
As shown in Figure 2b, the peaks at 1419 cm−1 shifted to higher wave numbers and no new peaks
appeared in the composites, which indicated that hydrogen bond interactions occur between HNTs
and alginate but no chemical reaction occurs. The XRD patterns of composites (Figure 2c) were very
similar to HNTs no new diffraction peak occurring, which suggested the crystal structure of HNTs was
retained in the composites.



Polymers 2019, 11, 987 4 of 18
Polymers 2019, 11, x 4 of 18 

 

 
Figure 2. FTIR spectra (a,b) and XRD (c) pattern of HNTs, alginate, and alginate/HNTs composites. 
(Reproduced from [46] with permission from Elsevier and Copyright Clearance Center, 2017). 

The effect of HNTs on the swelling ratios of the polysaccharide/HNTs composites were 
investigated in NaCl and water solution. Compared with pure sodium alginate (SA) hydrogel, the 
SA/HNTs composite hydrogels showed low swelling ratios with the same conditions for soaking 
time, which gradually decreased with the increasing HNTs loading. This result was attributed to the 
hydrophilic polymer content in the composite hydrogels decreasing with the addition of HNTs, and 
the water adsorption of HNTs was lower than SA. In addition, the HNTs used as physical 
crosslinking points for alginate through the hydrogen bond interactions can greatly improve 
entanglement of the alginate and lower the mobility of the chains, resulting in water absorption 
being greatly decreased [47]. Sinem et al. reported a cryogenic technique to modify HNTs. The inner 
and outer diameters and the surface area of HNTs were evidently increased without disturbing the 
inherent tubular structure and wall features. Then, modified HNTs were mixed with chitosan to 
prepared composite hydrogels, showing remarkedly improved mechanical and swelling properties 
compared with pure chitosan hydrogel [48]. Sharifzadeh et al. synthesized carrageenan/HNTs 
nanocomposite hydrogels via physical crosslinking. The chemical structure confirmed by FTIR 
spectroscopy revealed the formation of physical interaction between carrageenan and HNTs in the 
hydrogels. It was revealed that the thermal stability and swelling of the nanocomposite hydrogels 
had significantly been improved due to the incorporation of HNTs compared with the pure 
carrageenan hydrogel [49]. The reasons why HNTs can improve the thermal stability of composites 
are as follows. The degradation temperature of HNTs is approximately 400 °C, which is higher than 
most of the polysaccharides. Then, the dispersed HNTs have a blocking effect on mass and heat 
transfer. Besides, the polysaccharide chains and degraded products enter the inner cavity of HNTs, 
delaying mass transport and improving the thermal stability. However, the good dispersion of 
HNTs into the hydrogel is urgently needed for the hydrogel fabrications to broaden their 
application. The HNTs functionalized via different types of silane coupling agents were used as a 
way to improve HNTs dispersal in the polymer matrix. Sabbagh et al. prepared novel 
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(Reproduced from [46] with permission from Elsevier and Copyright Clearance Center, 2017).

The effect of HNTs on the swelling ratios of the polysaccharide/HNTs composites were investigated
in NaCl and water solution. Compared with pure sodium alginate (SA) hydrogel, the SA/HNTs
composite hydrogels showed low swelling ratios with the same conditions for soaking time, which
gradually decreased with the increasing HNTs loading. This result was attributed to the hydrophilic
polymer content in the composite hydrogels decreasing with the addition of HNTs, and the water
adsorption of HNTs was lower than SA. In addition, the HNTs used as physical crosslinking points for
alginate through the hydrogen bond interactions can greatly improve entanglement of the alginate and
lower the mobility of the chains, resulting in water absorption being greatly decreased [47]. Sinem et al.
reported a cryogenic technique to modify HNTs. The inner and outer diameters and the surface
area of HNTs were evidently increased without disturbing the inherent tubular structure and wall
features. Then, modified HNTs were mixed with chitosan to prepared composite hydrogels, showing
remarkedly improved mechanical and swelling properties compared with pure chitosan hydrogel [48].
Sharifzadeh et al. synthesized carrageenan/HNTs nanocomposite hydrogels via physical crosslinking.
The chemical structure confirmed by FTIR spectroscopy revealed the formation of physical interaction
between carrageenan and HNTs in the hydrogels. It was revealed that the thermal stability and
swelling of the nanocomposite hydrogels had significantly been improved due to the incorporation of
HNTs compared with the pure carrageenan hydrogel [49]. The reasons why HNTs can improve the
thermal stability of composites are as follows. The degradation temperature of HNTs is approximately
400 ◦C, which is higher than most of the polysaccharides. Then, the dispersed HNTs have a blocking
effect on mass and heat transfer. Besides, the polysaccharide chains and degraded products enter the
inner cavity of HNTs, delaying mass transport and improving the thermal stability. However, the good
dispersion of HNTs into the hydrogel is urgently needed for the hydrogel fabrications to broaden their
application. The HNTs functionalized via different types of silane coupling agents were used as a way
to improve HNTs dispersal in the polymer matrix. Sabbagh et al. prepared novel chitosan/crosslinked
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oxidized starch hydrogels, which were embedded by modified or unmodified HNTs. Incorporation of
HNTs significantly affected the swelling behavior and thermal properties of the hydrogel. The increase
of the amine groups in HNTs modified with silane reagents made them react with oxidized starch,
resulting in good dispersion in the structure of the hydrogel [50]. Figure 3 illustrates the formation of
the bio-nanocomposite hydrogel.
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The swelling ratio of the chitosan/HNTs hydrogel also decreased compared with the pure
chitosan hydrogel, due to the introduction of HNTs content causing the chitosan to contract more [51].
The cellulose/HNTs composite showed a similar variation trend [52].

2.2.2. Films

Regenerated cellulose/HNTs nanocomposite films were fabricated in 1-butyl-3-methylimidazolium
chloride ionic liquid by solution casting method. Figure 4 showed the cross-sectional FE-SEM images of
the cellulose and 6 wt.% HNTs-filled nanocomposite films. The HNTs were well dispersed in cellulose
due to good interaction between cellulose and HNTs. Young’s modulus and the tensile strength of
nanocomposite films were improved by 100% and 55.3%, respectively, when the loading of HNTs was
6 wt.%, which was owing to tubular geometry and the higher stiffness of the HNTs. The addition
of HNTs also improved the thermal stability and char yield of regenerated cellulose, but moisture
absorption capacity of the nanocomposites in constant relative humidity was reduced due to the
addition of HNTs [53].

Kim et al. reported transparent cellulose-obtained films from cellulose/HNTs solutions. The HNTs
could uniformly been dispersed in cellulose because of the repulsive force from its surface charge,
and the hydrogen bonding from HNTs and cellulose broke the chain-to-chain interactions of cellulose.
The haze of the film was increased due to the introduction of HNTs but the diffuse transmittance could
be retained [54].
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Chang et al. prepared dispersed starch/HNTs composite films by using amylose to wrap the HNTs
by ball-milling [55], in order to solve the agglomeration of HNTs. However, the extraction of amylose
is expensive and complicated. In one work, polyethylene glycol (PEG) was used as a dispersing
agent to mill, modify, and disperse HNTs in different solvents, and certain amounts of glycerin and
modified HNTs suspension were added into the slurry. The composite films were obtained after
stirring and casting on the stainless-steel plate. SEM of treated HNTs and HNTs/starch films with
3 wt.% (c and d) and 7 wt.% HNTs were shown in Figure 5. The HNTs are evenly distributed in the
starch matrix. Due to the action of PEG, the treated HNTs were well dispersed in the starch matrix and
the tensile strength of the film was effectively improved [56,57]. In another work, chitosan/starch/HNTs
ternary nanocomposite films were developed through solution casting method. The interactions
between chitosan, starch, and halloysite nanotubes were confirmed by FTIR results. Water absorption
capacity, folding strength, and hemocompatibility were remarkedly enhanced owing to the addition of
halloysite nanotubes [58]. Then, chitosan-HNTs composites were combined with modified cellulose
to produce composite films using a solution casting method [59]; the excellent film formation and
increase in surface roughness of the nanocomposite were confirmed by morphological and surface
analysis. The kappa carrageenan/HNTs bio-nanocomposite films with enhanced tensile properties
were successfully fabricated [60].
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(e,f). (Reproduced from [56] with permission from Elsevier and Copyright Clearance Center, 2012).

A functional bio-nanocomposite film both with antioxidant and antimicrobial active molecules
was successfully prepared by the filling of a pectin matrix with modified HNTs containing peppermint
oil. Importantly, the prepared functional film was considered a biocompatible material for packaging
applications because of it was composed of eco-compatible molecules [61]. Makaremi et al. developed
functional films with antimicrobial properties that can be extended over time by dispersing a
HNTs/salicylic acid hybrid into the pectin matrix [62]. Moreover, it was demonstrated that the
vacuum pumping in/out procedure can optimize the halloysite loading from the aqueous solution
because of the water confinement mechanism [63]. Accordingly, the attained knowledge can offer new
routes in the preparation of effective delivery systems based on HNTs.

2.2.3. Fibers

Fibers based on polysaccharides with high performance or special functions are becoming an
emerging hotspot in both academic and industrial circles, exhibiting great potential in multiple fields.

HNTs can be well-dispersed in some ionic liquids. Song et al. firstly reported fabrication of
microcrystalline cellulose/HNTs composite fibers from cellulose/ionic liquid/HNTs solutions by a
wet-spinning method. Figure 6 showed schematic apparatus of nanocomposite fibers and SEM images
of the morphology of fibers. The uniform dispersion of HNTs in the cellulose matrix was further
confirmed by FTIR and wide-angle X-ray diffraction (WAXD) spectra. In addition, the homogeneous
dispersion of HNTs and strong interfacial adhesion between HNTs and cellulose chains dramatically
enhanced the moisture barrier property of cellulose fibers. Mechanical and thermal properties of HNTs
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nanocomposite fibers were greatly enhanced due to the uniform orientation of the well dispersed
HNTs and great interactions from cellulose and HNTs caused by hydrogen bonding, van der Waals,
and electrostatic interactions. For example, the tensile strength of the fibers increases from 73.8 to
130.1 MPa with the addition of HNTs from 0 to 7 wt.% [64].
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MCC/HNTs fiber wound on a plastic reel. (c,d) SEM images of the morphology of the side surface
sections of regenerated MCC and MCC/HNTs fibers. (Reproduced from [64] with permission from
Royal Society of Chemistry and Copyright Clearance Center, 2014).

Silva et al. developed HNTs reinforced alginate nanofibrous scaffolds fabricated by electrospinning.
The diameter of alginate-based nanofibers ranged from 40 to 522 nm with well-aligned HNTs, as shown
in Figure 7. The HNTs were well dispersed in the alginate matrix with good uniaxial alignment.
Compared to the alginate-based scaffolds without HNTs, the tensile strength and elastic modulus of
HNTs-reinforced nanofibrous scaffolds were significantly improved by 3-fold and 2-fold, respectively,
when 5% (w/w) HNTs was added. The incorporation of HNTs also enhanced the thermal stability of
the nanofibrous scaffolds [65].
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2.2.4. Plasticized Nanocomposites

Plasticized halloysite nanocomposites are commonly prepared via solvent casting method, but this
is limited in the practical processing industries. Thus, the melt mixing technique will be more efficient
and productive in a process industry workshop [66].

Schmitt et al. successfully developed plasticized HNTs/wheat starch nanocomposites by
melt-extrusion for the first time. A higher loading (up to 6 wt.%) of HNTs were well-dispersed
in a starch matrix. The interactions between external hydroxyl groups of halloysites and C-O-C
groups of starch were formed. The thermal stability of the matrix was improved with the addition
of HNTs. The tensile strength and Young’s modulus of starch were improved up to 29% and 144%,
respectively, without sacrificing ductility [67]. Porous plasticized starch/HNTs nanocomposites were
also successfully prepared by melt-extrusion technique. Double benefits could be gained due to
the addition of HNTs, which were as a nucleating agent increasing the porosity and as a barrier
agent increasing the proportion of small cells [68]. Ren et al. reported plasticized starch/HNTs
nanocomposites prepared by melt blending with different polyol plasticizers, such as glycerol, sorbitol,
and a mixture of two. Compared to sorbitol or a mixture of two, glycerol offered a more uniform
dispersion of HNTs in the starch matrix owing to more stable hydrogen bonds from glycerol and
HNTs. The use of mixtures of these polyols was proved a promising way to optimize the mechanical
properties of nanocomposites [69].

3. Applications of Polysaccharide-HNTs Composites

3.1. Biomedical Applications

Liu et al. summarized recent research progress in the biomedical application of
polysaccharide-HNTs composites [39]. The interfacial interactions, structure, and properties of
the composites were discussed in detail in that review. There were some examples in the biomedical
applications, such as tissue engineering, wound healing, and drug carrier systems. Thus, we have
listed some examples based on the previous work of Liu et al. in the following.

3.1.1. Drug Delivery and Release

HNTs were confirmed as potential drug and gene delivery vehicles [70,71], and the drug release
rate slowed down by coating polysaccharides onto the drug-loaded HNTs. Recently, more and
more attention has been paid to the drug sustained release based on the polysaccharide-HNTs
composites [72,73].

Hydrogels have been researched for the controlled delivery of biomolecules, varying from small
molecular weight drugs to biomacromolecules, such as nucleic acids, polysaccharides, and proteins.
Moreover, the biocompatible and biodegradable hydrogels were prepared by different natural
ingredients. Among them, the chitosan-HNTs composite hydrogels were widely researched due to
their low toxicity, good biocompatibility, and degradability by human enzymes [74]. It was found that
the chitosan-coated HNTs exhibited reduced release compared with the pure HNTs [24]. For instance,
the chitosan-coated HNTs had released only 78% of the total drug payload, while the uncoated HNTs
released 88% on day 9. The drug release rate was extremely low, and the residual content was under
10% of the loaded drug after 20 days. The reason why chitosan-coated HNTs have a lower drug release
rate is the additional barrier through which the drug must diffuse provided by chitosan. In practical
applications, chitosan-based hydrogels have been used for cancer therapeutics, subcutaneous release,
and oral delivery. In recent years, the relevant relationship between plasticizer nature and drug
release behavior has been exploited, so the starch/HNTs composite films have been prepared by melt
blending technique for drug release applications [75]. In addition to drugs, other active agents, such as
antimicrobial agents [76], DNA [77], and proteins, can also be loaded for controlled release.
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3.1.2. Tissue Engineering Scaffold

Tissue engineering scaffolds are generally porous structures, biocompatible, and mechanically
strong for shaping cell growth [78]. HNTs were added into polysaccharides, such as chitosan [79],
alginate [47], and starch [68], to prepare various tissue engineering scaffolds. Compared with pristine
chitosan, the chitosan-HNTs nanocomposite scaffolds showed an obvious improvement in mechanical
strength, tensile modulus, and thermal stability. Moreover, the addition of HNTs had little influence on
the pore structure of chitosan. Thus, the chitosan-HNTs exhibited a highly porous structure. In order to
verify the feasibility of the nanocomposite scaffolds, mouse fibroblasts were used for culture. The result
showed that mouse fibroblasts could develop on the chitosan-HNTs nanocomposite scaffold surfaces,
even at 80 wt.% HNTs loading. In addition, the fibroblast cells cultured on the surfaces exhibited a
phenotypic shape, indicating that the cells could penetrate and migrate within the scaffolds, which
were similar to the extracellular matrix. Thus, polysaccharide-HNTs composites have promising
potential in the tissue engineering scaffold field.

3.1.3. Wound Dressing

Wound dressings can be classified as traditional, biomaterial-based, interactive, and bioactive
dressings. In recent research studies, biomaterials, such as polysaccharides, which are non-toxic,
natural available, non-immunogenic, biocompatible, and biodegradable, have been considered as
ideal materials for wound healing [80–82]. Due to the characteristics of biocompatibility, ability to
load and release bioactive agents, high water content, and flexibility, hydrogels are most widely
adopted for wound dressings [83]. Moreover, HNTs have been added into the polysaccharides,
such as alginate [45,76] and chitosan [84,85], to overcome the poor mechanical strength of hydrogels.
The alginate-HNTs wound dressing, based on a double barrier with the antibiotic vancomycin as an
antimicrobial agent, was prepared. It was concluded that only the antibiotic vancomycin immobilized
in HNTs- (3-Aminopropyl)-trimethoxysilane (APTS) and encapsulated in alginate hydrogels can be
used as a wound dressing material.

3.2. Wastewater Treatment Applications

Among all the causes of wastewater pollutants, heavy metal ions, dyes, and other organic pollutants
account for a large proportion [86]. Various methods, such as flocculation [87], precipitation [88],
membrane filtration [89], and electrochemical techniques [90] have been restricted in practical usage
because of the high cost, secondary pollutants, and poor removal efficiency. Due to its low cost,
simple operation, and potential recycling and reuse, adsorption has become one of the most effective
alternatives. Traditional absorbents, such as activated carbon [91] and resins [92], have been replaced
by HNTs, a novel absorbent which is inexpensive and naturally abundant. In recent research studies,
polysaccharide-HNTs composites exhibited promising adsorption capacity and regeneration.

3.2.1. Applications in Removal of Dyes

Pristine HNTs with the negative Si-O-Si on the outer surface and the positive Al-OH on the inner
surface can adsorb both cationic and anionic dyes, but stable dispersions in water and reusability
for its practical application are hard to obtain due to their size. Polysaccharides, such as chitosan,
alginate, and starch, have been classified as natural biopolymer adsorbents, as they are non-toxic
and biodegradable. However, polysaccharides materials usually have dense layer, low mechanical
strength, and rigidity characteristics, which limits their application on a practical scale. Thus,
polysaccharide-HNTs composites have been attractive due to combining their benefits for treatment
of wastewater.

Cavallaro et al. prepared alginate/HNTs composite hydrogels by encapsulating HNTs into
alginate hydrogels using the dropping technique. The adsorption capacity of composite hydrogels
was investigated by removing crystal violet (CV) from aqueous media. The results showed that the
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addition of HNTs enhanced the composite hydrogel’s ability to capture CV. The weight ratio of alginate
and HNTs was 2:1, and the removal rate was increased by 55% and 45%, respectively, when the
stoichiometric adsorbent concentration increased from 0.25 to 0.50 mass% [93]. It was found that the
pH and temperature had little influence on the adsorption capacity of alginate-HNTs composite beads.
The alginate-HNTs composite adsorbents (10 g) had the ability to treat 29.7 L of 55 mg/L methylene blue
(MB) solution and the removal efficiency was above 90%. Moreover, the column study verified that the
removal efficiency had a slight decline with the increase of bed volumes, but it remained above 90% after
1500 bed volumes of wastewater was treated [94]. Novel chitosan-HNTs composite hydrogel beads
were prepared by the dropping and pH-precipitation technique, exhibiting accelerated adsorption
process and improved adsorption capacity (72.60 mg/g for MB and 276.9 mg/g for malachite green
(MG)) compared with the pure chitosan bead. Similar to alginate-HNTs composites, chitosan-HNTs
composites also exhibited excellent regeneration properties especially for MB (above 92%). The removal
ratio of dyes increased but the adsorption amount per unit absorbent weight reduced with the addition
of the composite hydrogels in solution [95]. The porous starch-HNTs composites were prepared by
solvent exchange method using different drying methods. The adsorption performance depended
on porosity, which was relative to specific surface area, and the size distribution of the pores and
their area changed with different types of drying methods and percentage of ethanol. The adsorption
capacity composites were improved due to the incorporation of HNTs [96]. A cryogenic technique to
modify HNTs was confirmed to increase the inner and outer diameters and the surface area of HNTs
without disturbing the inherent tubular structure and wall features. A small amount of cryo-expanded
halloysite was used in chitosan. It was found that the composite hydrogel had a high adsorption
capacity for anionic and cationic dyes [48].

Overall, polysaccharide-HNTs composites exhibit reinforced adsorption capacity and regeneration
properties. Thus, polysaccharide-HNTs composites can be considered as promising reusable adsorbents
for the removal of dyes from wastewater.

3.2.2. Applications in Removal of Heavy Metal Ions

HNTs with negatively charged surfaces were regarded as ideal alternatives for removal of
heavy metal ions from aqueous media, such as Cu2+, Pb2+, and Cr2+ [14,97]. However, HNTs
used as adsorbents face some problems in practical application due to their nanoscale size, such
as being easily aggregated, being lost in use, the low permeability of packed adsorption columns,
and being difficult to recycle. Thus, HNTs were combined with polysaccharides to improve the
affinity and loading capacity for heavy metal ions. Extrusion dripping method was used to produce
alginate-HNTs nanocomposite beads with calcium chloride as the curing agent. The results showed
that the alginate-HNTs nanocomposite beads had improved adsorption capacity (325 mg/g at 0.2 g
HNTs loading). It was also concluded that alginate and HNTs promoted the adsorption of Pb2+ by ion
exchange and physisorption, respectively. It was simple to separate the used nanocomposite beads
from wastewater by filtration due to the millimetric size, which facilitated the regeneration of the used
beads [98]. In other works, the alginate-HNTs hybrid beads with high adsorption capacity for Cu2+ were
prepared in the same way. The SEM image showed clearly that the HNTs overlapped loosely together
in the interior of the hybrid beads, contributing to the mass transfer of the adsorbents. Furthermore,
the regeneration experiment exhibited good adsorption efficiency (approximately 80%) after three
cycles. In addition, the alginate-HNTs hybrid beads also showed good adsorption performance for
other heavy metal ions, such as Ag+ and Cd2+ [99].

Compared to the traditional chemical methods of removing heavy metal ions from aqueous media,
polysaccharide-HNTs composites had advantages, such as low cost, simple operation, regeneration,
and being non-secondary pollutants.
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3.3. Other Applications for Water Treatment

Currently, the research is focused on the applications of polysaccharide-HNTs composites for
the removal of dyes and heavy metal ions in aqueous media. However, polysaccharide-HNTs
composites have other practical applications for pollutants removal due to their unique structure and
improved properties.

Different types of membranes, such as ultrafiltration, forward osmosis, reverse osmosis, and
membrane reactors [100–103], were endowed with special performances by adopting HNTs. Cellulose
acetate/L-dopa coated HNTs (LDPHNT) ultrafiltration membranes were prepared by blending in a
casting solution. The Energy dispersive spectroscopy (EDS) analysis showed the uniform dispersion of
LPDHNTs in the cellulose acetate (CA) membrane matrix. Moreover, the size and number of pores
on the membrane surface were increased by the addition of LDPHNTs into CA solution. It was the
existence of LDPHNTs that improved the hydrophilicity of the hybrid membranes. In the antifouling
test, the composite membranes exhibited higher antifouling performance than pristine CA membranes.
Besides, the tensile modulus and elongation at break point of LDPHNTs-CA hybrid membranes were
reinforced compared to the pure CA membranes [104]. Some of the phenol-containing pesticides
are widely used in agriculture and regarded as endocrine disruptors, exhibiting estrogenic activity
and toxicity even at low concentrations. In order to remove phenol-containing pollutants, the special
adsorbents based on HNTs were prepared. The chitosan-HNTs hybrid nanotubes were synthesized
by simply assembling chitosan onto HNTs. Then, the horseradish peroxidase was immobilized on
the hybrid nanotubes for the removal of phenol. The experiment showed that the immobilized HRP
exhibited excellent removal efficiency for phenol from wastewater and the activity did not reduce the
volume [25].

3.4. Food Packaging Applications

Over the years, polysaccharides, owing to their biodegradability, non-toxicity, and good
film-forming ability, have raised concerns over their use as food packaging materials for consumer
demand and environmental issues. However, these biodegradable polysaccharides have weak stability
in processing, poor barrier properties, and high sensitivity to environmental changes. In the previous
work, the introduction of HNTs nanoparticles to the starch matrix improved the mechanical properties
and decreased permeability to water vapor and oxygen, water adsorption capacity, as well as the
water solubility of the films [57], which gave them potential to be used for food packaging purposes.
Makaremi et al. prepared biofilms composed of apple pectin and two different types of HNTs—MB
with shorter tubes and lower surface area and PT with longer tubes and higher surface area—to obtain
a novel functional bio-nanocomposite with enhanced mechanical and thermal properties. Moreover,
both HNTs were employed as nanocontainers for salicylic acid, a well-known biocidal agent. On this
basis, the HNTs/salicylic acid hybrids were dispersed into the apple pectin matrix to develop functional
films with antimicrobial properties that can be extended over time. Thus, the bio-nanocomposite films
showed promising potential for food packaging applications [62].

HNTs are able to adsorb active molecules, such as nisin and pediocin. On this basis, Meira et al.
added peptides nisin and pediocin into starch films, resulting in active packaging materials with
antimicrobial activity against L. monocytogenes and C. perfringens. The addition of HNTs enhanced the
mechanical and thermal properties, especially when bacteriocins were adsorbed on the HNTs [105].
The moisture barrier properties of polysaccharide-based films are poor due to their hydrophilic
characteristics. Essential oils with antioxidant and antimicrobial activities are commonly incorporated
into polysaccharide matrices to overcome these limitations. However, it is rather hard to disperse the
essential oils in a hydrophilic polysaccharide matrix. Lee et al. developed chitosan films incorporated
with clove essential oil and HNTs. It was confirmed that the essential oils were stabilized by HNTs
without any surfactant. The addition of HNTs into the chitosan matrix enhanced the mechanical and
water barrier properties of the chitosan films, and the active molecule, clove essential oil, imparted
antimicrobial and antioxidant effects to the chitosan-HNTs nanocomposite films. The results showed
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that the films inhibited growth of mold, which was derived from the surrounding environment.
Therefore, the nanocomposite films could be used as active food packaging systems because of the
antioxidant and antimicrobial properties and enhanced barrier properties against water vapor [106].

4. Conclusions

In this review, we summarized the recent research studies regarding polysaccharide-HNT
composites. The key points of polysaccharide-HNTs composites are as follows:

(1) HNTs, 1D natural nanoclays, have unique characteristics of tubular structure, high aspect ratio,
abundant natural reserves, compatibility, and high mechanical strength. Due to the characteristics
of HNTs, polysaccharide-HNTs composites have advantages, such as improved mechanical,
thermal, and swelling properties and good biocompatibility. Thus, HNTs are promising nanofillers
for high-performance polymer composites.

(2) In addition to the characteristics of HNTs, the degree of dispersion of HNTs and the interfacial
interactions between polysaccharides and HNTs (electrostatic and hydrogen bonding interactions)
are crucial factors affecting the performance of composites.

(3) HNTs can be combined with polysaccharides by different methods. Polysaccharide-HNTs
composite hydrogels can be prepared by solution mixing and freeze-drying method and dropping
or PH-precipitation technique; membranes are fabricated by solution casting method and fibers
are usually produced by electrospinning technique. The key to this process is to obtain a
well-dispersed solution with the HNTs and good interfacial interactions between polysaccharides
and HNTs.

(4) Polysaccharide-HNTs composites show promising potential for biomedical applications.
The applications in removal of dyes and heavy metal ions are summarized in detail.
Polysaccharide-HNTs composites have raised concerns as food packaging materials for consumer
demand and environmental issues.
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