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Abstract: During the last decade, optogenetics has become an essential tool for neuroscience research
due to its unrivaled feature of cell-type-specific neuromodulation. There have been several tech-
nological advances in light delivery devices. Among them, the combination of optogenetics and
electrophysiology provides an opportunity for facilitating optogenetic approaches. In this study, a
novel design of an optrode array was proposed for realizing optical modulation and electrophys-
iological recording. A 4 × 4 optrode array and five-channel recording electrodes were assembled
as a disposable part, while a reusable part comprised an LED (light-emitting diode) source and a
power line. After the characterization of the intensity of the light delivered at the fiber tips, in vivo
animal experiment was performed with transgenic mice expressing channelrhodopsin, showing the
effectiveness of optical activation and neural recording.
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1. Introduction

For more than a decade, optogenetics has been widely employed to investigate a
variety of neural mechanisms in neuroscience studies [1–9]. Unlike conventional electro-
physiological methods, optogenetic techniques utilize light to control the activity of geneti-
cally modified neurons expressing light-activated opsin proteins. Therefore, it enables the
precise modulation of genetically selected neurons in complicated neural circuits [6,10].
As the optogenetic technique became popular, the need for simultaneous neural record-
ing has also grown in order to confirm optical neuromodulation. An integrated device
that can simultaneously deliver light stimuli to activate or inhibit specific neuronal cells
and record the neural response activities has been highly demanded [9,11–18]. As this
micro-electro-mechanical systems (MEMS) technology advances, optical stimulation and
recording system configuration can be fabricated on a microscale [19–25]. Therefore, a
MEMS-based optrode is considered to be one of the promising optogenetic platforms.

As an optogenetic light source, light-emitting diodes (LEDs) and lasers are commonly
used in most applications [14,22,26–29]. High intensity and a narrow focus of light are
required for optogenetic experiments. Compared to LED, lasers can provide very high
intensity in a focused spot and have a narrow spectral width. However, there is a critical
issue that the system cannot be miniaturized, and tissue damage can occur due to the high
output power of the laser [30,31]. On the other hand, the light intensity of an LED can
be easily modulated without concern for stability or tissue damage [28]. An LED is also
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suitable for freely behaving optogenetics experiments because it has a long lifetime, low
power consumption, and low cost. For these reasons, in this study, an LED was chosen as
the light source.

The utility of the optical system was verified in previous studies in terms of light
intensity, heat dissipation, and spatial light distribution [21,25]. In this study, a new optrode
array integrated with electrophysiological recording electrodes was proposed so that the
neural activity from adjacent neurons evoked by optogenetic stimulation could be recorded.
The proposed system comprises disposable and reusable parts. The disposable bottom
part includes multi-channel recording electrodes and square-shaped glass microlenses
with an optical fiber array. The reusable upper part consists of an LED light source
and external power supply lines. After in vivo experiments, the reusable part can be
easily detached and applied to another animal, while the disposable part is permanently
implanted. The disposable part is protected by a plastic cover that can be firmly attached
using magnetic attraction. To prove the feasibility of the proposed system, the optrode array
was implanted into the brains of transgenic mice expressing channelrhodopsin-2 (ChR2) in
Ca2+/calmodulin-dependent protein kinase II-positive neurons (CaMKIIα::ChR2 mouse).
The neural activity from individual neurons was successfully recorded using the recording
electrodes while optically stimulating the neurons. The whole system can be implemented
further to a wireless system, which stimulates and records brain signals by adopting a
low-power RF system on a chip. The wireless part controls the LED light pulse parameters
and gathers signals through instrumentation amplifiers.

2. Fabrication
2.1. Microlens Array and Through-Silicon via Fabrication

Figure 1 shows the overall fabrication process of the microlens array (MLA) with
through-silicon vias (TSVs). The device was fabricated with bulk micromachining tech-
nology. The process began with the plasma pre-treatment on the bonding side of the
borosilicate glass (BSG, Borofloat 33, Schott AG, Mainz, Germany) substrate, which was
attached to the silicon substrate. The pre-treatment process was performed with a reac-
tive ion etcher with 50 sccm of chlorine gas and radio frequency (RF) power of 150 W
for 3 min (Figure 1a). The plasma treatment is essential for suppressing surface crystal-
lization, which can affect the optical properties of the microlens [32]. After the 490 µm
deep cavity formation on the 1 mm thick double-side-polished silicon wafer using the
TEOS (tetraethoxysilane) silicon oxide etch mask and deep reactive ion etching (DRIE), the
cavities were filled with molten BSG using anodic bonding and a subsequent annealing
process at 850 ◦C for 8 h (Figure 1b,c). The surface of the silicon substrate was planarized
by removing the surplus BSG remaining on top of the cavities using the CMP (chemical
mechanical polishing) process (Figure 1d). As shown in Figure 1e,f, the second photolithog-
raphy, oxide etching, and DRIE processes were carried out to form the half-etched holes
for TSV formation. After the oxide mask layer was removed using a dry oxide etching
process, the wafer was immersed in a 49% hydrofluoric acid solution for 6 min and 10 s
to reduce the height of the glass columns from 490 µm to 453 µm (Figure 1g). The second
DRIE process was performed with a photoresist mask to form the square-shaped glass
columns partially protruding above the silicon surface. A negative thick photoresist mask
(DNR-L300, Dongjin, Jincheon-gun, Korea) was spin-coated at 2000 rpm for 40 s, and soft
baking and post-exposure baking were performed at 100 ◦C for 90 s (Figure 1h). The height
of the glass columns protruding above the silicon surface was 35 µm. After the second
thermal reflow process at 850 ◦C for 40 min, the square-shaped glass MLA array was
formed on the silicon substrate (Figure 1i). Figure 1j shows the backside DRIE process with
an oxide mask that formed the vias for the optical fibers aligned with the center of the glass
MLA and the TSVs for the recoding electrode insertion. Finally, the silicon die was diced
into 5 × 5 mm2 dies and assembled with the recording electrodes (Figure 1k).
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Figure 2. Fabrication results: (a) fabricated MLA and TSV; (b) 4 × 4 optical fiber array assembled 
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Figure 3a depicts the proposed MEMS optrode array (MOA) design in a cross-sec-
tional view. The device can be separated into two components, which are the reusable 
part and the disposable part. The reusable part, which is the light source for the system, 
consists of an SMD (surface mounted device) type blue LED (LB G6SP, OSRAM, 

Figure 1. The fabrication process of the microlens array (MLA) and through-silicon vias (TSVs).

2.2. MEMS Optrode Array Assembly

The scanning electron microscope (SEM) image of the fabricated 4 × 4 MLA and
TSVs on a 5 × 5 mm2 silicon die is shown in Figure 2a. The designed dimension of each
microlens was 300 × 300 µm2 with a 340 µm center-to-center distance. The TSV had a
250 µm diameter and 300 µm center-to-center distance. The optical fibers were manually
assembled by inserting the fibers into the vias formed under the MLA with a guide jig
that was specifically designed for the alignment and fixation of the optical fiber array
(Figure 2b). The lengths of the optical fibers and the recording electrodes protruding from
the bottom of the disposable part were 4 mm and 5.2 mm, respectively.
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Figure 2. Fabrication results: (a) fabricated MLA and TSV; (b) 4 × 4 optical fiber array assembled
with the MLA.

Figure 3a depicts the proposed MEMS optrode array (MOA) design in a cross-sectional
view. The device can be separated into two components, which are the reusable part and
the disposable part. The reusable part, which is the light source for the system, consists of
an SMD (surface mounted device) type blue LED (LB G6SP, OSRAM, Sunnyvale, CA, USA)
with a 469 nm wavelength, the upper housing, and the external power supply lines. The
LED is located at the end of the upper housing, and the center of the LED is aligned with
that of the MLA for high light delivery efficiency. The wavelength of light incident on the
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MLA can be changed simply by replacing the LED with one that has a different wavelength
to match the wavelength required by specific target opsins. The disposable part comprises
a 4 × 4 glass MLA and a 4 × 4 array of high NA optical fibers (FP200URT, Thorlabs, Inc.,
Newton, NJ, USA) that are passively aligned with the MLA and the recording electrodes.
In the previous study, a 3.14 dB enhancement of output light intensity was confirmed when
using the MLA and optical fiber array configuration used in this study [25]. Passively
assembled optical fibers were fixed to the vias located at the bottom of each microlens
using an index-matching epoxy (353ND, Epoxy Technology, Billerica, MA, USA). After the
assembly, an opaque epoxy (832B, MG Chemicals, Burlington, ON, Canada) was applied
to the bottom side of the silicon substrate to block the leakage light from the gap between
the vias and optical fibers. The PFA (perfluoroalkoxy)-coated tungsten wires (A-M System,
Sequim, WA, USA) are used for recording electrical signals, and the wires were directly
connected to a 5-pin connector. The diameter of the electrode was 101.6 µm, and the
impedance was less than 1 MΩ at 1 kHz. Five TSVs were formed near the 4 × 4 MLA, and
the recording wires were inserted into each TSV for passive alignment with the optical fiber
and fixation. At the front side of the customized polycarbonate upper and lower housings,
two circular magnets with 2 mm diameter and 1 mm thickness were used with the latch
structure for mechanical snap-in assembly. Figure 3b shows the fully assembled MOA
device. The total dimension of the MOA device was 7 × 10 × 5 mm3.
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logical recording; (b) fully assembled micro-electro-mechanical systems optrode array (MOA).

The MOA is directly inserted into the target area of the brain, and the disposable part
is fixed to the skull using dental cement. When the LED is turned on, the light passes
through the MLA and the optical fiber array and reaches the fiber tip to illuminate the
target region. In the previous study, it was shown that the temperature increase at the
optical fiber tip was less than 0.5 ◦C, and the relative light intensity remained above 91%
up to a distance of 2 mm from the tip [21]. The excitation parameters can be controlled by
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changing the frequency, pulse width, application time, and input current using the external
power supply.

3. Experimental Results
3.1. Optical Characterization

Figure 4 shows the light intensity measurement result of the fabricated device. The
measurement setup consisted of an optical power meter (PM100D, Thorlabs Inc., Newton,
NJ, USA), a photodiode power sensor (S121C, Thorlabs Inc., Newton, NJ, USA), and a four
degree-of-freedom (DOF) manual microstage. The measurement was conducted in the
presence of ambient light. The position of the device was adjusted using the microstage to
align the tip of the optical fibers to the measurement part of the photodiode sensor. A DC
input current was applied to the device. Although not perfectly linear, the measured light
intensity of the device increased as the input current increased. The maximum measured
light intensity was 2.936 mW/mm2 at a dominant wavelength of 469 nm when the applied
current was 200 mA. The minimum light intensity of 1 mW/mm2 required to excite the
target photosensitive molecule, namely, ChR2 (channelrhodopsin-2), could be covered with
input current ranging from 50 to 200 mA [4]. The measured light delivery efficiency of the
device was −7.7 dB.
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3.2. In Vivo Animal Experiment Protocol

In order to test the efficiency of the MOA, hGFAP-ChR2 mice, which are an astrocyte-
specific gene-targeting transgenic model, was used (Figure 5a). Tamoxifen (100 µL/20 g)
was administered to each transgenic mouse via an intraperitoneal (i.p.) injection per day.
Two weeks after the tamoxifen induction, the mouse expressed ChR2 in astrocytes. The
animal care and surgical procedures were approved by the Institutional Animal Care
and Use Committee (IACUC) at the Ewha Womans University (no. 20-029). Mice were
anesthetized with a ketamine–xylazine cocktail at an initial dose of 0.1 mL/g using an
i.p. injection. The MOA was inserted into the hippocampus (AP: −1.8 to −2.8 mm,
ML: 0.5–2.5 mm, DV: −1 to −2 mm) and fixed with dental cement (Figure 5b). For the
long-term in vivo study, only the disposable part of MOA remained with the plastic cover
when the system was not used for consecutive days to protect the MLA (Figure 5c).

Optical stimulation with blue (469 nm) LED light was delivered to activate the neural
pathway. Arduino was used to drive the LED light source, and the output power of the
LED was controlled using a function generator and power supply. The light pulse had a 4%
duty cycle with a 4 ms pulse duration, and the frequency was 10 Hz. Optical stimulation
was applied for two seconds during neural recording. In order to confirm the effect of
light-induced neural activities, the individual neural spike activities were detected, sorted,
and counted before, during, and after stimulation for two seconds each. If LED blue light
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stimulated neurons in the hippocampus region, the connected neural pathway would be
activated, and the evoked neural activities of neighboring neurons could be recorded using
multi-channel recording electrodes.

Raw neural signals (0.1–20 kHz bandpass filtered, 60 Hz notch filtered) were recorded
at a 20 kHz sampling rate and amplified and digitized using an Intan RHD2132 headstage.
The recorded data were analyzed with MATLAB (version 9.4.0, R2018a, MathWorks Inc.,
Natick, MA, USA).
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MOA was covered with a plastic cover during recovery.

3.3. Optogenetic and Electrophysiological Experiments

After the MOA implant surgery, optical stimulation and neural recording were con-
ducted to verify that the MOA is suitable for in vivo optogenetic neuromodulation. Optical
stimulation was controlled using Arduino. A 125 mA alternating current was applied
for the stimulation, and the light intensity was 2 mW/mm2. LED blinking and the light
artifact was observed according to programmed pulse parameter (Figures 6 and 7a). The
electrophysiological recording was performed simultaneously with light stimulation on
neurons. The fabricated MOA successfully recorded the neural signals. Spontaneous and
light-induced activities of hippocampal neurons were detected by multi-channel recording
electrodes in the MOA (Figure 7a). Neural activity increased during optical stimulation
compared to the spontaneous activity before the stimulation (Figure 7b). Two different
spike waveforms were extracted from the recording signal via spike sorting, and both spike
waveforms were induced after optical pulses (Figure 7c,d). Two different spike waveforms
were extracted from the recording signal (Figure 7). A long-term in vivo test was possible
because the plastic cover protected the MLA. It was demonstrated that the signal was
stably measured two weeks after the implant surgery.
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4. Conclusions and Discussion

In this study, a new design of an optrode array for optogenetic neuromodulation and
neural recording was proposed. The device was fabricated using MEMS technologies,
including TSVs for the aligned assembly of optical fibers and recording electrodes. The
system was implanted into the brain of transgenic mice and delivered light stimulation
to the target brain region. Based on the electrophysiological recording experiment, the
neural activities were successfully detected via the assembled metal electrode array from
individual neurons. Despite the successful result of the in vivo experiment, the close
juxtaposition of optical fibers might cause tissue damage in the brain area of interest.
However, the proposed fabrication method provides high design flexibility, including in
terms of the length, interspacing, and number of optical fibers or electrodes; fiber tip shape;
and the relative position between optical fibers and electrodes. Therefore, in further study,
the design parameters can be adjusted (i.e., increasing spacing) to minimize the tissue
damage and will be customized depending on the target brain region.

The in vivo animal experiment with transgenic mice proved the functionality of the
proposed optrode system, including light delivery and electrophysiological recording. For
optogenetic modulation, ChR2 was expressed mostly on excitatory neurons of the trans-
genic mice. The optogenetic activation increased the frequency of spikes approximately
two-fold compared to the spontaneous activity frequency. Furthermore, time-locked spik-
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ing in the stimulation region was observed. This was because the target region, namely, the
hippocampus, has a signal pathway from hippocampal CA3 to CA1. The hippocampus was
chosen as a target brain region because it is a representative brain region that is known to
be an important center for learning and memory [33–38]. In the hippocampus, there exists
a high density of neuronal cell bodies and a complicated formation of the neural pathway.
We placed optical fibers in hippocampal CA3 and recording electrodes in hippocampal
CA1. Our results can be interpreted as showing that activated excitatory neurons in CA3
transmitted neural signals to CA1.

The whole system comprises disposable and reusable parts in consideration of several
aspects of in vivo animal experiments. First, the detachable design can reduce the cost of
large-scale animal experiments. In most neuroscience studies, it is required to perform
experiments with at least several tens of animals to verify hypotheses. Once the optrode
system is implanted into the brain, it is impossible to recycle because the system is firmly
attached to the skull with dental cement. Therefore, the detachable design can substantially
reduce the system’s cost. Second, the detachable system is advantageous because it mini-
mizes the total weight of implantation while the animal is not performing the experiments.
In most in vivo experimental designs, the actual experiments do not exceed a couple of
hours per day. In addition, it is very crucial to reduce the weight of the system since the
mice cannot freely move with a heavy and uncomfortable burden on their head. Lastly, the
detachable design can protect the system from animals’ attempts to remove and eventually
deteriorate the implanted system.
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