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A B S T R A C T   

Evidence supports a complex interplay of gut microbiome and host metabolism as regulators of 
obesity. The metabolic phenotype and microbial metabolism of host diet may also contribute to 
greater obesity risk in children early in life. This study aimed to identify features that discrimi-
nated overweight/obese from normal weight infants by integrating gut microbiome and serum 
metabolome profiles. This prospective analysis included 50 South Asian children living in Canada, 
selected from the SouTh Asian biRth cohorT (START). Serum metabolites were measured by 
multisegment injection-capillary electrophoresis-mass spectrometry and the relative abundance 
of bacterial 16S rRNA gene amplicon sequence variant was evaluated at 1 year. Cumulative body 
mass index (BMIAUC) and skinfold thickness (SSFAUC) scores were calculated from birth to 3 years 
as the total area under the growth curve (AUC). BMIAUC and/or SSFAUC >85th percentile was used 
to define overweight/obesity. Data Integration Analysis for Biomarker discovery using Latent 
cOmponent (DIABLO) was used to identify discriminant features associated with childhood 
overweight/obesity. The associations between identified features and anthropometric measures 
were examined using logistic regression. Circulating metabolites including glutamic acid, ace-
tylcarnitine, carnitine, and threonine were positively, whereas γ-aminobutyric acid (GABA), 
symmetric dimethylarginine (SDMA), and asymmetric dimethylarginine (ADMA) were negatively 
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associated with childhood overweight/obesity. The abundance of the Pseudobutyrivibrio and 
Lactobacillus genera were positively, and Clostridium sensu stricto 1 and Akkermansia were nega-
tively associated with childhood overweight/obesity. Integrative analysis revealed that Akker-
mansia was positively whereas Lactobacillus was inversely correlated with GABA and SDMA, and 
Pseudobutyrivibrio was inversely correlated with GABA. This study provides insights into meta-
bolic and microbial signatures which may regulate satiety, energy metabolism, inflammatory 
processes, and/or gut barrier function, and therefore, obesity trajectories in childhood. Under-
standing the functional capacity of these molecular features and potentially modifiable risk fac-
tors such as dietary exposures early in life may offer a novel approach for preventing childhood 
obesity.   

1. Introduction 

The pathophysiological mechanisms leading to excess adiposity early in life remains poorly understood despite an alarming in-
crease in childhood obesity worldwide [1]. Recent advances in –omics technologies and approaches have allowed for a comprehensive 
characterization of metabolic networks to decipher underlying biological responses that contribute to the contemporary obesogenic 
environment [2]. For instance, the distribution of bacterial communities found in the intestine (i.e., the microbiome) of children who 
are overweight or obese differs from those who are of normal weight [3]. Perturbations in the gut microbiota therefore may underlie 
the phenotypic expression of obesity and corresponding changes in other –omics markers [4]. For instance, people with high levels of 
adipose tissue have also lower gut microbial diversity than normal weight controls [5], as well as elevated serum branched-chain 
amino acids (BCAAs) and biomarkers of inflammation, such as C-reactive protein [6]. Although host-derived factors are genetically 
hardwired, the microbiome can be regulated by environmental exposures, such as habitual diet, medication use, and hygiene [7]. 
However, it is unclear whether imbalances in the microbiome composition (i.e., dysbiosis) associated with disease and accompanying 
changes in the metabolome are a cause or consequence of childhood adiposity. 

The colonization of the gut microbiota starts from birth and alterations in maturation during infancy is a potential contributor to 
obesity and metabolic traits [3]. Alterations in intestinal microbiota composition, specifically a higher Firmicutes-to-Bacteroidetes ratio 
and lower microbiota diversity are shown to be associated with obesity in children as young as 7 years of age [8], and can lead to 
disruption in energy acquisition and regulation [9]. Moreover, elevated Firmicutes-to-Bacteroidetes ratio can lead to more efficient 
hydrolysis and fermentation of the indigestible dietary polysaccharides to generate short-chain fatty acids (SCFAs), which can increase 
the host’s ability to extract energy from the food components entering the gastrointestinal tract and activate the lipogenic pathways 
[10]. However, the structure and composition of infant microbiota is generally unstable and still developing, thus differences at the 
genus level and specific metabolites may be more directly related to childhood obesity [11]. 

Almost 10% of all circulating metabolites are derived from gut microbiota activity and participate in metabolic pathways [12]. 
Fecal metabolome studies have showed that obesity incidence is associated with higher levels of BCAAs, including leucine, isoleucine, 
and valine, and aromatic amino acids (AAs), including phenylalanine, tryptophan, and tyrosine [13]. Interestingly, the composition of 
intestinal microbiota, specifically the abundance of Bacteroides spp., may improve the efficiency of BCAA degradation [14]. 
Furthermore, trimethylamine N-oxide (TMAO), derived from gut microbial metabolism and dietary nutrients has been linked to pe-
diatric obesity [13]. These findings support the role of certain metabolites that can be endogenously produced or derived in response to 
diet exposure and gut microbiota activity, which may contribute to a metabolic phenotype of excessive fat storage and low-grade 
inflammation. Integrative multi-omics analyses can be used to characterize molecular changes that accompany childhood obesity 
and augment a mechanistic understanding of complex interactions involving host metabolism, dietary exposures, and microbiome 
activity relevant to the developmental origins of adiposity. 

Obesity and its complications are disproportionately more prevalent in non-white populations [15]. Children of South Asian 
ancestry have an increased cardiometabolic risk at lower body mass index (BMI) than other ethnic groups which has been attributed to 
lower lean mass and higher abdominal fat mass at the same BMI [16]. However, studies of metabolome or microbiome in childhood 
obesity have been performed primarily in white Europeans, and with sparse data reported in other ethnic populations, such as South 
Asians [13]. Another research gap is the integration of metabolomics with microbiome, which is of great interest in pediatric obesity 
research. To address these knowledge gaps, we employed a multi-omics approach of serum metabolomics together with amplicon 
sequence variants (ASVs) of 16S rRNA genes to identify integrated molecular features that characterize risk of obesity in young 
children. In addition to BMI, we included skinfold thickness as a measure of obesity as evidence suggests that fat mass is better 
associated with metabolic risk factors in children with obesity [17]. 

2. Methods 

2.1. Data source and participants 

The South Asian Birth Cohort (START) is a prospective birth cohort designed to study the influence of diverse environmental 
exposures and genetics on early life adiposity, growth trajectory and cardiometabolic health of South Asians living in Canada. START 
enrolled 1,012 South Asian mother–child (people who originate from the Indian sub-continent: India, Pakistan, Sri Lanka, or 
Bangladesh) pairs from the Peel Region of Ontario. Ancestral origin of both the woman, her partner, and both offspring’s grandparents 
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were required to be classified as South Asian. Participants were recruited through physician referrals between 2011 and 2015, and 
followed up at 1-, 2-, and 3-years. Details on the START design and methodology have been described previously [18]. Of the 182 
infants who provided fecal samples for microbiome analyses, our analytic dataset includes 50 infants who provided complete data on 
microbiome and serum metabolome at 1-year, and anthropometric measures at birth, 1, 2, and 3 years (Fig. S1). A primary caregiver of 
all enrolled participants provided full informed consent. The study was approved by the McMaster Hamilton Integrated Research 
Ethics Board [START (HiREB #10–640)]. 

2.2. Anthropometrics 

A standard protocol was used to obtain child anthropometric measurements [18]. Length was measured using the O’Leary Pediatric 
Length Board at birth, 1-, and 2-years, and height after 2 years was measured using a stadiometer. Infant birth weight was obtained 
from the birth delivery reports, and weight at each follow-up visit was measured using an electronic scale. BMI was calculated as 
weight in kilograms divided by squared height or length in meters. The skinfold thickness of triceps and subscapular sites were 
measured in triplicate using calipers (Holtain Tanner/Whitehouse, UK) to the nearest 0.2 mm, and summed to create “sum of skin-
folds” (SSF) [18]. 

2.3. Area under the curve (AUC) of BMI and SSF 

For each child, we calculated area under the curve (AUC) of BMIAUC and SSFAUC from birth to 3-years as a cumulative exposure to 
summarize the duration and degree of body mass. The BMIAUC and SSFAUC were calculated separately using the following formula:  

AUC = Average (BMI or SSF at age 1, BMI or SSF at birth) x (Age at 1–0) +

Average (BMI or SSF at age 2, BMI or SSF at age 1) x (Age at 2 – Age at 1) +

Average (BMI or SSF at age 3, BMI or SSF at age 2) x (Age at 3 – Age at 2)                                                                                           

In the analysis, children with BMIAUC and/or SSFAUC at or above internally derived 85th percentile were classified as being 
overweight/obese and those with BMIAUC and SSFAUC below 85th percentile were classified as normal weight [19]. A comparison of the 
classification of overweight/obesity using the BMIAUC and SSFAUC is provided in Table S1. 

2.4. Serum metabolome analyses 

A validated multiplexed separation platform based on multisegment injection-capillary-electrophoresis-mass spectrometry (MSI- 
CE-MS) was used for targeted and nontargeted analyses of 73 polar ionic metabolites measured in serum filtrate samples with stringent 
quality control (QC) [20]. A standardized protocol for identification and quantification of circulating serum metabolites under positive 
and negative ion mode detection is described in detail elsewhere [20]. Briefly, an iterative data workflow was used to effectively filter 
out spurious signals, redundant peaks, and background ions, when performing targeted and nontargeted metabolite profiling based on 
analysis of a pooled serum sample that served as a QC sample to monitor technical precision [21]. Serum metabolites were reported if 
they were detected in majority of the individual samples (≥75%) with an acceptable technical precision (CV <30%) based on repeated 
analysis of QC samples to minimize false discoveries and data overfitting. Missing values (below method detection limit) were set as 
half of the lowest detected value for each metabolite. Unambiguous identification of most serum metabolites (level 1) in this work was 
achieved after spiking a pooled serum sample with authentic standards based on their co-migration and accurate mass with low mass 
error (<5 ppm). These authenticated metabolites were quantified in terms of their absolute concentration (μmol/L) using external 
calibration curves, where the ion response for each compound was normalized to an internal standard (i.e., relative peak area). Un-
known serum metabolites were otherwise annotated based on their relative migration time, accurate mass and most likely molecular 
formula when chemical standards were lacking. 

2.5. Microbiome data acquisition 

A fecal sample was collected from infants at the 1-year visit. Mothers were instructed to collect stool sample from a regular diaper 
and record the time and date of the sample and place it in a sterile bag in the freezer until their scheduled appointment. Upon arrival, 
the stool samples were divided into four pre-labeled cryovials and transferred to the lab in a cooler, weighed, and stored at − 80 ◦C. 
Sample storage, DNA extraction, 16S rRNA gene sequencing, and analysis has been described in detail previously [22]. In brief, the V3 
region of 16S rRNA gene (150 base pairs) was sequenced in the McMaster Genomics Facility with paired-end 250-base pair sequencing 
on the MiSeq sequencer (Illumina, Inc.). Adapter, primer and barcode sequences were trimmed from sequencing reads using cutadapt 
(v1.2.1) [23], and ASVs were inferred using the Divisive Amplicon Denoising Algorithm 2 (DADA2) package in R [24]. The naive 
Bayesian classifier method in DADA2 was used to assign taxonomy using the SILVA 16S rRNA gene reference file. 

2.6. Statistical analysis 

Data Integration Analysis for Biomarker discovery using Latent cOmponent (DIABLO) was used to integrate 73 serum metabolites 
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and 55 bacterial ASV data to identify discriminant features between children with overweight/obesity and those with normal weight 
[25]. DIABLO is a supervised learning approach based on partial least squares (PLS) that builds on sparse Generalized Canonical 
Correlation Analysis (sGCCA) and aims to maximize covariance between linear combination of variables (latent component scores) 
and a response variable. Before proceeding with data integration, individual sparse-PLS-discriminant analysis (sPLS-DA) was used to 
understand major sources of variation in each dataset and guide the integration process (Figs. S2–3). A 10% prevalence filter was used 
to remove low-prevalence ASVs and then transformed using the Centered Log Ratio (CLR) with the ALDEx2 package in R [26]. Serum 
metabolome data were transformed using natural logarithm. First, the block.splsda function was used to determine the optimum 
number of components based on the performance of the model considering the centroid distance technique and lowest balanced error 
rate with a 5-fold cross-validation (repeated 500 times). One component was selected for use in the final model based on the lowest 
balanced error rate of 39% with a centroid distance metric. Next, a tune.block.splsda function was applied to choose the optimal number 
of variables from each data on each component. Furthermore, a plotDiablo function was used to generate a plot to show the overall 
correlation between the most discriminant ASVs and metabolites, and circosPlot to visualize correlations greater than 0.4 between 
them. Finally, the plot.loadings function is used to visualize the set of loading vectors assigned to each selected variables in each 
component. For discriminant analysis, the magnitude of the median value corresponds to the importance of each variable and the 
colour corresponds to the outcome group (overweight/obese and normal weight) in which the variable is most abundant. 

Logistic regression models were also used to examine the association of the identified discriminant ASVs and metabolites with 
overweight/obesity. We estimated overweight/obesity per standard deviation increase in log-transformed serum metabolite con-
centration. Odds ratios (OR), 95% confidence intervals (95% CI), and p-values were reported. All analyses were carried out using R 
software, version 1.2.5. 

3. Results 

3.1. Descriptive statistics 

The distribution of demographic characteristics in the overall cohort and by pediatric adiposity status are presented in Table 1. A 
total of 11 (22.0%) children were classified as overweight/obese and about 36% of these children were males. The overweight/obesity 
classification in our study were comparable to the World Health Organization Child Growth Standards (Fig. S4, Table S2). Children 
with overweight/obesity compared to those with normal weight had a lower mean social disadvantage index (0.91 vs. 2.06, p =
0.0146), and they were more likely to have been born preterm (18.2% vs. 7.7%, p = 0.3012, corresponding to mean gestational age of 
35.52 vs. 39.52 months). Overall, 96% of infants were either currently being breastfed or had been previously but were no longer at the 
time of assessment. 

Table 1 
Descriptive statistics of maternal and infant characteristics overall and by overweight/obesity status of children in START cohort.  

Variable Overall n = 50 Overweight/Obese n = 11 Normal Weight n = 39 

Sex (Male), n (%) 25 (50.0) 4 (36.36) 21 (53.85) 
Maternal age (years), mean (SD) 30.64 (3.88) 31.18 (2.82) 30.49 (4.15) 
Gestational age (weeks), mean (SD) 39.09 (1.54) 38.49 (2.23) 39.26 (1.28) 
Gestational weight gain (kg), mean (SD) 13.92 (6.52) 14.72 (8.33) 13.68 (8.33) 
Pre-pregnancy BMI (kg/m2), mean (SD) 24.77 (4.78) 24.82 (4.46) 24.76 (4.92) 
Gestational diabetes (GDM), n (%)a 21 (42.0) 7 (63.64) 22 (56.41) 
Preterm birth (Yes), n (%) 5 (10.0) 2 (18.18) 3 (7.69) 
Mode of delivery, n (%) 

Vaginal 34 (68.0) 9 (81.82) 25 (35.90) 
Caesarean section (planned or emergency) 16 (32.0) 2 (18.18) 14 (35.90) 

Antibiotic use in labour (Yes), n (%) 26 (53.06) 7 (70.0) 19 (48.72) 
Breastfeeding status at 1-year, n (%) 

Yes, and child is still being breast fed 22 (44.0) 4 (36.36) 18 (46.15) 
Yes, child was breast fed but now stopped 26 (52.0) 6 (54.55) 20 (51.28) 
Child was never breast fed 2 (4.0) 1 (9.09) 1 (2.56) 

Time of solid food introduction (months), mean (SD) 6.02 (1.36) 6.0 (0.89) 6.03 (1.48) 
Maternal physical activity (min per day), mean (SD) 11.94 (18.05) 13.64 (17.04) 11.45 (18.52) 
Social disadvantage index, mean (SD)b 1.77 (1.38) 0.91 (0.94) 2.06 (1.39) 
Total fibre intake at 1 year (grams), mean (SD) 18.35 (8.36) 18.06 (10.44) 18.43 (7.83) 
Energy Intake at 1 year (kcal), mean (SD) 24.07 (12.05) 25.23 (16.98) 23.75 (10.53) 
Birthweight (kg), mean (SD) 3.23 (0.46) 3.23 (0.71) 3.23 (0.38) 
BMIAUC, mean (SD) 48.47 (5.06) 54.57 (5.37) 46.74 (3.41) 
SSFAUC, mean (SD) 52.17 (8.90) 63.33 (9.10) 49.02 (5.84) 

BMI = Body mass index, SSF = Sum of skinfold, AUC = Area under the curve. 
a GDM was defined based on the Born in Bradford oral glucose tolerance test criteria, self-reported GDM, and insulin use in pregnancy. 
b The maximum social disadvantage index was five, and the lowest possible score was zero, reflecting the least social disadvantage. 
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3.2. Integrative analysis of the gut microbiome and serum metabolome 

The DIABLO analysis revealed a weak correlation (r = 0.28) between discriminant bacterial ASV and circulating serum metabolites 
(Fig. 1A). The optimal feature panel consisted of 9 ASVs and 10 serum metabolites, which produced the highest correlations across the 
datasets and discriminated children with overweight/obesity from those with normal weight. The contribution of each selected feature 
based on its loading weights is shown in Fig. 1B. The most important serum metabolites associated with overweight/obesity in this 
cohort were glutamic acid (Glu), acetylcarnitine, threonine, carnitine, tryptophan, and asparagine, and the most important bacteria 
were ASVs from the genera Pseudobutyrivibrio, Lactobacillus, Rothia, and Lachnospira. In contrast, the most important serum metabolites 

Fig. 1. DIABLO integrative analysis of metabolome and ASVs discriminatory between overweight/obese and normal weight groups. (A) Matrix 
scatter plot shows the clustering of samples based on the first component in each dataset and the correlation between the datasets. (B) Loading 
weights of the selected discriminant metabolites and ASVs. Colours indicate the group in which the median relative abundance is maximum, and 
values indicate the contribution to the first component. (C) Circos plot showing correlations between the most discriminatory metabolites and ASVs. 
Positive correlations are displayed using blue line-connectors. γ-aminobutyric acid (GABA); Symmetric dimethylarginine (SDMA); Asymmetric 
dimethylarginine (ADMA). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of 
this article.) 
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associated with normal weight relative to children with overweight/obesity were γ-aminobutyric acid (GABA), symmetric dimethy-
larginine (SDMA), asymmetric dimethylarginine (ADMA), and uric acid, whereas ASV were members of the genera Clostridium sensu 
stricto 1, Akkermansia, Hungatella, Roseburia, and Erysipelatoclostridium. A circos plot displays correlated features between selected 
ASVs and serum metabolites using a minimum cut-off value of r = 0.40 (Fig. 1C). In this case, ASVs belonging to the genera Pseu-
dobutyrivibrio and Lactobacillus were inversely correlated with GABA (r = − 0.43 and r = − 0.41, respectively) and SDMA (r = − 0.42 and 
r = − 0.40, respectively), and an ASV from the genus Akkermansia was positively correlated with GABA (r = 0.43) and SDMA (r = 0.41). 
Pearson correlation and their significance between the discriminatory serum metabolites and stool derived bacterial ASVs are depicted 
in Figs. 2–3. 

3.3. Associations of selected metabolites and bacterial ASVs with overweight/obesity 

The associations between serum metabolites and ASVs as a function of pediatric adiposity status are presented in Table 2. For 
metabolites involved in glutamate metabolic pathway, higher serum Glu was positively associated with the odds of childhood 
adiposity (OR per SD = 2.9; 95% CI = 1.3, 7.4), whereas higher serum GABA was negatively associated (OR per SD = 0.5; 95% CI = 0.2, 
0.8) with the odds of childhood adiposity compared to children with normal weight. We examined the association between the ratio of 
the Glu/GABA with overweight/obesity. In comparison to single serum metabolites (Glu or GABA, AUC = 0.77 and 0.72, respectively), 

Fig. 2. Correlation between most discriminatory metabolites in participants overall and by overweight/obese (O) and normal weight (N) groups. 
γ-aminobutyric acid (GABA); Symmetric dimethylarginine (SDMA); Asymmetric dimethylarginine (ADMA). 
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the discrimination is slightly more improved as a ratio (AUC = 0.81; 95% CI = 0.7, 0.9) with a significant difference using t-test (p =
0.0029) and a median fold-change of 2 (Fig. 4). Two main metabolites involved in carnitine metabolism, namely carnitine (OR per SD 
= 5.0; 95% CI = 1.4, 32.1) and acetylcarnitine (OR per SD = 3.6; 95% CI = 1.3, 14.6), were both also positively associated with 
pediatric adiposity. Serum concentration for SDMA (OR per SD = 0.4; 95% CI = 0.2, 0.8) and ADMA (OR per SD = 0.46; 95% CI = 0.2, 
0.9), both isomers generated via methylation of arginine, were negatively associated with childhood adiposity. Threonine, related to 
glycine, serine, and threonine metabolic pathway, was positively associated with childhood adiposity. However, tryptophan, uric acid, 
and asparagine were not statistically associated with childhood anthropometric measures in this study. 

The relative abundance of ASV from the genera Pseudobutyrivibrio (OR = 1.3; 95% CI = 1.0, 1.7) and Lactobacillus (OR = 1.2; 95% 
CI = 1.0, 1.5) were positively associated and the abundance of Clostridium sensu stricto 1 (OR = 0.7; 95% CI = 0.5, 0.9) and Akker-
mansia ASV (OR = 0.2; 95% CI = 0.1, 0.7) was inversely associated with children with overweight/obesity compared to normal weight 
children. ASV assigned as Rothia, Lachnospira, Hungatella, Roseburia, and Erysipelatoclostridium were not statistically associated with 
overweight/obesity. Table S3 reports the distribution of discriminatory serum metabolite concentration identified in DIABLO and 
Fig. 5 shows the distribution of statistically significant discriminatory serum metabolites and ASVs by overweight/obesity status. 

4. Discussion 

This study aimed to identify multi-omic molecular features that discriminated overweight/obese children from normal weight 

Fig. 3. Correlation between most discriminatory ASVs in participants overall and by overweight/obese (O) and normal weight (N) groups.  
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children. The results showed that children with higher adiposity as classified by BMI or SSF had higher circulating concentrations of 
Glu, acetylcarnitine, carnitine, and threonine, and lower levels of GABA, SDMA, and ADMA compared to normal weight children at 1- 
year of age. Furthermore, higher abundance of members of the genera Pseudobutyrivibrio and Lactobacillus, and lower abundance of 
members of the genera Clostridium sensu stricto 1 and Akkermansia were observed in the feces of children with excess adiposity. An 
Akkermansia ASV was positively correlated with GABA and SDMA, whereas an ASVs from the genera Lactobacillus was inversely 
correlated with GABA while ASVs from the genera Pseudobutyrivibrio was inversely correlated with both, GABA and SDMA. 

Glu is a non-essential α-amino acid necessary for the biosynthesis of protein that also functions as a major neurotransmitter, but it is 
also acquired from foods common to omnivore diets (e.g., meats, poultry, fish, eggs, and dairy products) and a widely used flavoring 
additive in processed foods (e.g., monosodium glutamate). Overall, serum Glu was identified to have the greatest discriminatory power 
with higher circulating concentrations measured in overweight/obese than normal weight children. Hyperglutamataemia has earlier 
been implicated in childhood obesity that may be toxic to neuronal cells and disrupt the hypothalamic signalling cascade of leptin, 
thereby impairing the regulation of appetite with reduced satiety [27,28]. Previous metabolomic studies have independently reported 
that elevated glutamate is associated with obesity in children [29,30] and is also a proposed indicator of future risk of cardiometabolic 
disorders [31]. Moreover, it is proposed that elevated Glu concentrations increase the transamination of pyruvate to alanine, which can 
lead to the development of obesity-related insulin resistance [32]. We observed a moderate correlation between Glu and alanine (r =
0.57, p < 0.001), and on average higher concentrations of alanine in overweight/obese compared to those with normal weight children 

Table 2 
Results from logistic regression models examining the association of discriminatory metabolites (concentrations) and ASVs with overweight/obesity 
among children in the START cohort.   

Odds ratioa (95% CI) p-value   

Metabolites (μmol/L) Sub-Pathway Super-Pathway 

Glutamic acid 2.90 (1.33, 7.57) 0.0144 Glutamate metabolism Amino Acid 
GABA 0.45 (0.21, 0.86) 0.0204 Glutamate metabolism Amino acid 
Symmetric dimethylarginine 0.43 (0.20, 0.85) 0.0217 Urea cycle; arginine and proline metabolism Amino acid 
Acetylcarnitine 3.60 (1.34, 14.63) 0.0326 Carnitine metabolism Lipid 
Threonine 3.10 (1.29, 9.89) 0.0266 Glycine, serine and threonine metabolism Amino acid 
Carnitine 4.45 (1.42, 23.09) 0.0370 Carnitine metabolism Lipid 
Asymmetric dimethylarginine 0.46 (0.20, 0.92) 0.0378 Urea cycle; arginine and proline metabolism Amino acid 
Uric acid 0.46 (0.19, 0.96)  0.0536 Purine metabolism Purine derivative 

Tryptophan 1.69 (0.9, 3.46) 0.1113 Tryptophan metabolism Amino acid 
Asparagine 2.27 (1.06, 5.79) 0.0538 Alanine and aspartate metabolism Amino Acid 

ASVs Phylum Family 

Pseudobutyrivibrio 1.30 (1.04, 1.67) 0.0258 Firmicutes Lachnospiraceae 
Clostridium sensu stricto 1 0.69 (0.47, 0.96) 0.0344 Firmicutes Clostridiaceae 1 
Akkermansia 0.23 (0.05, 0.67) 0.0301 Verrucomicrobia Akkermansiaceae 
Lactobacillus 1.23 (1.01, 1.54) 0.0497 Firmicutes Lactobacillaceae 
Rothia 1.79 (1.06, 3.53) 0.0534 Actinobacteria Micrococcaceae 
Lachnospira 1.27 (0.98, 1.67) 0.0684 Firmicutes Lachnospiraceae 
Hungatella 0.70 (0.43, 1.0) 0.0831 Firmicutes Lachnospiraceae 
Roseburia 0.75 (0.45, 1.00) 0.1237 Firmicutes Lachnospiraceae 
Erysipelatoclostridium 0.73 (0.49, 1.03) 0.0920 Firmicutes Erysipelotrichaceae  

a ORs are estimated per standard deviation (SD) increase in log-transformed metabolite levels. 

Fig. 4. (A) Receiver operating characteristic (ROC) curve and (B) boxplot for the serum Glu/GABA ratio illustrate the differentiation of overweight/ 
obese (n = 11) from normal weight (n = 39) South Asian infants. Glutamic acid (Glu); γ-aminobutyric acid (GABA). 
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(mean = 413 vs. 337 μmol/L, p = 0.0331). Several factors likely contribute to the variation in circulating levels of Glu, including 
dietary habits, psychological factors, genetic variation, and gut microbiota. We used maternal food-frequency data from pregnancy to 
compare serum levels of Glu and its associated foods. Higher Glu was positively correlated with maternal consumption of red or 
processed meat (r = 0.37, p = 0.0085) and eggs (r = 0.38, p = 0.0066) based on Pearson correlation analysis, but it did not correlate 
with any other protein-based dietary factor (Fig. S5). 

In contrast to glutamic acid, GABA, a primary inhibitory neurotransmitter synthesized from glutamate by glutamic acid decar-
boxylase, was present in higher concentrations in the normal weight sample, and this finding is in agreement with a previous study 
involving American Indian adolescents [33]. Animal studies have previously demonstrated that GABA in the frontal cortex and hip-
pocampus is involved in the regulation of food intake and body weight that can be lowered via consumption of a high-fat diet [34]. We 
observed higher infant dietary fat (grams) to be only weakly negatively correlated with GABA concentration (r = − 0.25, p = 0.0762). 
Also, hepatic GABA synthesis may modulate insulin and glucagon secretion, homeostatic model assessment for insulin resistance 
(HOMA-IR), type 2 diabetes, and BMI [35]. GABA in the central nervous system has been implicated in regulation of systemic 
metabolism. Activation of lateral hypothalamus GABA type A receptors suppresses eating and reduces body weight, and suppression of 
this signaling pathway results in increased food intake [36]. Alterations in gut microbiome can influence changes in plasma con-
centration of Glu and GABA levels [37]. Evidence showed that fecal transplants from lean to obese individuals resulted in increased 

Fig. 5. Distribution of significantly different (A) metabolites (concentration) and (B) ASV between children who were overweight/obese (O) and 
normal weight (N). ASV counts were transformed using CLR-transformation. 
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GABA levels in plasma [38]. GABA is not restricted to production by host neurons as a major inhibitory neurotransmitter, but can be 
generated by certain gut microbiota [39] and promote brown adipose tissue dysfunction [40]. In our study, GABA was positively 
correlated with member of the genus Akkermansia, and negatively correlated with members of the genera Pseudobutyrivibrio and 
Lactobacillus. In fact, higher abundance of Akkermansia has been shown to impact the net production capacity of GABA [41]. Also, 
GABA has been shown to serve as an acid-resistance mechanism for few bacterial species including Lactobacillus [42]. Although there is 
no evidence in children, increased abundance of Akkermansia has been inversely associated with higher fasting glucose, waist-to-hip 
ratio, and subcutaneous adipocyte diameter in adults [43,44]. Meanwhile, Pseudobutyrivibrio [11] and Lactobacillus [45] have been 
found in higher abundance in feces of obese children, and higher abundance of Lactobacillus was correlated with plasma inflammatory 
marker C-reactive protein [45]. Previously, Lactobacillus species have been identified in microbiota of breast milk [46]. Our data 
confirms this finding where children who were breastfed until 1-year had a higher abundance of members of the genus Lactobacillus 
compared to those who were breastfed less than 1 year or never breastfed (p = 0.0488). Although these results are intriguing and 
largely consistent with previous studies, the mechanisms involved are not clear, thus further studies with greater study power are 
required to better decipher the potential causal relationship between these ASVs and circulating metabolites in early onset childhood 
obesity. 

We also observed higher concentrations of serum carnitine and acetylcarnitine in infants who were overweight/obese. Carnitine is 
largely acquired from breast milk and formula milk in newborns but can also be synthesized endogenously from two essential amino 
acids, lysine and methionine [47]. Although our data showed a strong correlation between lysine and methionine (r = 0.80, p < 0.001), 
we did not find any correlation of carnitine concentrations with lysine and methionine suggesting an exogenous contribution from 
(maternal) diet to infant carnitine status. Carnitine is essential for the transport of long-chain fatty acids from cytoplasm into mito-
chondria for β-oxidation and energy production, and therefore it has a vital regulatory role in lipid metabolism and body composition 
[48]. Supplementation with carnitine can increase fat oxidation in individuals with overweight/obesity, and therefore has been widely 
studied for weight loss [49]. Thus, the positive effect of carnitine supplementation on body composition conversely suggests that 
higher body fat maybe related to mitochondrial dysfunction and impairments in energy generation [50]. Additionally, greater body fat 
may overload β-oxidation of fatty acids and lead to higher short- or medium-chain-acylcarnitines [51]. Short-chain acylcarnitines such 
as acetylcarnitine and carnitine are associated with higher BMI in children [29]. Furthermore, both carnitine and acetylcarnitine have 
been linked to protein-rich diets [47]. However, we could not confirm these associations due to the low consumption of meats in our 
South Asian cohort (Fig. S5). 

Another metabolite, threonine, was shown to be present in higher level in children who were overweight/obese, which is consistent 
with a previous study [52]. Dietary threonine restriction may protect against metabolic alterations associated with obesity and 
improve metabolism via regulation of liver-derived hormone fibroblast growth factor 21 [52]. Threonine restriction induces fibroblast 
growth factor 21 and deletion of this hormone in mice blocks adaptive metabolic responses to protein restriction [53]. Also, fibroblast 
growth factor 21 signaling is essential for increase energy expenditure and resistance to diet-induced obesity [54]. The role of thre-
onine deficiency and its association with lower intestinal immunity and greater inflammation has been examined in various animal 
models [55] given its key role as a nutrient immunomodulator impacting mucosal integrity and barrier function [56]. However, its 
underlying pathophysiology is speculative in humans and further research needs to elucidate the relevance of circulating threonine on 
early-onset obesity in children, including its impact on gut barrier function [57]. We observed threonine to be positively correlated 
with Glu, tryptophan, and asparagine (r > 0.68, p < 0.0001). Several studies have shown that restriction of essential and non-essential 
amino acids can improve lipid metabolism and resist obesity through several pathways [58,59]. 

In addition to GABA (discussed above), SDMA [60,61] and its structural isomer ADMA was present in higher concentrations in 
normal weight compared to overweight/obese infants. Both SDMA and ADMA are dimethylarginine isomers generated from turnover 
of histone proteins that function as inhibitors of endothelial nitric oxide biosynthesis by competitive binding to nitric oxide synthases, 
thus it has been traditionally linked to endothelial dysfunction [62]. However, higher levels of urinary ADMA/creatinine ratio con-
centration were found to be protective against cardiac deaths [63], and results from the Framingham Offspring Study found no as-
sociation between plasma ADMA and cardiovascular death [64]. While dimethylarginine dimethylaminohydrolase (DDAH) can 
metabolize ADMA, alanine-glyoxylate aminotransferase 2 (AGXT2), a mitochondrial aminotransferase expressed primarily in the 
kidney can metabolize both ADMA and SDMA [65]. Higher AGXT2 is suggested to be related to elevated systemic ADMA and SDMA 
due to decreased renal excretion and have been associated with worse clinical outcomes [66]. Thus, given the strong correlation 
between ADMA and SDMA in our study (r = 0.90), higher AGXT2 activity could possibly explain lower levels of ADMA and SDMA in 
children with obesity in our study. Although the underlying cause of the inverse association with obesity is unclear, studies have 
attributed this to increased cellular uptake and hepatic extraction of SDMA, where both mechanisms have been related to increased 
insulin levels associated with obesity-induced insulin resistance [67,68]. 

Tryptophan, an essential aromatic amino acid, acquired from certain whole foods (such as oats, poultry, fish, eggs, and milk) was 
present in higher levels in the overweight/obese samples in the DIABLO analysis, but was not statistically significant in the regression 
analysis, although the effect size supports a potential association (OR = 1.9; p = 0.0667). Our data shows that higher tryptophan levels 
were correlated with consumption of red meat (r = 0.29, p = 0.0382) and eggs (r = 0.34, p = 0.0151). Overnutrition may lead to excess 
tryptophan uptake and availability [69]. Approximately 90–95% of tryptophan is metabolized by the kynurenine pathway in the liver 
via tryptophan-2,3-dioxygenase (IDO) into co-enzyme nicotinamide adenine dinucleotide (NAD+) and other bioactive metabolites; 
and residual tryptophan is largely used for serotonin synthesis [70]. Tryptophan catabolism is shifted towards the kynurenine pathway 
in human obesity induced by inflammatory biomarkers (TNFα and IL-6) and oxidative stress [71,72]. Elevated tryptophan [73], IDO 
activity [73], and kynurenine levels [73] and reduced serotonin production [74] has been shown to be associated with obesity and 
related metabolic diseases. Further, alterations in tryptophan metabolism may also be driven by the gut microbiota, as previously 
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shown to be disrupted at the compositional and functional level in individuals with obesity [75]. Taken together, the evidence suggests 
that obesity may induce concomitant alterations of host (kynurenine pathway) and microbial (indole) tryptophan metabolic pathways, 
both of which are associated with obesity-related inflammation [74]. 

Overall, our findings in the South Asian children are mainly consistent with those reported in white Europeans. However, our study 
did not detect any statistically significant difference in expression of circulating concentrations of BCAAs (leucine, isoleucine, and 
valine) and aromatic AAs (phenylalanine and tyrosine), which have been proposed candidate biomarkers of childhood obesity [13]. 
This discrepancy could be in part explained by differences in genetic background and/or lifestyle factors between South Asians and 
other ethnic groups (mainly Europeans) included in previous studies. Infants present several differences than older children in terms of 
metabolism, diet, and lifestyle, all of which may contribute to differences in their metabolic phenotypes. Moreover, our study 
examined very early obesity onset using serum metabolites at 1 year, and two studies that predicted children weight status using 
plasma sample collected in infancy did not identify BCAAs and aromatic AAs (phenylalanine and tyrosine) as predictors of excessive 
weight gain. Nevertheless, our data demonstrated a significant positive correlation between BCAAs and Glu, which is produced during 
the transamination reaction (first step) in BCCA catabolism (Fig. S6). Higher BCAAs have been shown to disrupt the balance of essential 
amino acids including tryptophan and threonine (both were correlated with BCAAs in our data), which we observed in higher levels in 
children with overweight/obesity. Given this data, future studies need to address this discrepancy in a larger cohort in different 
ethnicities to verify their clinical utility and overall generalizability. 

GABA is produced by gut microbes from Glu and known to regulate appetite via the gut–brain axis. Our work revealed for the first 
time the significance of two abundant neurotransmitters associated with childhood obesity given their roles in regulating food satiety 
and behavior. In fact, the ratio of Glu to GABA was a stronger discriminant of overweight/obesity and normal weight infants than these 
two metabolites individually (Fig. 4). However, a larger cohort (notably in overweight/obese sub-group) and repeated measures of 
serum metabolites at 2, 3, and 5 years are required for further validation. Furthermore, carnitine/acetylcarnitine accumulation can 
reflect underlying mitochondrial dysfunction with incomplete or reduced mitochondrial fatty acid oxidation, whereas threonine is 
necessary for gut inflammatory responses and intestinal barrier function, and elevated SDMA and ADMA may increase systemic 
inflammation. 

The gut microbiome provides essential capacities for fermentation of non-digestible substrates such as complex plant carbohydrates 
(dietary fibre) [76]. Differences in gut microbiota composition can influence an individual’s capacity to extract more energy from diet 
which in turn can activate lipogenic pathways [77]. Several studies have shown children with obesity to have higher levels of bacteria 
in the Firmicutes phylum and lower in the Bacteroidetes phylum [78], and it is proposed that Firmicutes are more efficient at extracting 
energy from dietary fiber than Bacteroidetes [79]. Given that South Asians have a carbohydrate rich diet, it is possible that they have an 
elevated risk of obesity as their microbiome is enriched with bacteria that is more efficient at extracting energy and absorbing more 
calories, which increases the risk of cardiometabolic diseases. However, it must be acknowledged that exposure during fetal devel-
opment such as mode of delivery (vaginal or Caesarian section), breastfed or formula-fed, and antibiotics use were not accounted for in 
this study but may contribute to the observed link between microbiome and obesity in South Asians. 

5. Conclusions 

Our study suggests the potential role of integrated molecular analysis for identifying biomarkers that discriminate between children 
who are overweight/obese and those who were of normal weight to unravel the pathophysiology of childhood obesity early in infancy. 
Notable differences were found in serum metabolome, and between specific metabolites and ASVs associated with overweight/obesity. 
Several correlated pairs of bioactive metabolites within distinct biochemical pathways, including Glu and GABA, acetylcarnitine and 
carnitine, SDMA and ADMA, and threonine were altered in overweight/obese infants. These findings suggest that eating behaviors and 
energy metabolism may be programmed early in childhood as reflected by differences in neurotransmitter expression and carnitine 
status. Furthermore, early signatures of poor gut barrier function and systemic inflammation in overweight/obese as compared to 
normal weight infants, reflected by differences in serum concentrations of threonine, and SDMA/ADMA, respectively. The abundance 
of the Pseudobutyrivibrio and Lactobacillus genera were positively, and Clostridium sensu stricto 1 and Akkermansia were negatively 
associated with childhood overweight/obesity. Additionally, by integrating the metabolites and bacterial genus, we found that 
Akkermansia was positively and Pseudobutyrivibrio was negatively correlated with both GABA and SDMA, and Lactobacillus was 
inversely correlated with GABA. While correlative, these findings suggest that the serum metabolic phenotype and bacterial fecal 
microbiome of overweight/obese South Asian children are distinct from those who are normal weight. Our analysis confirmed pre-
viously identified biomarkers and revealed significant associations between the multi-omics biomarkers. Future prospective studies in 
a larger cohort of children from different ethnicities and dietary habits are required to establish the causal relationships among these 
biomarkers and their overall clinical utility when linked to other well-established measures of immune function, inflammation and gut 
health. Understanding the functional capacity of these biomarkers and potential modifiable risk factors (e.g., diet, microbiome) early 
in life may lead to targeted early-life screening and therapeutic interventions, thereby offer a novel approach for prevention of the 
increasing prevalence of childhood obesity worldwide. 

5.1. Limitations of the study 

This study has some limitations that should be considered when interpreting the results. Although the study had a smaller sample 
size with a modest number of overweight/obese infants, it is consistent with a number of previous studies in this context [80,81]. The 
choice of -omic platforms and biological sample can influence the performance of data integration and comparison, and our study 
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lacked the analysis of serum lipids. Further, the number of features per dataset may determine the integration process and classification 
performance. This may explain why we did not observe a significant overlap between the two -omics datasets. Another likely 
explanation for the identification of small number of ASVs is due to the high between-subject variation in gut microbiome, which is 
well-known to confound studies with smaller sample size. Finally, we were unable to adjust for covariates in the regression analysis and 
therefore causal association cannot be established. Nevertheless, a major strength of this study is the integration of the metabolomic 
and microbiome data in early infancy to understand their impact on childhood obesity, an area that is not extensively studied in the 
literature, notably among South Asians. 

Author contribution statement 

Talha Rafiq: Conceived and designed the experiments; Analyzed and interpreted the data; Wrote the paper. 
Jennifer C. Stearns: Conceived and designed the experiments. Analyzed and interpreted the data. 
Meera Shanmuganathan: Performed the experiments; Contributed reagents, materials, analysis tools or data. 
Sandi M. Azab: Performed the experiments; Contributed reagents, materials, analysis tools or data. 
Sonia S. Anand: Conceived and designed the experiments; Contributed reagents, materials, analysis tools or data. 
Lehana Thabane: Analyzed and interpreted the data. 
Joseph Beyene: Analyzed and interpreted the data. 
Natalie C. Williams: Contributed reagents, materials, analysis tools or data. 
Katherine M. Morrison: Conceived and designed the experiments; Contributed reagents, materials, analysis tools or data. 
Koon K. Teo: Conceived and designed the experiments; Contributed reagents, materials, analysis tools or data. 
Philip Britz-McKibbin: Conceived and designed the experiments; Performed the experiments; Analyzed and interpreted the data; 

Contributed reagents, materials, analysis tools or data. 
Russell J. de Souza: Conceived and designed the experiments; Analyzed and interpreted the data; Contributed reagents, materials, 

analysis tools or data. 

Data availability statement 

Data will be made available on request. 

Funding information 

This research was funded by a Canadian Institute for Health Research (CIHR) Grant in Food & Health Population Health Research 
grant (RFA# 201301FH6; 2013–2018). START data were collected as part of a bilateral ICMR/CIHR funded programme (INC-109205) 
and HSF Canada Grant in Aid (NA7283). Funding support is also acknowledged from Genome Canada and the Canada Foundation for 
Innovation (P.B.M.). 

Declaration of competing interest 

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to 
influence the work reported in this paper. RJ de Souza has served as an external resource person to the World Health Organization’s 
Nutrition Guidelines Advisory Group on trans fats, saturated fats, and polyunsaturated fats. The WHO paid for his travel and ac-
commodation to attend meetings from 2012-2017 to present and discuss this work. He has presented updates of this work to the WHO 
in 2022. He has also done contract research for the Canadian Institutes of Health Research’s Institute of Nutrition, Metabolism, and 
Diabetes, Health Canada, and the World Health Organization for which he received remuneration. He has received speaker’s fees from 
the University of Toronto, and McMaster Children’s Hospital. He has served as an independent director of the Helderleigh Foundation 
(Canada). He serves as a member of the Nutrition Science Advisory Committee to Health Canada (Government of Canada), co-chair of 
the Method working group of the ADA/EASD Precision Medicine in Diabetes group, and is a co-opted member of the Scientific 
Advisory Committee on Nutrition (SACN) Subgroup on the Framework for the Evaluation of Evidence (Public Health England). He has 
held grants from the Canadian Institutes of Health Research, Canadian Foundation for Dietetic Research, Population Health Research 
Institute, and Hamilton Health Sciences Corporation as a principal investigator, and is a co-investigator on several funded team grants 
from the Canadian Institutes of Health Research. 

Acknowledgements 

We thank the participants who generously donated their time, information, and biological samples. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.heliyon.2023.e16651. 

T. Rafiq et al.                                                                                                                                                                                                           

https://doi.org/10.1016/j.heliyon.2023.e16651


Heliyon 9 (2023) e16651

13

References 
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resistance and atherosclerosis, Metabolism 56 (2007) 394–399, https://doi.org/10.1016/j.metabol.2006.10.023. 

[68] A.E. Schutte, R. Schutte, H.W. Huisman, J.M. van Rooyen, C.M. Fourie, L. Malan, N.T. Malan, E. Schwedhelm, S. Strimbeanu, M. Anderssohn, R.H. Böger, 
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